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Abstract.  The purpose of this paper is to study the effects of magnetic field and gravitational field on fiber-
reinforced thermoelastic medium with memory-dependent derivative. Three-phase-lag model of thermoelasticity 
(3PHL) is used to study the plane waves in a fiber-reinforced magneto-thermoelastic material with memory-
dependent derivative. A gravitating magneto-thermoelastic two-dimensional substrate is influenced by both thermal 
shock and mechanical loads at the free surface. Analytical expressions of the considered variables are obtained by 
using Laplace-Fourier transforms technique with the eigenvalue approach technique. A numerical example is 
considered to illustrate graphically the effects of the magnetic field, gravitational field and two types of mechanical 
loads (continuous load and impact load). 
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1. Introduction 
 

The theory of generalized thermoelasticity has drawn the attention of researchers due to its 

applications in various diverse fields such as engineering, nuclear reactor design, high energy 

particle accelerators, etc. Actually, as is well known, the term ‘generalized’ usually refers to 

thermo-dynamics theories based on the hyperbolic-type (wave-type) heat equations, so that a finite 

speed of propagation of thermal signal is admitted. Lord and Shulman (1967) introduced a theory 

of generalized thermoelasticity with one relaxation time for an isotropic body. In this theory, a 

modified law of heat conduction, including both the heat flux and its time derivatives replaces the 

conventional Fourier’s law. The heat equation is associated with this theory. Hetnarski and 

Ignaczak (1999) introduced a theory which is known as low-temperature thermoelasticity and 

called (H-I) theory. This model is characterized by a system of nonlinear field equations. Green 

and Naghdi (1993) establish a theory of thermoelasticity that permits the propagation of thermal 
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waves at a finite speed, where its evolution equations are hyperbolic. Roy Choudhuri (2007) 
established a mathematical model that includes the three phase-lag (3PHL) model in the heat flux 
vector, the temperature gradient and in the thermal displacement gradient. The three-phase-lag 
model is very much effective in the problems of nuclear boiling, exothermic catalytic reactions, 
phonon electron interactions, phonon-scattering, etc. Kumar and Chawla (2011) studied the plane 
wave propagation in the anisotropic medium in the context of the theory of the three-phase-lag and 

two-phase-lag models. Recently, Wang and Li (2011) introduced a concept of ‘‘memory dependent 
derivative’’, which is simply defined in an integral form of a common derivative with a kernel 
function on a slipping interval. In case the time delay tends to zero, it tends to the common 
derivative. Higher order derivatives also accord with the first order one. Many researchers 
discussed the problem of thermoelasticity with memory-dependent derivative, see (Othman and 
Song 2009, Yu et al. 2014, Purkait et al. 2017, El-Karamany and Ezzat 2016, Hendy et al. 2020, 
Othman and Lotfy 2009). Many researchers such as Marin (1997), Othman (2005), Marin (2010), 

Hu et al. (2013), Gao et al. (2016), Marin et al. (2014), Abbas and Marin (2020), Al-Basyouni et 
al. (2020), Lata and Kaur (2018), Yang et al. (2019), Yang (2019a, b), Yang (2020a, b), Bhatti et 
al. (2020), Xue et al. (2018, 2020), Fahmy (2020), Cheng et al. (2021), Fahmy (2021a, b, c, d, e, 
f), Yang (2021), Fing et al. (2021), Yang et al. (2021a, b), Yang and Liu (2021), Fahmy (2022) 
further studied the thermoelastic materials and the linear theory associated with them.  

Some engineering materials are unsuited for the second sound propagation experiment due to 
their relatively high thermal damping rate. To study the propagation of thermal waves with finite 
speeds, scholars have found an ideal material, fiber-reinforced material. There is a wide 

application of fiber-reinforced composites in a variety of structures because of their low weight 
and high strength. The fiber-reinforced materials are presented and developed by many 
investigators see (Belfield et al. 1983, Verma and Rana 1983, Weitsman 1972, Anya and Khan 
2019, Knopoff 1955, Othman and Said 2014, Lata et al. 2016, Kumar et al. 2016a, b, Kumar et al. 
2017, Lata and Kaur 2018, Kaur et al. 2021, Lata and Singh 2021). 

