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Abstract.  The humid thermal vibration characteristics of a nonhomogeneous thermopiezoelectric nonlocal plate of 
polygonal shape are addressed in the purview of generalized nonlocal thermoelasticity. The plate is initially stressed, 
and the three-dimensional linear elasticity equations are taken to form motion equations. The problem is solved using 
the Fourier expansion collocation method along the irregular boundary conditions. The numerical results of physical 
variables have been discussed for the triangle, square, pentagon, and hexagon shapes of the plates and are given as 
dispersion curves. The amplitude of non-dimensional frequencies is tabulated for the longitudinal and flexural 
symmetric modes of the thermopiezoelectric plate via moisture and thermal constants. Also, a comparison of 
numerical results is made with existing literature, and good agreement is reached. 
 

Keywords:  humidity; nonlocal stress-strain relation; piezoelectric resonator plate; polygonal shape 

 
 
1. Introduction 
 

The effects of humidity can be reduced by controlling the source of moisture, ventilation, and 

also by increasing the temperature. The physical properties of a material like stress and strain, 

displacement, thermal conduction, and electric conduction will vary when they are either in the 

presence or absence of water. Also, the dimensions and weight of the material will play a vital role 

during the construction. The piezoelectric materials will produce electricity when they are stressed 

and strained, and they will also undergo some other mechanical properties. Also, the plates will 

vibrate at a high frequency. Hence, humidity can have an enormous effect when it is on the 

piezoelectric plate, which leads to the construction of composite materials. These types of 

composite materials are used in the construction of actuators, sensors in marine engineering, and 

aerospace. 

Adams and Keith Miller (1977) considered the elastic and transversely isotropic fiber and 

presented the influence of the thermal effect and moisture absorption on the fiber using the finite 
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element numerical analysis. Hou fu et al. (2008) constructed the compact general solution of five 

mono harmonic functions and constructed the field for the point source heat for the semi-infinite 

transversely isotropic electro magneto thermo elastic material. Selvamani and Ponnusamy (2013a, 

2013b) computed the frequencies, elastic variables and phase velocity for PZT-4 material and gave 

the plots for dispersion curves for the various ratio of the fluid wherein the piezoelectric plate is 

immersed. Also they analysed the generalized thermo elastic waves in a rotating ring shaped 

circular plate which is immersed in an in viscid fluid and introduced the two displacement 

potential functions to uncouple the equations of motion. They discussed the numerical results for 

the Zinc material and concluded that the waves were more dispersive and realistic when the 

thermal relaxation time, fluid and rotation parameter were present. Hutchinson (1979) found the 

approximate solution for the thick circular plates including shear and rotating effects and 

compared with the accurate series solution using three dimensional equations of linear elasticity 

theory. Chakraverty et al. (2005) used Rayley Ritz method to find the effect of non-homogeneity 

on elliptic plates and presented the numerical results using convergence test and validated with the 

available results. Shear deformation theories are tested for the static and free vibration analysis of 

new type of sandwich structures (Hanifi Hachemi Amar et al. 2023, Djilali et al. 2022, Kouider et 

al. 2021). 

Bin et al. (2008) illustrated the influence of electric and magnetic effect on the non-

homogeneous magneto-electro-elastic plates using the Legendre orthogonal polynomial series 

expansion. Selvamani and Infant Sujitha (2018a) analysed and presented the effect of thermo 

electromagnetic of nonhomogeneous poly plate numerically and graphically using linear elasticity 

theory. Also they (2018b) exhibited the numerical and graphical results for the wave propagation 

in a magneto thermo electroelastic disc of various shapes which was submerged in water. Chen et 

al. (2005) found the two types of vibrations such as elastic property and coupling effects on the 

non-homogeneous plate and also derived the numerical results. Jiyangi et al. (2006) discussed the 

influence of functionally graded factor on the multi-layered plates using state-space method with 

different stacking sequence. Pan (2001) considered the multilayered plates which are simply 

supported and exhibited the numerical examples for the effect of piezoelectric and piezomagnetic 

under the surface and internal loads. Selvamani (2015) considered the rotating polygonal cross 

sectional disc and derived the frequency equations for two particular cases (i) with fluid and 

without rotation (ii) without fluid and rotation. Also he (2017) presented the stress wave 

propagation in a thermo elastic plate with different shapes of inner and outer cross sections. Kakar 

(2013) found the great effects of the reinforcement gravity and magnetic field of the wave 

propagation on the prestressed half space using Whittaker foundation. Zhang and Yu (2013) 

studied the effects of initial stress on the guided wave propagation using Legendre orthogonal 

polynomial series expansion method. He also discussed the displacement and stress distribution on 

the plate. Selvamani and Ponnusamy (2015) discussed the free wave propagation in a piezothermo 

elastic rotating bar and the longitudinal and flexural equations for the PZT-5A material were 

studied analytically. Gawin et al. (199) exposed the computational analysis on the performance of 

hygro thermal and mechanical properties of concrete structures which were at high temperature 

using finite element and finite difference methods. 

Vinyas and Kattimani (2017, 2018) used FEM to study the electromagnetic static and coupling 

result of a hygroscopic plate. Loghman et al. (2017) analysed the various effects of the material 

properties through power law moduli in radial mode of the functionally graded cylinder and he 

found that the radial displacement and the circumferential displacement were reacting inversely 

each other when the power index of the materials were increased. Zenkour (2012) developed the 
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analytical solution to the inhomogeneous hollow cylinder with the temperature gradient and 

represented the nonhomogeneity inclusion on the numerical results graphically. Vinyas et al.(2018) 

studied the effect of hygrothermal surrounding on the free vibration of magneto electro elastic 

plates and revealed the result that the temperature and the moisture affected the stiffness of the 

plate and showed that the free vibration has been affected extremely. Wang et al. (2004) carried 

out the deep study on the responses of histories and distribution of inter laminar stresses in the 

rectangular laminated plates with piezoelectric component layers in hygro thermal environment. 

Reddy and Chin (2007) used the power law distribution and first order shear deformation theory to 

study the thermo mechanical responses of functionally graded and cylinders. 

Mehditabar et al. (2017) applied two kinds of numerical methods to solve the thermo elastic 

problem of functionally graded piezoelectric rotating hollow cylinder and plotted the stress values 

in mechanical structures. Selvamani (2016) considered the circular bar loaded with the thermal 

potential and compared the temperature distribution of longitudinal and flexural waves through the 

dispersion curve for symmetric and anti-symmetric mode. Jafari et al. (2012) analyzed the electro 

mechanical behavior of functionally graded piezoelectric hollow cylinder theoretically using the 

separation of variables and complex Fourier series. Ramu et al. (2018) investigated the numerical 

results of free vibration of the FGM plate in the hygrothermal environment. They formed the FGM 

plate based on the third order shear deformation theory and investigated the performance of natural 

frequencies of the FGM plates under the moisture and temperature conditions. Recently Janson et 

al. (2020) considered the EMC material and discussed the effect of temperature and humidity on 

the diffusivity of moisture constant. They have concluded that the moisture concentration is 

providing the nonlinear variation slightly when the humidity level is increasing at various points of 

moisture concentration. Contribution of dynamics of hygro thermo mechanical fields is notable in 

structural responses (Zaitoun et al. 2022, Mudhaffar et al. 2021, Al-Osta et al. 2021). Also 

Vinayak et al. (2021) investigated the vibration characteristics of LCS sandwich plates due to 

temperature and moisture using artificial neural network technique. They have presented the 

several numerical results conferred to figure out the influence of temperature and moisture on the 

LCS plates. The influence of surrounded foundation effects on the materials are exposed very well 

by several researchers (Bounouara et al. 2023, Mudhaffar et al. 2023, Tounsi et al. 2023, Belbachir 

et al. 2023, Bennedjadi et al. 2023, Hadji et al. 2023, Bot et al. 2022, Hebali et al. 2022, Bouafia 

et al. 2021).  

Idea of size dependent effect (nonlocal) which motivates the mechanical and thermal character 

of materials is utilized by variety of researchers and scientists. To show case this, classical and 

non-classical vibration problems are added with nonlocal theory of elasticity. Adding non local 

parameter in motion equations amplify the micro level impact of materials. In local theory of 

elasticity the stress is confined to a single point of system whereas in non-local elasticity theory 

the elasticity is global and independent of single point theory. In this regard, Sing and Parveen 

(2020) investigated the effect of nonlocal parameter in an isotropic thermo elastic solid with two 

temperature. They used the Fourier and Laplace Transforms to solve the governing equations. 