 The effect of gravity is generally neglected in the classical theory of elasticity. Bromwich 
(1898) first considered the effect of gravity on wave propagation in an elastic solid medium. De 

and Sengupta (1974) investigated the problem of elastic waves and vibrations under the influence 
of gravity field. Othman et al. (2019) have studied the effect of hall current and gravity on 
magneto-micropolar thermoelastic medium with micro temperatures. Othman et al. (2019) 
considered a novel model of plane waves of the two-temperature fiber-reinforced thermoelastic 
medium under the effect of gravity with the three-phase-lag model. 

In this work, the problem is a fiber-reinforced thermo-elastic medium under the influence of the 
magnetic field, gravity field and variable thermal conductivity. The memory-dependent derivative 

used instead of fractional calculus, in the four theories, the three-phase-lag model, Green-Naghdi 
theory without energy dissipation (G-N II), Green-Naghdi theory with energy dissipation (G-N III) 
and Lord-Shulman theory with one relaxation time. The matrix differential equation is formed by 
using Laplace and Fourier transforms into the considered equations which are solved by the 
eigenvalue approach, see Honig and Hirdes (1984). The effect of the magnetic field, gravity, time 
delay and kernel function with the considered parameters is presented graphically.  
 

 

2. Formulation of the problem 
 

A problem of a micropolar thermoelastic medium in 𝑥𝑧 −plane with micro-rotation vector Φ =
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(0,Φ2, 0). The adjacent free space is assumed to be permeated by a uniform magnetic field H =
( 0,𝐻0, 0) which is acting parallel to the 𝑦-axis. The field equations and constitutive relations can 
be written as Said and Othman (2016), Said et al. (2020), Cheng et al. (2021), in the context of 

generalized thermoelasticity as follows. 
 

2.1 The constitutive equations 
 

𝜎𝑖𝑗 = 𝜆𝑒𝑘𝑘𝛿𝑖𝑗 + 2𝜇𝑇𝑒𝑖𝑗 + 𝛼(𝑎𝑘𝑎𝑚𝑒𝑘𝑚𝛿𝑖𝑗 + 𝑎𝑖𝑎𝑗𝑒𝑘𝑘) 

+ 2(𝜇𝐿 − 𝜇𝑇)(𝑎𝑖𝑎𝑘𝑒𝑘𝑗 + 𝑎𝑗𝑎𝑘𝑒𝑘𝑖) + 𝛽𝑎𝑘𝑎𝑚𝑒𝑘𝑚𝑎𝑖𝑎𝑗 − 𝛾𝜃𝛿𝑖𝑗. 
(1) 

 
2.2 The equations of motion 
 

𝜌𝑢𝑖,𝑡𝑡 = 𝜎𝑖𝑗,𝑗 + 𝜇0(𝐽 × 𝐻)𝑖 + 𝐹𝑖, (2) 

𝜇0(𝐽 × 𝐻)1 = −𝜇0𝐻0
𝜕ℎ

𝜕𝑥
− 𝜀0𝜇0

2𝐻0
2 𝜕2𝑢

𝜕𝑡2 ,     𝜇0(𝐽 × 𝐻)2 = 0,   

𝜇0(𝐽 × 𝐻)3 = −𝜇0𝐻0
𝜕ℎ

𝜕𝑧
− 𝜀0𝜇0

2𝐻0
2 𝜕2𝑤

𝜕𝑡2 ,    𝐹1 = 𝜌𝑔
𝜕𝑤

𝜕𝑥
, 𝐹3 = −𝜌𝑔

𝜕𝑢

𝜕𝑥
. 