Dastjerdi et al. (2021) analyzed the nonlocal effect on the thick porous functionally graded plates 

in the thermal and humidity environment. The semi analytical polynomial method has been used to 

solve the stress and strain equations and the numerical results have been validated with the 

available results. The plane wave solutions of the P, thermal and SV waves with distinct speeds 

have been derived using Lord Shulman theory in the insulated or isothermal boundary of a thermo 

elastic solid half space by Baljeet Singh and Rupender (2020). The graphical representation of the 

effect of nonlocal parameter on the speeds and energy ratios of reflected waves also have been  
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Fig. 1 Construction of poly plates 

 

 

presented by them. Parveen Lata and Sukhveer Singh (2022) discussed the effect of rotation and 

inclined load in a nonlocal magnetothermoelastic solid with two temperature. Ibrahim et al. (2022) 

introduced nonlocal heat conduction approach in biological tissue generated by laser irradiation. 

The effect of humidity and the nonlocal elasticity on the piezoelectric nonhomogeneous plate of 

polygonal cross sections are analyzed in this paper. The plate is under hydrostatical stress. The 

solution of this problem is found by the two kinds Bessel function. The boundary conditions and 

frequency equations are evaluated using the FECM. The numerical results of humidity on the 

considered plate is derived and plotted for the various cross sections of the plate such as Triangle, 

Square, Hexagon and Pentagon. 

 

 

2. Fundamental equations and formulation of the model. 
 

The hydrostatical thermo piezoelectric nonhomogeneous poly plate is depicted in Fig. 1. 

According to Eringen (1981) nonlocal controlling equations are as follows 

𝑆𝑟𝑟,𝑟 + 𝑟−1𝑆𝑟𝜃,𝜃 + 𝑟−1(𝑆𝑟𝑟 − 𝑆𝜃𝜃) − 𝑝𝑠 [𝑢𝑟,𝑟𝑟 +
𝑢𝑟,𝑟

𝑟
−

𝑢𝑟

𝑟2 +
𝑢𝑟,𝜃𝜃

𝑟2 ] = 𝜌(1 − ℜ
2𝛻1

2)𝑢𝑟,𝑡𝑡    (1)    

  𝑆𝑟𝜃,𝑟 + 𝑟−1𝑆𝜃𝜃,𝜃 + 2𝑟−1𝑆𝑟𝜃 − 𝑝𝑠 [𝑢𝜃,𝑟𝑟 +
𝑢𝜃,𝑟

𝑟
−

𝑢𝜃

𝑟2 +
𝑢𝜃,𝜃𝜃

𝑟2 ] = 𝜌(1 − ℜ
2𝛻1

2)𝑢𝜃,𝑡𝑡        (2) 

where 𝑆𝑟𝑟 , 𝑆𝑟𝜃 , 𝑆𝜃𝜃  the stress modulli and ρ indicates mass density, ℜ = 𝑒0𝑎  where 𝑒0  is a 

nonlocal parameter, 𝑎 denotes the internal characteristics length and 𝑝𝑠  denotes the hydro static 

factor. 

The electric conduction equation of the piezoelectric plate is given by (Zenkour 2012)  

ℵ𝑟,𝑟 + 𝑟−1ℵ𝑟 + 𝑟−1ℵ𝜃,𝜃 = 0                                                         (3) 

The moisture diffusion is (Vinyas et al. 2018) 

                      𝜛𝛩𝑟,𝑟 + 𝜛𝑟−1𝛩𝑟 + 𝜛𝑟−1𝛩𝜃,𝜃 = 0                                                    (4) 
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The thermal conductivity is given by 

𝐾 [(𝑇,𝑟𝑟 + 𝑟−1𝑇,𝑟 + 𝑟−2𝑇,𝜃𝜃) + 𝜏𝑇

𝜕

𝜕𝑡
(𝑇,𝑟𝑟 + 𝑟−1𝑇,𝑟 + 𝑟−2𝑇,𝜃𝜃)] − 𝜌𝐶𝜈(1 − ℜ

2𝛻1
2)(𝑇,𝑡 + 𝜏𝑞𝑇,𝑡𝑡) 

+𝛽∗𝑇0𝛻2 [
𝜕

𝜕𝑡
(𝑢𝑟,𝑟 + 𝑟−1(𝑢𝜃,𝜃 + 𝑢𝑟)) + 𝜏𝑞

𝜕2

𝜕𝑡2 (𝑢𝑟,𝑟 + 𝑟−1(𝑢𝜃,𝜃 + 𝑢𝑟))] = 0            (5) 

𝑆𝑟𝑟 = (𝜆 + 2𝜇)𝑒𝑟𝑟 + 𝜆𝑒𝜃𝜃 − 𝛽𝑇 − ℑ𝐶                                            (6) 

                              𝑆𝑟𝜃 = 2𝜇𝑒𝑟𝜃                                                                (7) 

                              𝑆𝜃𝜃 = 𝜆𝑒𝑟𝑟 + (𝜆 + 2𝜇)𝑒𝜃𝜃 − 𝛽𝑇 − ℑ𝐶                                             (8) 

                                   ℵ𝑟 = 𝜀11𝐸𝑟                                                                   (9) 

                                   ℵ𝜃 = 𝜀11𝐸𝜃                                                                (10) 

                                   𝛩𝑟 = 𝜂11𝐶𝑟                                                                (11) 

                                   𝛩𝜃 = 𝜂11𝐶𝜃                                                               (12) 

               𝛽∗ = 𝛽 (1 + 𝛽0
𝜕

𝜕𝑡
) ; 𝛽0 =

(3𝜆𝛼0+2𝜇𝛼1)𝛼𝑇

𝛽
; 𝛽 = (3𝜆 + 2𝜇)𝛼𝑇                           (13) 

here the strain is 𝑒𝑟𝑟 , 𝑒𝑟𝜃 , 𝑒𝜃𝜃 and T is the temperature, 𝜆, 𝜇 indicates the Lame’s parameter,
 
𝐶𝜈, β 

and K denotes the specific heat capacity, thermal capacity and the thermal conductivity, 

respectively in which 𝛼0, 𝛼1 and 𝛼𝑇 is the thermal expansion coefficients. The Eq. (3) contains the 

electric components 𝛦𝑟 , 𝛦𝜃 of the plate. In Eq. (4) 𝜛 indicates the moisture concentration with the 

components 𝛩𝑟 , 𝛩𝜃 along with the moisture expansion 𝜂11. In (5), T0 is the reference temperature 

and 𝜏𝑇 , 𝜏𝑞 represent the phase lags of the temperature gradient and the heat flux. 

The strain components corresponding to the polar coordinates (𝑟, 𝜃) are given by 

𝑒𝑟𝑟 = 𝑢𝑟,𝑟; 𝑒𝑟𝜃 = 1 2⁄ (𝑢𝜃,𝑟 − 𝑟−1(𝑢𝜃 − 𝑢𝑟,𝜃)) ; 𝑒𝜃𝜃 = 𝑟−1(𝑢𝑟 + 𝑢𝜃,𝜃)                  (14) 

The electric moduli is taken as 

 𝐸𝑟 = −𝐸,𝑟; 𝐸𝜃 = −𝑟−1𝐸,𝜃                                                   (15) 

And the moisture diffusion Eq. (4) is compared typically in a way to the electric field and the 

diffusivity in the radial and circumferential directions are 

  𝐶𝑟 = −𝐶,𝑟; 𝐶𝜃 = −𝑟−1𝐶,𝜃                                                   (16) 

The stress equation of motion is given by 

𝑆𝑟𝑟 = (𝜆 + 2𝜇)𝑢𝑟,𝑟 + 𝜆𝑟−1(𝑢𝑟 + 𝑢𝜃,𝜃) − 𝛽𝑇 − ℑ𝐶                                 (17) 

𝑆𝜃𝜃 = 𝜆𝑢𝑟,𝑟 + (𝜆 + 2𝜇)𝑟−1(𝑢𝑟 + 𝑢𝜃,𝜃) − 𝛽𝑇 − ℑ𝐶                                (18) 

𝑆𝑟𝜃 = 𝜇 (𝑢𝜃,𝑟 − 𝑟−1(𝑢𝜃 − 𝑢𝑟,𝜃))                                               (19) 

ℑ𝑟 = −𝜀11𝐸,𝑟                                                              (20) 

ℑ𝜃 = −𝑟−1𝜀11𝐸,𝜃                                                            (21) 

𝐶𝑟 = −𝜂11𝐶,𝑟                                                              (22) 

𝐶𝜃 = −𝑟−1𝜂11𝐶,𝜃                                                           (23) 
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proposed material constants in nonhomogeneous form 

𝜆 = 𝜆𝑟2𝑚, 𝜇 = 𝜇𝑟2𝑚, 𝜀11 = 𝜀11𝑟2𝑚, 𝜀22 = 𝜀22𝑟2𝑚, 𝜌 = 𝜌(1 − ℜ
2𝛻1

2)𝑟2𝑚, 𝛽 = 𝛽𝑟2𝑚, 

𝐾 = 𝐾𝑟2𝑚, 𝜛 = 𝜛𝑟2𝑚, 𝑝𝑠 = 𝑝𝑠𝑟2𝑚, 𝜂11 = 𝜂11𝑟2𝑚                                  (24) 

By the assumption of Eq. (24) for the non-homogeneous material in Eqs. (17)-(23) and then 

from Eqs. (1)-(5) 

(𝜆 + 2𝜇 − 𝑝𝑠)(𝑢𝑟,𝑟𝑟 + 𝑟−1𝑢𝑟,𝑟 − 𝑟−2𝑢𝑟) + 𝑟−1(𝜆 + 2𝜇)𝑢𝜃,𝑟𝜃 

+(𝜇 − 𝑝𝑠)𝑟−2𝑢𝑟,𝜃𝜃 − 𝑟−2(𝜆 + 2𝑚𝜆 − 3𝜇)𝑢𝜃,𝜃 + 2𝑚𝑟−1 (
(𝜆 + 2𝜇)𝑢𝑟

+𝜆𝑟−1𝑢𝑟 − 𝛽𝑇 − ℑ𝐶
) 

−𝛽𝑇,𝑟− ℑ𝐶,𝑟 = 𝜌(1 − ℜ
2𝛻1

2)𝑢𝑟,𝑡𝑡                                          (25) 

(𝜇 − 𝑝𝑠)(𝑢𝜃,𝑟𝑟 + 𝑟−1𝑢𝜃,𝑟 − 𝑟−2𝑢𝜃) + 𝑟−2(𝜆 + 2𝜇 − 𝑝𝑠)𝑢𝜃,𝜃𝜃 + 𝑟−2(𝜆 + 2𝑚𝜇 + 3𝜇)𝑢𝑟,𝜃 

+2𝑚𝜇𝑟−1(𝑢𝜃,𝑟 − 𝑟−1𝑢𝜃) + (𝜆 + 𝜇)𝑟−1𝑢𝑟,𝑟𝜃 − 𝑟−1𝛽𝑇,𝜃− 𝑟−1ℑ𝐶,𝜃 = 𝜌(1 − ℜ
2𝛻1

2)𝑢𝜃,𝑡𝑡 (26) 

   𝜀11(ℑ,𝑟𝑟 + 𝑟−1ℑ,𝑟 + 𝑟−2ℑ,𝜃𝜃 ) + 2𝑚𝑟−1𝜀11ℑ,𝑟 = 0                               (27) 

 𝜂11(𝐶,𝑟𝑟 + 𝑟−1𝐶,𝑟 + 𝑟−2𝐶,𝜃𝜃 ) + 2𝑚𝑟−1𝜂11𝐶,𝑟 = 0                              (28) 

𝐾 [(𝑇,𝑟𝑟 + 𝑟−1𝑇,𝑟 + 𝑟−2𝑇,𝜃𝜃) + 𝜏𝑇
𝜕

𝜕𝑡
(𝑇,𝑟𝑟 + 𝑟−1𝑇,𝑟 + 𝑟−2𝑇,𝜃𝜃)] − 𝜌𝐶𝜈(1 − ℜ

2𝛻1
2)(𝑇,𝑡 +

𝜏𝑞𝑇,𝑡𝑡) + 𝛽𝑇0𝛻2 [
𝜕

𝜕𝑡
(𝑢𝑟,𝑟 + 𝑟−1(𝑢𝜃,𝜃 + 𝑢𝑟)) + 𝜏𝑞

𝜕2

𝜕𝑡2 (𝑢𝑟,𝑟 + 𝑟−1(𝑢𝜃,𝜃 + 𝑢𝑟))] = 0  
(29) 

 

 

3. Solution of the problem 
 

The Eqs. (25)-(29) are processed using the following relations Nagaya (1981) 

𝑢𝑟(𝑟, 𝜃, 𝑡) = ∑ 𝜀𝑛 [(𝑟−1𝜓𝑛,𝜃 − 𝜑𝑛.,𝑟) + (𝑟−1𝜓
𝑛,𝜃

− 𝜑
𝑛,𝑟

)]∞
𝑛=0 𝑒𝑖𝜔𝑡                     (30) 

  𝑢𝜃(𝑟, 𝜃, 𝑡) = ∑ 𝜀𝑛 [(𝑟−1𝜑𝑛,𝜃 − 𝜓𝑛,𝑟) + (𝑟−1𝜑
𝑛,𝜃

− 𝜓
𝑛,𝑟

)]∞
𝑛=0 𝑒𝑖𝜔𝑡                     (31) 

  𝐸(𝑟, 𝜃, 𝑡) = ∑ 𝜀𝑛(𝐸𝑛 + 𝐸𝑛)∞
𝑛=0 𝑒𝑖𝜔𝑡                                           (32) 

 𝐶(𝑟, 𝜃, 𝑡) = (𝜆 + 2𝜇/𝛽𝑎2) ∑ 𝜀𝑛(𝐶𝑛 + 𝐶𝑛)𝑒𝑖𝜔𝑡∞
𝑛=0                               (33) 

   𝑇(𝑟, 𝜃) = (𝜆 + 2𝜇/𝛽𝑎2) ∑ 𝜀𝑛(𝑇𝑛 + 𝑇𝑛)𝑒𝑖𝜔𝑡∞
𝑛=0                                 (34) 

where 𝜀𝑛 = 1/2 for 𝑛 = 0 and 𝜀𝑛 = 1 for 𝑛 ≥ 1. To remove the complexity in above equations, 

we set up the dimensionless parameters as follows 

(𝜆 + 2𝜇 − 𝑝𝑠)𝛻2𝜑𝑛 + 2𝑚𝑟−1(𝜆 + 2𝜇)𝜑𝑛,𝑟 − 𝜌(1 − ℜ
2𝛻1

2)𝜔2𝜑𝑛 + (
𝜆 + 2𝜇

𝑎2
) 𝑇𝑛 

+ℑ (
𝜆+2𝜇

𝑎2𝜛
) 𝐶𝑛 = 0                                                          (35) 

  (𝜇 − 𝑝𝑠)𝛻2𝜓𝑛 + 2𝑚𝑟−1𝜇𝜓𝑛,𝑟 + 𝜌(1 − ℜ
2𝛻1

2)𝜔2𝜓𝑛 − (
𝜆+2𝜇

𝑎2 ) 𝑇𝑛 − ℑ (
𝜆+2𝜇

𝑎2𝜛
) 𝐶𝑛 = 0   (36) 

 𝜀11𝛻2𝛦𝑛 + 2𝑚𝑟−1𝜀11𝛦𝑛,𝑟 = 0                                                  (37) 
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Wave propagation in a nonlocal prestressed piezoelectric polygonal plate… 

 𝜂11(𝜆 + 2𝜇 𝑎2𝜛⁄ )(𝛻2𝐶𝑛 + 2𝑚𝑟−1𝐶𝑛,𝑟) = 0                                          (38)    

𝐾 [
(

𝜆 + 2𝜇

𝑎2𝛽
)

(𝛻2𝑇𝑛 + 𝜏𝑇(𝑖𝜔)𝛻2𝑇𝑛)

] − 𝜌(1 − ℜ
2𝛻1

2)𝐶𝜈 [(
𝜆 + 2𝜇

𝑎2𝛽
) (

(𝑖𝜔𝑇𝑛 + 𝑇𝑛,𝑡)

+𝜏𝑞(−𝜔2𝑇𝑛 + 2𝑖𝜔𝑇𝑛,𝑡 + 𝑇𝑛,𝑡𝑡)
)] 

+𝛽∗𝑇0𝛻2[𝑖𝜔(1 + 𝜏𝑞)(𝜓𝑛 + 𝜑𝑛)] = 0                                             (39) 

Where 

 𝛻2 =
𝜕2

𝜕𝑟2 +
1

𝑟

𝜕

𝜕𝑟
+

1

𝑟2

𝜕2

𝜕𝜃2                                                          (40) 

We considered the time harmonic vibrations as 

𝜑𝑛(𝑟, 𝜃, 𝑡) = 𝑟−𝑚𝜑𝑛(𝑟) 𝑐𝑜𝑠 𝑛 𝜃𝑒𝑖𝜔𝑡 

𝜓𝑛(𝑟, 𝜃, 𝑡) = 𝑟−𝑚𝜓𝑛(𝑟) 𝑐𝑜𝑠 𝑛 𝜃𝑒𝑖𝜔𝑡 

𝐸𝑛(𝑟, 𝜃, 𝑡) = 𝑟−𝑚𝐸𝑛(𝑟) 𝑐𝑜𝑠 𝑛 𝜃𝑒𝑖𝜔𝑡 

𝐶𝑛(𝑟, 𝜃, 𝑡) = 𝑟−𝑚𝐶𝑛(𝑟) 𝑐𝑜𝑠 𝑛 𝜃𝑒𝑖𝜔𝑡 

𝑇𝑛(𝑟, 𝜃, 𝑡) = 𝑟−𝑚𝑇𝑛(𝑟) 𝑐𝑜𝑠 𝑛 𝜃𝑒𝑖𝜔𝑡                                            (41) 