(3) 

 
2.3 The heat conduction equation (Roy Choudhuri 2007, El-Karamany and Ezzat 

2016) 
 

𝐾∗(1 + 𝜏𝜈𝐷𝑤3
)𝛻2𝜃 + 𝐾(1 + 𝜏𝑇𝐷𝑤2

)𝛻2𝜃,𝑡 = (1 + 𝜏𝑞𝐷𝑤1
+ 

1

2
𝜏𝑞

2𝐷2
𝑤1

) 

[𝜌𝐶𝐸(𝑛0𝜃,𝑡𝑡 + 𝑛1𝜃,𝑡)+ 𝛾𝑇0(𝑛0𝑒,𝑡𝑡 + 𝑛1𝑒,𝑡)]. 

(4) 

Here 𝑒𝑖𝑗 =
1

2
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖) are the components of strain, 𝑎 = (𝑎1, 𝑎2, 𝑎3), 𝑎1

2 + 𝑎2
2 + 𝑎3

2 = 1. We 

choose the fiber-direction as 𝑎 = (1,0,0).  

𝐷𝑤𝑖
 is the memory-dependent derivative operator is defined as El-Karamany and Ezzat (2016) 

𝐷𝑤𝑖
𝑓(𝑡) =

1

𝑤𝑖
∫ 𝐿(𝑡 − β)𝑓′(β)𝑑

𝑡

𝑡−𝑤𝑖

β.
 

(5) 

From Eq. (5), it can be visualized that for any real number 𝛽, the kernel 𝐿(𝑡 − 𝛽) is a fixed 
function. But from the viewpoint of applications, different processes need different kernels to 
reflect their memory effects, so the kernel should be chosen freely. In fact, the memory effect of a 

real process basically occurs on a segment of time, i.e., on the delayed interval ([𝑡 − 𝜔, 𝑡], 𝜔 > 0) 
indicates the time delay). Enlightened by these, the novel concept of derivative was initiated as the 
“memory-dependent derivative” to reflect the memory effect in a distinct manner. The parameter 

𝑤𝑖 is the time-delay and 𝐿(𝑡 − 𝛽) can be chosen freely, see Caputo and Mainardi (1971a, b) for 
more explanations.  

𝐿(𝑡 − 𝜉) = 1 −
2𝑏

𝜛
(𝑡 − 𝛽) + 𝑎2

(𝑡 − 𝛽)2

𝜛2
. (6) 
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In the present paper, we take 𝐿(𝑡 − 𝛽) = 𝑞 + 𝑛(𝑡 − 𝛽), where 𝑎, 𝑏 are constant. Introducing 
Eqs. (1) and (3) into Eqs. (2), we get Othman and Said (2019) 

ρ
∂2𝑢

∂𝑡2
= 𝐴1

∂2𝑢

∂𝑥2
+ 𝐴4

∂2𝑤

∂𝑥 ∂𝑧
+ μ𝐿

∂2𝑢

∂𝑧2
− γ

∂θ

∂𝑥
− 𝜇0𝐻0

∂ℎ

∂𝑥
− 𝜀0𝜇0

2𝐻0
2 ∂2𝑢

∂𝑡2
+ ρ𝑔

∂𝑤

∂𝑥
,  (7) 

ρ
∂2𝑤

∂𝑡2 = μ𝐿
∂2𝑤

∂𝑥2 + 𝐴4
∂2𝑢

∂𝑥 ∂𝑧
+ 𝐴3

∂2𝑤

∂𝑧2 − γ
∂θ

∂𝑧
− 𝜇0𝐻0

∂ℎ

∂𝑧
− 𝜀0𝜇0

2𝐻0
2 ∂2𝑤

∂𝑡2 − ρ𝑔
∂𝑢

∂𝑥
,  (8) 

where, 𝐴1 = 𝜆 + 2𝛼 + 4𝜇𝑇 − 2𝜇𝑇 + 𝛽,𝐴2 = 𝜆 + 𝛼,  𝐴3 = 𝜆 + 2𝜇𝑇 ,  𝐴4 = λ + 𝛼 + μ𝐿 , 
To facilitate the solution, the following dimensionless quantities are introduced 

(𝑥′, 𝑧′, 𝑢′, 𝑤′) = 𝑐0η(𝑥, 𝑧, 𝑢, 𝑤), θ′ =
γθ

𝐴3
, 

(𝑡′, 𝜏𝑞
' , 𝜏𝜈

' , 𝜏𝑇
' ) = 𝑐0

2𝜂(𝑡, 𝜏𝑞 , 𝜏𝜈 , 𝜏𝑇), ℎ′ =
ℎ

𝐻0
, 𝜎𝑖𝑗

′ =
𝜎𝑖𝑗

𝜇𝑇
, 𝑔′ =

𝑔

𝜂𝑐0
3 ,  𝜂 =

𝜌𝐶𝐸

𝐾*
,  𝑐0

2 =
𝐴3

ρ
. 