Using the set of Eq. (41) in Eqs. (35)-(39), we arrived as 

𝜑𝑛
" (𝑟) + 𝑟−1𝜑𝑛

′ (𝑟) (
1 −

𝑟−1𝑚(1+𝑟)

(𝜆+2𝜇−𝑝𝑠)

+
2𝑚(𝜆+2𝜇)

𝜆+2𝜇−𝑝𝑠

) + 𝑟−2𝜑𝑛(𝑟) [
(𝑚2−2𝑚−𝑛2)

𝑟2 −
(2𝑚2(𝜆+2𝜇)−𝜌(1−ℜ

2𝛻1
2)𝜔2)𝑟2

𝜆+2𝜇−𝑝𝑠
]  

+𝛽
𝜆+2𝜇

𝑎2 𝑇𝑛(𝑟) +
ℑ(𝜆+2𝜇)

𝑎2𝜛
𝐶𝑛(𝑟) = 0                                              (42) 

𝜑𝑛
" (𝑟) + 𝑟−1𝜑𝑛

′ (𝑟)(1 − 𝑔1
2 + 𝑔2

2) + 𝑟−2𝜑𝑛(𝑟)(𝑔3
2 − 𝑔2

2 − 𝛺2) + 𝑔4
2𝛽𝑇𝑛(𝑟) +

𝑔4
2

𝜛
ℑ𝐶𝑛(𝑟) = 0 (43) 

𝜑𝑛
" (𝑟) + 𝑟−1𝜑𝑛

′ (𝑟) + 𝑟−2𝜑𝑛(𝑟)(𝑛2𝑟2 − 𝛽2) = 0                                         (44) 

where 

𝑛 =
𝜌(1 − ℜ

2)𝜔2

𝜆 + 2𝜇 − 𝑝𝑠
, 𝛽 =

(𝑚2 − 2𝑚 − 𝑛2)

𝜆 + 2𝜇 − 𝑝𝑠
 

The solution of Eq. (44) is given by the Bessel function as 

 𝜑𝑛(𝑟) = (𝑃1𝑛𝐽𝛽(𝑁𝑟) + 𝑃1𝑛
′ 𝑌𝛽(𝑁𝑟)) 𝑐𝑜𝑠 𝑛 𝜃                                        (45) 

𝜓𝑛
" (𝑟) + 𝑟−1𝜓𝑛

′ (𝑟) (
𝑟−1𝑚(1+𝑟)

(𝜇−𝑝𝑠)
+

2𝑚𝜇

𝜇−𝑝𝑠
) + 𝑟−2𝜓𝑛(𝑟) [

(𝑚2−2𝑚−𝑛2)

𝑟2

+
(2𝑚2𝜇−𝜌(1−ℜ

2)𝜔2)𝑟2

(𝜇−𝑝𝑠)

]  

+𝛽
𝜆+2𝜇

𝑎2 𝑇𝑛(𝑟) −
ℑ(𝜆+2𝜇)

𝑎2𝜛
𝐶𝑛(𝑟) = 0                                                  (46) 

𝜓𝑛
" (𝑟) + 𝑟−1𝜓𝑛

′ (𝑟)(1 − 𝑔5
2 + 𝑔6

2) + 𝑟−2𝜓𝑛(𝑟)(𝑔3
2 − 𝑔7

2 − 𝛺1
2) − 𝑔8

2𝛽𝑇𝑛(𝑟) −
𝑔9

2

𝜛
ℑ𝐶𝑛(𝑟) = 0(47) 

 
𝜓𝑛

" (𝑟) + 𝑟−1𝜓𝑛
′ (𝑟) + 𝑟−2𝜓𝑛(𝑟)(℘2𝑟2 − 𝛿2) = 0                                         (48) 

where 
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Fig. 2 Line segment on the boundary of poly plate 

 

 

 ℘2 =
𝜌(1−ℜ

2)𝜔2

𝜇−𝑝𝑠
, 𝛿2 =

𝑚2(3𝜇−𝑝𝑠)−(2𝑚+𝑛2)(𝜇−𝑝𝑠)

𝜇−𝑝𝑠
                                       (49) 

The solution of the above equation is 

𝜓𝑛(𝑟) = (𝑃2𝑛𝐽𝛿(℘𝑟) + 𝑃2𝑛
′ 𝑌𝛿(℘𝑟)) 𝑐𝑜𝑠 𝑛 𝜃                                        (50) 

 𝐸𝑛"(𝑟) + 𝑟−1𝐸𝑛′(𝑟) − (𝑟−2(𝑚2 + 𝑛2)𝐸𝑛(𝑟)) = 0                                   (51) 

 𝐸𝑛"(𝑟) + 𝑟−1𝐸𝑛′(𝑟) − (𝑟−2𝑝2𝐸𝑛(𝑟)) = 0                                           (52) 

where 𝑝2 = 𝑚2 + 𝑛2 

𝐸𝑛(𝑟) = (𝑃3𝑛𝑟𝑝 + 𝑃3𝑛′𝑟−𝑝) 𝑐𝑜𝑠 𝑛 𝜃                                                (53) 

 𝐶𝑛"(𝑟) − 𝑚(1 − 𝑟−1)𝐶𝑛′(𝑟) − (𝑟−2(𝑚2 − 2𝑚 + 𝑛2)𝐶𝑛(𝑟)) = 0                           (54) 

 𝐶𝑛"(𝑟) − 𝑚(1 − 𝑟−1)𝐶𝑛′(𝑟) − (𝑟−2𝑞2𝐶𝑛(𝑟)) = 0                                    (55) 

where 𝑞 = 𝑚2 − 2𝑚 − 𝑛2 

𝐶𝑛(𝑟) = (𝑃4𝑛𝑟𝑞 + 𝑃4𝑛′𝑟−𝑞) 𝑐𝑜𝑠 𝑛 𝜃                                             (56) 

𝐴1𝛻4𝜑𝑛(𝑟) + 𝐴2𝛻2𝑇𝑛(𝑟) − 𝐴3𝑇𝑛(𝑟) = 0                                          (57) 

 𝐴1 =
𝛽𝑇0𝑖𝜔(1+𝑖𝜏𝑞)

𝐾
, 𝐴2 =

1+𝜏𝑇

𝐾
, 𝐴3 =

𝑖𝜔𝜌(1−ℜ
2𝛻1

2)𝐶𝜈(1+𝑖𝜏𝑞)

𝐾
                                  (58) 

 𝑇𝑛(𝑟) = [𝑃5𝑛𝐽𝑛(𝛼𝑟) + 𝑃5𝑛′𝑌𝑛(𝛼𝑟)] 𝑐𝑜𝑠 𝑛 𝜃                                          (59) 

where 𝛼 =
𝛽𝑇0(1+𝜏𝑇)

𝜌(1−ℜ
2𝛻1

2)𝐶𝜈
 

 
 
4. Frequency equations 

 

To remove the difficulties in handling the nonlinear boundary conditions, the method proposed  
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Wave propagation in a nonlocal prestressed piezoelectric polygonal plate… 

Table 3 Comparison on non-dimensional frequencies for various aspect ratios of polygonal plates with ICOC 

boundary (a/b=1.2, ∆c=0.0, ℜ = 0&∆T=43) 

a/b Mode 

Triangle Square Pentagon Hexagon 

Nagaya 

(1980) 
Author 

Nagaya 

(1980) 
Author 

Nagaya 

(1980) 
Author 

Nagaya 

(1980) 
Author 

0.1 

L1 4.148 4.146 4.850 4.849 4.995 4.995 5.061 5.061 

L2 4.392 4.393 4.997 4.997 5.132 5.132 5.163 5.162 

L3 4.547 4.551 5.889 5.886 5.627 5.626 5.784 5.783 

0.15 

L1 4.269 4.267 5.128 5.127 5.297 5.296 5.367 5.365 

L2 4.510 4.511 5.271 5.272 5.419 5.418 5.449 5.446 

L3 4.769 4.765 6.069 6.068 5.782 5.784 5.951 5.945 

0.2 

L1 4.413 4.412 5.431 5.431 5.636 5.636 5.712 5.712 

L2 4.622 4.613 5.573 5.572 5.742 5.741 5.771 5.772 

L3 4.924 4.924 6.315 6.316 5.995 5.996 6.180 6.181 

0.25 

L1 4.474 4.573 5.757 5.756 6.018 6.017 6.103 6.103 

L2 4.739 4.738 5.910 5.911 6.106 6.104 6.138 6.136 

L3 5.019 5.016 6.627 6.627 6.264 6.265 6.470 6.471 

 