(9) 

We also consider the thermal conductivity defined as follows 
Caputo and Mainardi (1971a)  

𝐾 = 𝐾(𝜃) = 𝐾0(1 + 𝐾1𝜃). (10) 

Where 𝐾0 is a constant which is equal to the thermal conductivity of the material when it does 
not depend on the thermodynamic temperature (𝜃) and  𝐾1 is a non-positive small parameter.   

Using Kirchhoff transformation (Bonani and Ghione1995) 

ψ =
1

𝐾0
∫ 𝐾(Φ′)𝑑Φ′𝜃

0
.  (11) 

For linearity, then the above equation will be reduced to (see Said et al. 2020) 

∂θ

∂𝑥𝑖
=

∂𝜓

∂𝑥𝑖
,
∂θ

∂𝑡
=

∂ψ

∂𝑡
. (12) 

Eqs. (7), (8) and (4) with aid of Eqs. (9) and (12) recast into the following form  

𝐴5
∂2𝑢

∂𝑡2 = 𝐴6
∂2𝑢

∂𝑥2 + 𝐴7
∂2𝑤

∂𝑥 ∂𝑧
+ 𝐴8

∂2𝑢

∂𝑧2 −
∂ψ

∂𝑥
+ 𝑔

∂𝑤

∂𝑥
, 
 

(13) 

𝐴5
∂2𝑤

∂𝑡2 = 𝐴9
∂2𝑤

∂𝑧2 + 𝐴7
∂2𝑢

∂𝑥 ∂𝑧
+ 𝐴8

∂2𝑤

∂𝑥2 −
∂ψ

∂𝑧
− 𝑔

∂𝑢

∂𝑥
, 
 

(14) 

(1 + τν
∂

∂𝑡
)ψ,𝑖𝑖 + 𝐴10(1 + τ𝑇

∂

∂𝑡
)ψ,𝑖𝑖𝑡 = (1 + 𝜏𝑞

∂

∂𝑡
+

1

2
𝜏𝑞

2 ∂2

∂𝑡2)(𝐴11ψ,𝑡𝑡  

+𝐴13ψ,𝑡 + 𝐴12𝑒,𝑡𝑡 + 𝐴14𝑒,𝑡),
 

(15) 

where 𝐴5 = 1 +
𝜀0𝜇0

2𝐻0
2

ρ
,  𝐴6 =

𝐴1+𝜇0𝐻0
3

ρ𝑐0
2 ,   𝐴7 =

𝐴4+𝜇0𝐻0
3

ρ𝑐0
2 ,  𝐴8 =

μ𝐿

ρ𝑐0
2,   𝐴9 =

𝐴3+𝜇0𝐻0
3

ρ𝑐0
2 ,   𝐴10 =

𝐾𝑐0
2η

𝐾*
,   

𝐴11 =
𝜌𝐶𝐸𝑛0𝑐0

2

𝐾*
,      

2 2
0 0 0

12 *
3

,
T n c

A
K A


= 𝐴13 =

ρ𝐶𝐸𝑛1

η𝐾*
,     𝐴14 =

𝛾2𝑇0𝑛1

η𝐾*𝐴3
.   .    