 

by Nagaya (1980) has been adopted as 

 (𝑆𝑥𝑥)𝑗 = (𝑆𝑥𝑦)𝑗 = (ℑ𝑟)𝑗 = (𝐶𝑟)𝑗 = (𝑇𝑟)𝑗0                                   (60) 

The normal coordinate x and the tangential coordinate y is depicted as in Fig. 2. The 

transformed equations are discussed as follows along nonlinear surface of the boundary 

   𝑢𝑟 = 𝑢𝑟 𝑐𝑜𝑠(𝜃 − 𝛾𝑖) − 𝑢𝜃 𝑠𝑖𝑛(𝜃 − 𝛾𝑖)                                     (61) 

 𝑢𝜃 = 𝑢𝜃 𝑐𝑜𝑠(𝜃 − 𝛾𝑖) + 𝑢𝑟 𝑠𝑖𝑛(𝜃 − 𝛾𝑖)                                     (62) 

 ( ) ( )i
i

i

i

r
xx

r



 −−=




−=



 − sin,cos 1
                                   (63) 

( ) ( )i
i

i

i

r
yy

r



 −=




−=



 − cos,sin 1
                                    (64) 

Using the above Eqs. (61)-(64), the elasticity equations becomes 

𝑆𝑥𝑥 = ((𝜆 + 2𝜇) 𝑐𝑜𝑠2( 𝜃 − 𝛾𝑖) + 𝜆 𝑠𝑖𝑛2(𝜃 − 𝛾𝑖))𝑢𝑟,𝑟 + 𝑟−1 (
(𝜆 + 2𝜇) 𝑠𝑖𝑛2(𝜃 − 𝛾𝑖)

+𝜆 𝑐𝑜𝑠2(𝜃 − 𝛾𝑖)
) (𝑢𝑟 +

𝑢𝜃,𝜃) +
𝑢𝜃

2
(𝑟−1(𝑢𝜃 − 𝑢𝑟,𝜃) − 𝑢𝜃,𝑟) 𝑠𝑖𝑛 2 (𝜃 − 𝛾𝑖) − 𝛽𝑇 −

ℑ

𝜛
𝐶 = 0  

(65) 

𝑆𝑥𝑦 = 𝜇 (
(𝑢𝑟,𝑟 − 𝑟−1𝑢𝜃,𝜃 − 𝑟−1𝑢𝑟) 𝑠𝑖𝑛 2 (𝜃 − 𝛾𝑖) + (𝑟−1𝑢𝑟,𝜃 + 𝑢𝜃,𝑟 − 𝑟−1𝑢𝜃)

𝑐𝑜𝑠 2 (𝜃 − 𝛾𝑖)
) = 0  (66) 

𝐸𝑥 = −𝜀11𝐸,𝑟 = 0 (67) 

𝐶𝑥 = −𝜂11𝐶,𝑟 = 0 (68) 
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Incorporating the obtained solution Eq. (60), we get 

[(𝑍𝑥𝑥)𝑗 + (𝑍𝑥𝑥)
𝑗
] 𝑒𝑖𝜔𝑡 = 0 

[(𝑍𝑥𝑦)
𝑗

+ (𝑍𝑥𝑦)
𝑗
] 𝑒𝑖𝜔𝑡 = 0 

[(𝐸𝑥)𝑗 + (𝐸𝑥)
𝑗
] 𝑒𝑖𝜔𝑡 = 0 

[(𝐶𝑥)𝑗 + (𝐶𝑥)
𝑗
] 𝑒𝑖𝜔𝑡 = 0 

                              [(𝑇𝑥)𝑗 + (𝑇𝑥)
𝑗
] 𝑒𝑖𝜔𝑡 = 0                                                    (69) 

where  

𝑍𝑥𝑥 = 0.5(𝑃10𝑢0
1 + 𝑃20𝑢0

2 + 𝑃30𝑢0
3) + ∑ (𝑃1𝑛𝑢𝑛

1 + 𝑃2𝑛𝑢𝑛
2 + 𝑃3𝑛𝑢𝑛

3 + 𝑃4𝑛𝑢𝑛
4)∞

𝑛=1   

𝑍𝑥𝑦 = 0.5(𝑃10𝑣0
1 + 𝑃20𝑣0

2 + 𝑃30𝑣0
3) + ∑ (𝑃1𝑛𝑣𝑛

1 + 𝑃2𝑛𝑣𝑛
2 + 𝑃3𝑛𝑣𝑛

3 + 𝑃4𝑛𝑣𝑛
4)∞

𝑛=1   

𝛦𝑥 = 0.5(𝑃10𝑤0
1 + 𝑃20𝑤0

2 + 𝑃30𝑤0
3) + ∑ (𝑃1𝑛𝑤𝑛

1 + 𝑃2𝑛𝑤𝑛
2 + 𝑃3𝑛𝑤𝑛

3 + 𝑃4𝑛𝑤𝑛
4)∞

𝑛=1   

𝐶𝑥 = 0.5(𝑃10𝑥0
1 + 𝑃20𝑥0

2 + 𝑃30𝑥0
3) + ∑ (𝑃1𝑛𝑥𝑛

1 + 𝑃2𝑛𝑥𝑛
2 + 𝑃3𝑛𝑥𝑛

3 + 𝑃4𝑛𝑥𝑛
4)∞

𝑛=1   

𝑇𝑥 = 0.5(𝑃10𝑦0
1 + 𝑃20𝑦0

2 + 𝑃30𝑦0
3) + ∑ (𝑃1𝑛𝑦𝑛

1 + 𝑃2𝑛𝑦𝑛
2 + 𝑃3𝑛𝑦𝑛

3 + 𝑃4𝑛𝑦𝑛
4)∞

𝑛=1   (70) 

For anti-symmetric mode 

𝑍𝑥𝑥 = 0.5(𝑃40𝑢𝑒0
4

) + ∑ (𝑃1𝑛𝑢𝑛
1

+ 𝑃2𝑛𝑢𝑛
2

+ 𝑃3𝑛𝑢𝑛
3

+ 𝑃4𝑛𝑢𝑛
4

)∞
𝑛=1   

𝑍𝑥𝑦 = 0.5(𝑃40𝑣0
4

) + ∑ (𝑃1𝑛𝑣𝑛
1

+ 𝑃2𝑛𝑣𝑛
2

+ 𝑃3𝑛𝑣𝑛
3

+ 𝑃3𝑛𝑣𝑛
3

)∞
𝑛=1   

𝛦𝑥 = 0.5(𝑃40𝑤0
4

) + ∑ (𝑃1𝑛𝑤𝑛
1

+ 𝑃2𝑛𝑤𝑛
2

+ 𝑃3𝑛𝑤𝑛
3

+ 𝑃4𝑛𝑤𝑛
4

)∞
𝑛=1   

𝐶𝑥 = 0.5(𝑃40𝑥0
4

) + ∑ (𝑃1𝑛𝑥𝑛
1

+ 𝑃2𝑛𝑥𝑛
2

+ 𝑃3𝑛𝑥𝑛
3

+ 𝑃4𝑛𝑥𝑛
4

)∞
𝑛=1   

𝑇𝑥 = 0.5(𝑃40𝑦
0

4
) + ∑ (𝑃1𝑛𝑦

𝑛

1
+ 𝑃2𝑛𝑦

𝑛

2
+ 𝑃3𝑛𝑦

𝑛

3
+ 𝑃4𝑛𝑦

𝑛

4
)∞

𝑛=1   (71) 

Using the Fourier expansion collocation method to (60) along the boundary surfaces are 

expanded using Fourier double series. Hence the boundary conditions are obtained as, 