 

 

3. The analytical solution of the problem  
 
Applying the Laplace and Fourier transform defined by 
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𝑓(𝑥, 𝑧, 𝑝) = ∫ 𝑓(𝑥, 𝑧, 𝑡)𝑒−𝑝𝑡∞

0
𝑑𝑡, 

 
(16) 

𝑓*(𝜁, 𝑧, 𝑝) = ∫ 𝑓(𝑥, 𝑧, 𝑝)𝑒𝑖𝜁𝑥∞

−∞
𝑑𝑥.  (17) 

Introducing Eqs. (16) and (17) in (13)˗ (15), thus we get 

𝐷2𝑢* = 𝑀11𝑢
* + 𝑀12𝑤

* + 𝑀13ψ
* + 𝑀15𝐷𝑤*, (18) 

𝐷2𝑤* = 𝑀21𝑢
* + 𝑀22𝑤

* + 𝑀24𝐷𝑢* + 𝑀26𝐷ψ*,
 

(19) 

𝐷2ψ* = 𝑀31𝑢
* + 𝑀33ψ

* + 𝑀35𝐷𝑤*, (20) 

where, 𝑀11 =
𝐴6𝜁2+𝐴5𝑝2

𝐴8
, 𝑀12 =

− 𝑖𝑔𝜁

𝐴8
, 𝑀13 =

𝑖𝜁

𝐴8
,  𝑀15 =

− 𝑖𝜁𝐴7

𝐴8
,     𝑀21 =

𝑖𝑔𝜁

𝐴9
, 𝑀22 =

𝐴6𝜁2+𝐴5𝑝2

𝐴9
, 

𝑀24 =
− 𝑖𝐴7𝜁

𝐴9
, 𝑀26 =

1

𝐴9
,  𝑀31 =

− 𝑖𝐴7𝜁

𝐴15
,    𝑀33 =

𝐴16+𝐴15𝜁2

𝐴15
,   𝑀35 =

𝐴17

𝐴15
,    𝐷 =

𝑑

𝑑𝑧
. 𝐴15 = 1 +

𝐺3 + (1 + 𝐺4)𝑝𝐴10,  𝐴16 = (𝐴11𝑝
2 + 𝐴13𝑝)(1 + 𝐺1 + 𝐺2),    𝐴17 = (1 + 𝐺1 + 𝐺2)(𝐴12𝑝

2 +

𝐴14𝑝),    𝐺1 =
𝜏𝑞

𝑤1
[
𝑞𝑝+𝑛

𝑝
(1 − 𝑒−𝑝𝑤1) − 𝑛𝑤1𝑒

−𝑝𝑤1 ],   𝐺2 =
𝑝𝜏𝑞

2

2𝑤1
[
𝑞𝑝+𝑛

𝑝
(1 − 𝑒−𝑝𝑤1) − 𝑛𝑤1𝑒

−𝑝𝑤1 ], 

𝐺3 =
𝜏𝑇

𝑤2
[
𝑞𝑝+𝑛

𝑝
(1 − 𝑒−𝑝𝑤2) − 𝑛𝑤2𝑒

−𝑝𝑤2 ], 𝐺4 =
𝜏𝜈

𝑤3
[
𝑞𝑝+𝑛

𝑝
(1 − 𝑒−𝑝𝑤3) − 𝑛𝑤3𝑒

−𝑝𝑤3 ], 𝑤1, 𝑤2,  𝑤3 

are the time delay for three-phase-heat equation. 
The system of Eqs. (18)-(20) can be written in a vector-matrix differential equation in the 

following way (Abbas and Kumar 2014, Das and Lahiri 2009) 

𝐷𝑉(𝑧) = 𝐴(𝜁, 𝑝)𝑉(𝑧).

 

(21) 

Where   𝑉(𝑧) = [𝑢*, 𝑤*, ψ*, 𝐷𝑢*, 𝐷𝑤*, 𝐷ψ*]𝑇 

𝐴 =

[
 
 
 
 
 

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

𝑀11 𝑀12 𝑀13 0 𝑀15 0
𝑀21 𝑀22 0 𝑀24 0 𝑀26

𝑀31 0 𝑀33 0 𝑀35 0 ]
 
 
 
 
 

. (22) 

Using the eigenvalue approach (Abbas and Kumar 2014), we now proceed to solve the vector-

matrix differential Eq. (19). The characteristic equation of the matrix 𝐴 is 

Γ6 − 𝐸1  Γ
4 + 𝐸2 Γ

2 − 𝐸3  = 0.

 

(23) 

In a similar manner 

𝐸1 = 𝑀35𝑀26 + 𝑀15𝑀24 + 𝑀33 + 𝑀22 + 𝑀11 , 
𝐸2 = −𝑀13𝑀35𝑀24 + 𝑀33𝑀15𝑀24 + 𝑀22𝑀33 + 𝑀26𝑀35𝑀11 

  −𝑀15𝑀31𝑀26 + 𝑀11𝑀33 − 𝑀13𝑀31 + 𝑀11𝑀22 − 𝑀21𝑀12 , 
𝐸3 = 𝑀11𝑀22𝑀33 − 𝑀21𝑀12𝑀33 − 𝑀13𝑀31𝑀22 , 

Let  Γ1
2, Γ2

2, Γ3
2 be the roots Eq. (23) with positive real parts. The solution of Eq. (21) which 

bound as 𝑥 → ∞, is given by 

(𝑢∗,w∗, Ψ∗)(𝑧) = ∑ (Π1𝑛, Π2𝑛, Π3𝑛)𝑅𝑛
3
𝑛=1 exp(−Γ𝑛𝑧). 

 

(24) 

Π1𝑛 = Γ𝑛𝑀26(𝑀12 + Γ𝑛𝑀15) − (𝑀22 − Γ𝑛
2)𝑀13,   Π2𝑛 = Γ𝑛𝑀26(Γ𝑛

2 − 𝑀11) + (𝑀21 +
Γ𝑛𝑀24)𝑀13,  Π3𝑛 = (Γ𝑛

2 − 𝑀11)(𝑀22 − Γ𝑛
2) + (𝑀21 + Γ𝑛𝑀24)(𝑀12 + Γ𝑛𝑀15), 
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Using Eqs. (24)- (26), we get 

(σ𝑧𝑧
* , σ𝑥𝑧

* )(𝑧) = ∑ (Π4𝑛, Π5𝑛)𝑅𝑛
3
𝑛=1 exp(−Γ𝑛𝑧).  (25) 

Where,

 Π4𝑛 =
1

μ𝑇
[𝑖𝜁𝐴2Π1𝑛 − 𝐴3Γ𝑛Π2𝑛 − (𝜆 + 2μ𝑇)Π3𝑛], Π5𝑛 =

μ𝐿

μ𝑇
(𝑖𝜁Π2𝑛 − Γ𝑛Π1𝑛). 

  

 
4. Application 

 

In order to determine the parameters 𝑅𝑛(𝑛 = 1,2,3) , we need to consider the following 

boundary conditions at 𝑧 = 0: 
 

4.1 Thermal boundary condition that the surface of the half-space is subjected to an 
isothermal 

 
θ = 0, (26) 

 
4.2 Mechanical boundary condition that the surface to the half-space is subjected to 

mechanical force 
 

𝜎𝑧𝑧 = −𝐹0𝛿(𝑥)𝐹(𝑡).
 

(27) 

 
4.3 Mechanical boundary condition that the surface to the half-space is traction free 
 

𝜎𝑥𝑧 = 0.
 

(28) 

Where 𝐹0 is a constant, 𝛿(𝑥) is the Dirac-delta function and in this paper, we consider two 
types of loads on the plane boundary of which is as defined below  

𝐹(𝑡) = {
𝐻(𝑡) for continuous load

𝛿(𝑡) for impact load
 

(29) 

 

 
5. Continuous load 
 

Using the expressions of the variables considered into the above boundary conditions (Eqs. 
(26)-(29)), we can obtain the following equations satisfied with the parameters 

∑ Π3𝑛𝑅𝑛
3
𝑛=1 = 0, ∑ Π4𝑛𝑅𝑛

3
𝑛=1 = −

𝐹0

𝑝
,  ∑ Π5𝑛𝑅𝑛

3
𝑛=1 = 0. 