For symmetric mode
 

∑ 𝜀𝑚[𝑈𝑚0
1𝑃10 + 𝑈𝑚0

2𝑃20 + ∑ (𝑈𝑚𝑛
1𝑃1𝑛 + 𝑈𝑚𝑛

2𝑃2𝑛 + 𝑈𝑚𝑛
3𝑃3𝑛)∞

𝑛=1 ]∞
𝑚=0 𝑐𝑜𝑠 𝑚 𝜃 = 0  

∑ [𝑉𝑚0
1𝑃10 + 𝑉𝑚0

2𝑃20 + ∑ (𝑉𝑚𝑛
1𝑃1𝑛 + 𝑉𝑚𝑛

2𝑃2𝑛 + 𝑉𝑚𝑛
3𝑃3𝑛)∞

𝑛=1 ]∞
𝑚=0 𝑠𝑖𝑛 𝑚 𝜃 = 0  

∑ 𝜀𝑚[𝑊𝑚0
1𝑃10 + 𝑊𝑚0

2𝑃20 + ∑ (𝑊𝑚𝑛
1𝑃1𝑛 + 𝑊𝑚𝑛

2𝑃2𝑛 + 𝑊𝑚𝑛
3𝑃3𝑛)∞

𝑛=1 ]∞
𝑚=0 𝑐𝑜𝑠 𝑚 𝜃 = 0  

∑ 𝜀𝑚[𝑋𝑚0
1𝑃10 + 𝑋𝑚0

2𝑃20 + ∑ (𝑋𝑚𝑛
1𝑃1𝑛 + 𝑋𝑚𝑛

2𝑃2𝑛 + 𝑋𝑚𝑛
3𝑃3𝑛)∞

𝑛=1 ]∞
𝑚=0 𝑐𝑜𝑠 𝑚 𝜃 = 0  

∑ 𝜀𝑚[𝑌𝑚0
1𝑃10 + 𝑌𝑚0

2𝑃20 + ∑ (𝑌𝑚𝑛
1𝑃1𝑛 + 𝑌𝑚𝑛

2𝑃2𝑛 + 𝑌𝑚𝑛
3𝑃3𝑛)∞

𝑛=1 ]∞
𝑚=0 𝑐𝑜𝑠 𝑚 𝜃 = 0  (72) 

where  

𝑈𝑚𝑛
𝑗 =

2𝜀𝑛

𝜋
∑ ∫ 𝑢𝑛

𝑗(𝑅ℓ, 𝜃) 𝑐𝑜𝑠 𝑚 𝜃𝑑𝜃
𝜃

𝜃𝑖−1

𝑆
ℓ=1   

𝑉𝑚𝑛
𝑗 =

2𝜀𝑛

𝜋
∑ ∫ 𝑣𝑛

𝑗(𝑅ℓ, 𝜃) 𝑠𝑖𝑛 𝑚 𝜃𝑑𝜃
𝜃

𝜃𝑖−1

𝑆
ℓ=1   

𝑊𝑚𝑛
𝑗 =

2𝜀𝑛

𝜋
∑ ∫ 𝑤𝑛

𝑗(𝑅ℓ, 𝜃) 𝑐𝑜𝑠 𝑚 𝜃𝑑𝜃
𝜃

𝜃𝑖−1

𝑆
ℓ=1   
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𝑋𝑚𝑛
𝑗 =

2𝜀𝑛

𝜋
∑ ∫ 𝑥𝑛

𝑗(𝑅ℓ, 𝜃) 𝑐𝑜𝑠 𝑚 𝜃𝑑𝜃
𝜃

𝜃𝑖−1

𝑆
ℓ=1   

𝑌𝑚𝑛
𝑗 =

2𝜀𝑛

𝜋
∑ ∫ 𝑦𝑛

𝑗(𝑅ℓ, 𝜃) 𝑐𝑜𝑠 𝑚 𝜃𝑑𝜃
𝜃

𝜃𝑖−1

𝑆
ℓ=1   (73) 

For the non trivial solution the determinants of the co efficient matrices 𝑃𝑖𝑁 = 0 and 𝑃𝑖𝑁 = 0 

the elements give the frequencies of the symmetric mode and anti-symmetric mode as in Eqs. (74) 

and (77) respectively. 

       

|

|

|

|

|

𝑈00
1 𝑈00

2 𝑈01
1 ⋯ 𝑈0𝑁

1 𝑈01
2 ⋯ 𝑈0𝑁

2 𝑈01
3 ⋯ 𝑈0𝑁

3

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝑈𝑁0

1 𝑈𝑁0
2 𝑈𝑁1

1 ⋯ 𝑈𝑁𝑁
1 𝑈𝑁1

2 ⋯ 𝑈𝑁𝑁
2 𝑈𝑁1

3 ⋯ 𝑈𝑁𝑁
3

𝑉00
1 𝑉00

2 𝑉01
1 ⋯ 𝑉0𝑁

1 𝑉01
2 ⋯ 𝑉0𝑁

2 𝑉01
3 ⋯ 𝑉0𝑁

3

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝑉𝑁0

1 𝑉𝑁0
2 𝑉𝑁1

1 ⋯ 𝑉𝑁𝑁
1 𝑉𝑁1

2 ⋯ 𝑉𝑁𝑁
2 𝑉𝑁1

3 ⋯ 𝑉𝑁𝑁
3

𝑊00
1 𝑊00

2 𝑊01
1 ⋯ 𝑊0𝑁

1 𝑊01
2 ⋯ 𝑊0𝑁

2 𝑊01
3 ⋯ 𝑊0𝑁

3

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝑊𝑁0

1 𝑊𝑁0
2 𝑊𝑁1

1 ⋯ 𝑊𝑁𝑁
1 𝑊𝑁1

2 ⋯ 𝑊𝑁𝑁
2 𝑊𝑁1

3 ⋯ 𝑊𝑁𝑁
3

𝑋00
1 𝑋00

2 𝑋01
1 ⋯ 𝑋0𝑁

1 𝑋01
2 ⋯ 𝑋0𝑁

2 𝑋01
3 ⋯ 𝑋0𝑁

3

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝑋𝑁0

1 𝑋𝑁0
2 𝑋𝑁1

1 ⋯ 𝑋𝑁𝑁
1 𝑋𝑁1

2 ⋯ 𝑋𝑁𝑁
2 𝑋𝑁1

3 ⋯ 𝑋𝑁𝑁
3

𝑌00
1 𝑌00

2 𝑌01
1 ⋯ 𝑌0𝑁

1 𝑌01
2 ⋯ 𝑌0𝑁

2 𝑌01
3 ⋯ 𝑌0𝑁

3

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝑌𝑁0

1 𝑌𝑁0
2 𝑌𝑁1

1 ⋯ 𝑌𝑁𝑁
1 𝑌𝑁1

2 ⋯ 𝑌𝑁𝑁
2 𝑌𝑁1

3 ⋯ 𝑌𝑁𝑁
3

|

|

|

|

|

= 0     (74) 

For Anti symmetric mode

 

∑ [𝑈𝑚0

3
𝑃30 + ∑ (𝑈𝑚𝑛

1
𝑃1𝑛 + 𝑈𝑚𝑛

2
𝑃2𝑛 + 𝑈𝑚𝑛

3
𝑃3𝑛)∞

𝑛=1 ]∞
𝑚=0 𝑠𝑖𝑛 𝑚 𝜃 = 0  

∑ 𝜀𝑚 [𝑉𝑚0

3
𝑃30 + ∑ (𝑉𝑚𝑛

1
𝑃1𝑛 + 𝑉𝑚𝑛

2
𝑃2𝑛 + 𝑉𝑚𝑛

3
𝑃3𝑛)∞

𝑛=1 ]∞
𝑚=0 𝑐𝑜𝑠 𝑚 𝜃 = 0  

∑ [𝑊𝑚0

3
𝑃30 + ∑ (𝑊𝑚𝑛

1
𝑃1𝑛 + 𝑊𝑚𝑛

2
𝑃2𝑛 + 𝑊𝑚𝑛

3
𝑃3𝑛)∞

𝑛=1 ]∞
𝑚=0 𝑠𝑖𝑛 𝑚 𝜃 = 0  

∑ [𝑋𝑚0

3
𝑃30 + ∑ (𝑋𝑚𝑛

1
𝑃1𝑛 + 𝑋𝑚𝑛

2
𝑃2𝑛 + 𝑋𝑚𝑛

3
𝑃3𝑛)∞

𝑛=1 ]∞
𝑚=0 𝑠𝑖𝑛 𝑚 𝜃 = 0  

∑ [𝑌𝑚0

3
𝑃30 + ∑ (𝑌𝑚𝑛

1
𝑃1𝑛 + 𝑌𝑚𝑛

2
𝑃2𝑛 + 𝑌𝑚𝑛

3
𝑃3𝑛)∞

𝑛=1 ]∞
𝑚=0 𝑠𝑖𝑛 𝑚 𝜃 = 0  (75) 

where  

𝑈𝑚𝑛

𝑗
=

2𝜀𝑛

𝜋
∑ ∫ 𝑢𝑛

𝑗
(𝑅ℓ, 𝜃) 𝑠𝑖𝑛 𝑚 𝜃𝑑𝜃

𝜃

𝜃𝑖−1

𝑆
ℓ=1   

𝑉𝑚𝑛

𝑗
=

2𝜀𝑛

𝜋
∑ ∫ 𝑣𝑛

𝑗
(𝑅ℓ, 𝜃) 𝑐𝑜𝑠 𝑚 𝜃𝑑𝜃

𝜃

𝜃𝑖−1

𝑆
ℓ=1   

𝑊𝑚𝑛

𝑗
=

2𝜀𝑛

𝜋
∑ ∫ 𝑤𝑛

𝑗(𝑅ℓ, 𝜃) 𝑠𝑖𝑛 𝑚 𝜃𝑑𝜃
𝜃

𝜃𝑖−1

𝑆
ℓ=1   

𝑋𝑚𝑛

𝑗
=

2𝜀𝑛

𝜋
∑ ∫ 𝑥𝑛

𝑗
(𝑅ℓ, 𝜃) 𝑠𝑖𝑛 𝑚 𝜃𝑑𝜃

𝜃

𝜃𝑖−1

𝑆
ℓ=1   

319



 