 (30) 

After applying the inverse of the matrix method on the Eq. (30), we have  

(
𝑅1

𝑅2

𝑅3

) = (
Π31 Π32 Π33

Π41 Π42 Π43

Π51 Π52 Π53

)

−1

(

0

 −
𝐹0

𝑝

0

). 
 

(31) 
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II. Impact load 

 
We can obtain the following equations satisfied with the parameters 

∑ Π3𝑛𝑅𝑛
3
𝑛=1 = 0, ∑ Π4𝑛𝑅𝑛

3
𝑛=1 = −𝐹0, ∑ Π5𝑛𝑅𝑛

3
𝑛=1 = 0.

 
(32) 

Solving Eq. (35), by using the inverse of the matrix method, we have the values of the three 

constants 𝑅𝑛(𝑛 = 1,2,3). 

(
𝑅1

𝑅2

𝑅3

) = (
Π31 Π32 Π33

Π41 Π42 Π43

Π51 Π52 Π53

)

−1

(
0
 −𝐹0

0
). 

 
(33) 

 

 

6. Inversion of the transforms 
 
The transformed displacements, the stress components and the tangential couple stress are the 

functions of 𝑧 and the parameters 𝑝 and 𝜁  of Laplace and Fourier transforms respectively and 

hence are of the form 𝑓(𝑧, 𝑝, 𝜁). To obtain the solution of the problem in the physical domain, we 
invert the Laplace and Fourier transforms by using the method described by Kumar and Rani 
(2004). 
 
 

7. Numerical calculations and discussion 
 

To study the influence of a magnetic field and gravity on wave propagation, we use the 
following physical constants for generalized fiber-reinforced thermoelastic materials (Othman and 
Said 2012) 

𝜆 = 5.65 × 1010 N.m−2, 𝜇𝑇 = 2.46 × 1010 N.m−2, 𝑥 = 0.2, 

𝜇𝐿 = 5.66 × 1010 N.m−2, 𝜌 = 2660 kg.m−3,  𝑇0 = 293 K, 

𝛽 = 0.015 × 10−4 N.m−2, 𝛾 = 0.017 × 10−4 N.m−2, 𝑛 = 0.5, 

𝛼 = 1.28 × 1010  N.m−2, 𝐶𝐸 = 0.787 × 103 kg. K−1, 𝑡 = 0.02 s, 

𝜇0 = 1.7 kg.m−1. s−2, 𝛼𝑡 = 1.78 × 10−4 K−1, 𝜀0 = 0.3, 𝑞 = 0.3, 

𝐾∗ = 150 w.m−1. K−1, 𝜔1 = 0.04, 𝜔2 = 0.06, 𝜔3 = 0.07, 𝛽 = 0.07, g = 9.8 m.s−2, 

𝜏𝑞 = 0.7 𝑠, 𝜏𝑇 = 0.5 s, 𝜏𝜐 = 0.3 𝑠, 𝑘1 = − 0.4. 

The comparisons have been made in the context of four theories of thermoelasticity, namely; 
(3PHL), (G-N: III), (G-N: II) and (L-S), in three situations: 

(i) With and without magnetic field [𝐻0 = 120 and  𝐻0 = 0]. 
(ii) Whether we have some gravity parameter or not [𝑔 = 9.8 and 𝑔 = 0]. 
(iii) Two types of mechanical loads [continuous load and impact load]. 
 

6.1 The influence of the mechanical loads 
 

Figs. 1-4 show the variations of the nondimensional displacement component 𝑤, temperature 𝜃 

and stress components 𝜎𝑧𝑧, 𝜎𝑥𝑧 ,  respectively, which demonstrate the effects of the mechanical 

loads (continuous load and impact load) on the variations of the considered variables when 𝑡 = 
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Fig. 1 Variation of displacement component w for different theories under different loads 

 

 

Fig. 2 Variation of temperature 𝜃 for different theories under different loads 

 
 