 

 

 

 

 

Rajendran Selvamani, Hepzibah Christinal and Farzad Ebrahimi 

   𝑌𝑚𝑛

𝑗
=

2𝜀𝑛

𝜋
∑ ∫ 𝑦

𝑛

𝑗
(𝑅ℓ, 𝜃) 𝑠𝑖𝑛 𝑚 𝜃𝑑𝜃

𝜃

𝜃𝑖−1

𝑆
ℓ=1                                 (76) 

    

|

|

|

|

|

|

𝑈00
1 𝑈00

2
𝑈01

1
⋯ 𝑈0𝑁

1
𝑈01

2
⋯ 𝑈0𝑁

2
𝑈01

3
⋯ 𝑈0𝑁

3

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝑈𝑁0

1
𝑈𝑁0

2
𝑈𝑁1

1
⋯ 𝑈𝑁𝑁

1
𝑈𝑁1

2
⋯ 𝑈𝑁𝑁

2
𝑈𝑁1

3
⋯ 𝑈𝑁𝑁

3

𝑉00

1
𝑉00

2
𝑉01

1
⋯ 𝑉0𝑁

1
𝑉01

2
⋯ 𝑉0𝑁

2
𝑉01

3
⋯ 𝑉0𝑁

3

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝑉𝑁0

1
𝑉𝑁0

2
𝑉𝑁1

1
⋯ 𝑉𝑁𝑁

1
𝑉𝑁1

2
⋯ 𝑉𝑁𝑁

2
𝑉𝑁1

3
⋯ 𝑉𝑁𝑁

3

𝑊00

1
𝑊00

2
𝑊01

1
⋯ 𝑊0𝑁

1
𝑊01

2
⋯ 𝑊0𝑁

2
𝑊01

3
⋯ 𝑊0𝑁

3

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝑊𝑁0

1
𝑊𝑁0

2
𝑊𝑁1

1
⋯ 𝑊𝑁𝑁

1
𝑊𝑁1

2
⋯ 𝑊𝑁𝑁

2
𝑊𝑁1

3
⋯ 𝑊𝑁𝑁

3

𝑋00

1
𝑋00

2
𝑋01

1
⋯ 𝑋0𝑁

1
𝑋01

2
⋯ 𝑋0𝑁

2
𝑋01

3
⋯ 𝑋0𝑁

3

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝑋𝑁0

1
𝑋𝑁0

2
𝑋𝑁1

1
⋯ 𝑋𝑁𝑁

1
𝑋𝑁1

2
⋯ 𝑋𝑁𝑁

2
𝑋𝑁1

3
⋯ 𝑋𝑁𝑁

3

𝑌00

1
𝑌00

2
𝑌01

1
⋯ 𝑌0𝑁

1
𝑌01

2
⋯ 𝑌0𝑁

2
𝑌01

3
⋯ 𝑌0𝑁

3

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝑌𝑁0

1
𝑌𝑁0

2
𝑌𝑁1

1
⋯ 𝑌𝑁𝑁

1
𝑌𝑁1

2
⋯ 𝑌𝑁𝑁

2
𝑌𝑁1

3
⋯ 𝑌𝑁𝑁

3

|

|

|

|

|

|

= 0    (77) 

 

 

5. Numerical results and discussion 
 

For the authentication of analytical outputs, some simulations and computations are carried out 

over the physical constants of copper from Selvamani and Ponnusamy (2013b) 

𝜈 = 0.3,𝜌 = 8.96 × 103 kg/m3,𝐸 = 2.139 × 1011 N/m2,𝜆 = 8.20 × 1011 kg/ms2, 𝜇 =

4.20 × 1010 kg/ms2,𝑐𝜈 = 9.1 ×
10−2 m2

ks2 , 𝐾 = 113 × 10−2kgm/ks2, T0=23°C, 𝐶0 =

0.3wt%H2O, 𝑚11 = −3612 × 10−11 Ns/VC, 𝜀11 = 8.26 × 10−11 C2N−1m2, 

𝜇11 = −5 × 10−6 Ns2/C2 

The geometry of poly plate is considered from Nagaya (1980) as  

𝑅𝑖/𝑎 = [𝑐𝑜𝑠(𝜃 − 𝛾𝑖)]−1, 𝑅𝑖/𝑏 = [𝑐𝑜𝑠(𝜃 − 𝛾𝑖)]−1, 𝛾𝑖 = 𝛾𝑖. 

Table 1 presents the comparative study between the numerical results of the non-dimensional 

frequency for the piezoelectric plate which is clamped inner and outer sides by (Nagaya 1974) and 

the current article in the absence of moisture, initial stress and nonlocal parameter. Results predict 

the reasonable agreement with the literature. 

Figs. 3 and 4 illustrate the dispersion curves for the radial stress 𝑆𝑟𝑟 under the hydrostatical 

stress and nonlocal parameter 𝑝𝑠 = 0.0, 𝑝𝑠 = 0.5 and ℜ = 0,0.03
 
of various shapes such as 

triangle, square, pentagon and hexagon of the non-homogeneous piezoelectric plate for the 

different aspect ratio a/b. From these figures it is observed that the radial stress is increasing when 

the aspect ratio is increasing and also the stress in the radial direction is inflated for the hexagonal 

cross section comparing with the other cross sections. Also from the Fig. 4 it is observed that the  
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Wave propagation in a nonlocal prestressed piezoelectric polygonal plate… 

 

Fig. 3 Radial stress with aspect ratio a/b via 𝑝𝑠 = 0.0, ℜ = 0&𝐶 = 0.0 

 

 

Fig. 4 Radial stress with aspect ratio a/b via 𝑝𝑠 = 0.5, ℜ = 0.03&Δ𝐶 = 0.5 

 

 

deviation of the radial stresses is more between the various shapes of the plate and significance of 

nonlocal parameter. 

Figs. 5 and 6 illustrate the dispersion curves for the displacement u with aspect ratio a/b under 

𝑝𝑠 = 0.0, Δ𝐶 = 0.0, ℜ = 0.0 and 𝑝𝑠 = 0.5, Δ𝐶 = 0.5, ℜ = 0.03 for the nonhomogeneous 

piezoelectric poly plate. When the aspect ratio increases the displacement decreases in the    

presence of zero moisture and initial stress in Fig. 5. But in Fig. 6, there is an increment in the 

amplitude of decaying displacement due to the large values of moisture, initial stress and nonlocal 

parameter. In these figures it is also observed that when the number of sides of cross section is 

more, then the displacement is decaying and falls to the minimum value deliberately. The hexagon 

cross sectional plate needs more displacement value when the aspect ratio is zero. 

The temperature distribution of the various shapes of the plate at 𝑝𝑠 = 0, Δ𝐶 = 0, ℜ = 0 and 

𝑝𝑠 = 0.5, Δ𝐶 = 0.5, ℜ = 0.03  are shown in Figs. 7 and 8. It is noticed that the temperature  
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Fig. 5 Displacement with aspect ratio a/b via 𝑝𝑠 = 0.0, ℜ = 0&Δ𝐶 = 0.0 

 

 

Fig. 6 Displacement with aspect ratio a/b via 𝑝𝑠 = 0.5, ℜ = 0.03&Δ𝐶 = 0.5 

 

 

distribution decays between 0 and 2 and gives smooth values where the aspect ratio greater than 2. 

Moreover the hexagonal plate is provides smooth temperature distribution even it requires higher 

amplitude than the other shapes and also the effect of moisture, initial stress and nonlocal 

parameter is noticed due to the dispersion among the modes in Fig. 8.   

The electrical displacement of the various shapes of the poly plate is presented via 𝑝𝑠 = 0, ℜ =
0 and 𝑝𝑠 = 0.5, ℜ = 0.03 in Figs. 9 and 10. 

Here also we are experiencing the decreasing trend in electric displacement as aspect ratio 

grows via moisture and initial stress. These also indicates that the hexagon shape plate needs 

highest input than the other shapes and the distribution decays when the aspect ratio is increasing.  
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Wave propagation in a nonlocal prestressed piezoelectric polygonal plate… 

 

Fig. 7 Temperature distribution with aspect ratio a/b via 𝑝𝑠 = 0.0, ℜ = 0&Δ𝐶 = 0 

 

 

Fig. 8 Temperature distribution with aspect ratio a/b via 𝑝𝑠 = 0.5, ℜ = 0.03&Δ𝐶 = 0.5 

 

 

Particularly, when the pre-stress factor is 0.5 the square and pentagon shape plates give the similar 

distribution while the aspect ratio is 0.5. 

Figs. 11 and 12 display the moisture distribution of the various shapes of the poly plate via 

𝑝𝑠 = 0, ℜ = 0 and 𝑝𝑠 = 0.5, ℜ = 0.03. It is noticed that the moisture distribution decays steadily 

as aspect ratio increases and damped in higher aspect ratio with amplified values of 𝑝𝑠 and ℜ. In 

this graph, it clear that, hexagonal shape plates decays quickly than other plates. 
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Fig. 9 Electrical distribution with aspect ratio a/b via 𝑝𝑠 = 0.0&ℜ = 0 

 

 

Fig. 10 Electrical distribution with aspect ratio a/b via 𝑝𝑠 = 0.5&ℜ = 0.03 

 
 
6. Conclusions 
 

In this paper, the effects of humidity and initial stress on the vibrations of a nonlocal, non-

homogeneous prestressed thermo piezoelectric plate have been formulated and discussed using the 

linear elasticity theory. This study shows 

• The larger aspect ratio leads to the larger stress values of poly plates with moisture and the 

initial stress effect. 

• The mechanical displacement attains higher amplitude at a lower aspect ratio via moisture and 

initial stress variation. 
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Wave propagation in a nonlocal prestressed piezoelectric polygonal plate… 

 

Fig. 11 Moisture distribution with aspect ratio a/b via 𝑝𝑠 = 0&ℜ = 0.0 

 

 

Fig. 12 Moisture distribution with aspect ratio a/b via 𝑝𝑠 = 0.5&ℜ = 0.03 

 

 

• The increase in aspect ratio results in a decrease in temperature and electrical distribution due 

to moisture and the initial stress change. 

• The elastic nonlocal parameter significantly affects the output of the physical variants. 

• The inflated magnitude has been observed in hexagonal plates in all physical quantities. 

• On nonlinear boundaries, the Fourier expansion collocation method achieves better 

performance. 

• The results of this study might have useful applications in the field of smart and novel 

materials as well as in structures with nonlinear boundaries. 
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𝑈𝑛
1 = 2{𝛽(𝛽 − 1)𝐽𝛽(𝑁𝑟) 𝑐𝑜𝑠 𝑛 𝜃 + (𝑁𝑟)𝐽𝛽+1(𝑁𝑟) 𝑐𝑜𝑠 𝑛 𝜃} 𝑐𝑜𝑠 2 (𝜃 − 𝛾𝑖)

− 𝑟2{𝑁2(𝜆 + 2 𝑐𝑜𝑠2(𝜃 − 𝛾𝑖))𝐽𝛽(𝑁𝑟)} 𝑐𝑜𝑠 𝑛 𝜃 

𝑈𝑛
2 = {𝑛(𝛿 − 1)𝐽𝛿(℘𝑟) − (℘𝑟)𝐽𝛿(℘𝑟)} 𝑐𝑜𝑠 2 (𝜃 − 𝛾𝑖) 𝑐𝑜𝑠 𝑛 𝜃 − {(𝛿(𝛿 + 2) + 𝑛2 −

(℘𝑟)2)
𝐽𝛿(℘𝑟)

2
− (℘𝑟)𝐽𝛿+1(℘𝑟)} 𝑠𝑖𝑛 𝑛 𝜃 𝑠𝑖𝑛 2 (𝜃 − 𝛾𝑖)  

𝑉𝑛
1 = [2{𝛽𝐽𝛽(𝑁𝑟) 𝑐𝑜𝑠 𝑛 𝜃 − (𝑁𝑟)𝐽𝛽+1(𝑁𝑟) 𝑐𝑜𝑠 𝑛 𝜃} + ((𝑁𝑟)2 − 𝛽2 −

𝑛2) 𝑐𝑜𝑠 𝑛 𝜃𝐽𝛽(𝑁𝑟)] 𝑠𝑖𝑛 2 (𝜃 − 𝛾𝑖) + 2𝑛[(𝛽 − 1)𝐽𝛽(𝑁𝑟) 𝑠𝑖𝑛 𝑛 𝜃 −

(𝑁𝑟)𝐽𝛽+1(𝑁𝑟) 𝑠𝑖𝑛 𝑛 𝜃] 𝑐𝑜𝑠 2 (𝜃 − 𝛾𝑖)  

𝑉𝑛
2 = 2𝑛[𝛿𝐽𝛿(℘𝑟) 𝑐𝑜𝑠 𝑛 𝜃 − (℘𝑟)𝐽𝛿+1(℘𝑟) 𝑐𝑜𝑠 𝑛 𝜃] 𝑠𝑖𝑛 2 (𝜃 − 𝛾𝑖) + 2{[𝛿𝐽𝛿(℘𝑟) 𝑠𝑖𝑛 𝑛 𝜃 −

(℘𝑟)𝐽𝛿+1(℘𝑟) 𝑠𝑖𝑛 𝑛 𝜃] + [(℘𝑟)2 − 𝛿2 − 𝑛2] 𝑠𝑖𝑛 𝑛 𝜃𝐽𝛿(℘𝑟)} 𝑐𝑜𝑠 2 (𝜃 − 𝛾𝑖)  

𝑌𝑛
1 = {𝑛𝐽𝑛(𝛼𝑟) − (𝛼𝑟)𝐽𝑛+1(𝛼𝑟)} 𝑐𝑜𝑠 𝑛 𝜃 

𝑌𝑛
2 = 𝑛𝐽𝑛(𝛼𝑟) 𝑐𝑜𝑠 𝑛 𝜃 

𝑈𝑛
1 = 2{𝛽(𝛽 − 1)𝐽𝛽(𝑁𝑟) 𝑠𝑖𝑛 𝑛 𝜃 + (𝑁𝑟)𝐽𝛽+1(𝑁𝑟) 𝑠𝑖𝑛 𝑛 𝜃} 𝑠𝑖𝑛 2 (𝜃 − 𝛾𝑖) − 𝑟2{𝑁2(𝜆 +

2 𝑐𝑜𝑠2( 𝜃 − 𝛾𝑖)}𝐽𝛽(𝑁) 𝑠𝑖𝑛 𝑛 𝜃  

𝑈𝑛
2 = {𝑛(𝛿 − 1)𝐽𝛿(℘𝑟) 𝑠𝑖𝑛 𝑛 𝜃 − (℘𝑟)𝐽𝛿(℘𝑟) 𝑠𝑖𝑛 𝑛 𝜃} 𝑠𝑖𝑛 2 (𝜃 − 𝛾𝑖) − {(𝛿(𝛿 + 2)) + 𝑛2 −

(℘𝑟)2)
𝐽𝛿(℘𝑟)

2
𝑐𝑜𝑠 𝑛 𝜃 − (℘𝑟)𝐽𝛿+1(℘𝑟)} 𝑐𝑜𝑠 2 (𝜃 − 𝛾𝑖)  

𝑉𝑛
1 = [2{𝛽𝐽𝛽(𝑁𝑟) 𝑠𝑖𝑛 𝜃 − (𝑁𝑟)𝐽𝛽+1(𝑁𝑟) 𝑠𝑖𝑛 𝜃} + ((𝑁𝑟)2 − 𝛽2 − 𝑛2) 𝑠𝑖𝑛 𝜃 𝐽𝛽(𝑁𝑟)] 𝑐𝑜𝑠 2 (𝜃 −

𝛾𝑖) + 2𝑛{(𝛽 − 1)𝐽𝛽(𝑁𝑟) 𝑐𝑜𝑠 𝑛 𝜃 − (𝑁𝑟)𝐽𝛽+1(𝑁𝑟) 𝑐𝑜𝑠 𝑛 𝜃} 𝑠𝑖𝑛 2 (𝜃 − 𝛾𝑖).  

𝑉𝑛
2 = 2𝑛[𝛿𝐽𝛿(℘𝑟) 𝑠𝑖𝑛 𝑛 𝜃 − (℘𝑟)𝐽𝛿+1(℘𝑟) 𝑠𝑖𝑛 𝑛 𝜃] 𝑐𝑜𝑠 2 (𝜃 − 𝛾𝑖) + 2{[𝛿𝐽𝛿(℘𝑟) −

(℘𝑟)𝐽𝛿+1(℘𝑟)] + [(℘𝑟)2 − 𝛿2 − 𝑛2]𝐽𝛿(℘𝑟)} 𝑐𝑜𝑠 𝑛 𝜃 𝑠𝑖𝑛 2 (𝜃 − 𝛾𝑖)  

𝑌𝑛
1 = {𝑛𝐽𝑛(𝛼𝑟) − (𝛼𝑟)𝐽𝑛+1(𝛼𝑟)} 𝑠𝑖𝑛 𝑛 𝜃 

𝑌𝑛
2 = 𝑛𝐽𝑛(𝛼𝑟) 𝑠𝑖𝑛 𝑛 𝜃 

𝑈𝑛
3 = 0, 𝑈𝑛

4 = 0, 𝑉𝑛
3 = 0, 𝑉𝑛

4 = 0 
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