0.02 and 𝐹0 = 10. In each figure, there are eight curves predicted by the four models 3PHL, G-N: 
III, G-N: II and L-S considered in this work. These figures evidence that; the behavior of all 
models may be the same with different amplitudes. Figs. 1, 2 exhibit the variation of the 

displacement component and the temperature against the distance 𝑧. We notice from these figures 
that, the values of the displacement and temperature for the impact load are large compared to 

those for the continuous load in the range 0 ≤ 𝑧 ≤ 3.5, while the values are the same for two cases 

at 𝑧 ≥ 3.5. Figs. 3 and 4 study the variation of the stress components 𝜎𝑧𝑧 and 𝜎𝑥𝑧 versus 𝑧 −axis. 
In the two figures, the impact load decreases the values of stress. It is observed that: in the context 

of the four theories, the values of the tangential stress component 𝜎𝑥𝑧 start from a zero, which 
satisfies the boundary conditions. 

 

6.2 Effect of the magnetic field 
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Fig. 3 Variation of stress component 𝜎𝑧𝑧  for different theories under different loads 

 

 

Fig. 4 Variation of stress component 𝜎𝑥𝑧  for different theories under different loads 

 

 

Fig. 5 Variation of displacement component 𝑤 for different theories in the presence and 

absence the magnetic field 
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Fig. 6 Variation of temperature 𝜃 for different theories in the presence and absence the 

magnetic field 

 

 

Fig. 7 Variation of stress component 𝜎𝑧𝑧  for different theories in the presence and absence the magnetic field 

 
 

Figs. 5-8 explain the effect of the magnetic field 𝐻0 on the physical fields with respect to the 

𝑧 −axis, in the two cases: with a magnetic field (𝐻0 = 120) and without a magnetic field (𝐻0 =
0). The calculations are carried out for the time 𝑡 = 0.02, the gravity 𝑔 = 10, and the range 0 ≤
𝑧 ≤ 4. In these figures, the magnetic field has a significant role in the distribution of all physical 
quantities in the problem, that is agree with Othman and Song (2009). Fig. 5 indicates the 

distribution of the displacement component 𝑤, the values of the displacement for 𝐻0 = 120 are 
small compared to those for 𝐻0 = 0. In this figure, the presence of the magnetic field increases the 

magnitude of the displacement components. Fig. 6 depicts the variation of the temperature 𝜃 with 

respect to the 𝑧-axis. It can be seen that the magnetic field shows a decreasing effect on the 

magnitude of temperature 𝜃. In Figs. 7 and 8 show the variation of the dimensionless normal stress 

component 𝜎𝑧𝑧 and the tangential stress component 𝜎𝑥𝑧 according to the different magnetic field 

parameter (𝐻0 = 120 and 𝐻0 = 0). In the two figures, the presence of the magnetic field increases  
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Fig. 8 Variation of stress component 𝜎𝑥𝑧  for different theories in the presence and absence the magnetic field 

 

 

Fig. 9 Variation of displacement component 𝑤 for different theories in the presence and 

absence the gravitational field 

 
 

the magnitude of the stress components. 

 
6.3 Effect of the gravitational field 
 

The third categories of Figs. 9-12 illustrate the effect of the gravity parameter 𝑔  on the 

displacement component 𝑤, temperature 𝜃 and stress components 𝜎𝑧𝑧 , 𝜎𝑥𝑧 , along the 𝑧-axis of the 
medium, respectively. These figures show the considered variables at two values of gravity 

parameter with gravity effect 𝑔 = 9.8 and without gravity effect 𝑔 = 0. The effect of gravity is 
much pronounced in all the resulting quantities, which agrees with Othman and Said (2019). 

Fig. 9 investigates the variation of the displacement component 𝑤versus 𝑧. It can be seen that 
the magnitude of displacement is found to be large for the L-S theory and smaller for the G-N: II  
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Fig. 10 Variation of temperature 𝜃 for different theories in the presence and absence the gravitational field 

 

 

Fig. 11 Variation of stress component 𝜎𝑧𝑧  for different theories in the presence and 

absence the gravitational field 

 
 

theory. Also, the gravity parameter shows a decreasing effect on the magnitude of displacement. In 
Fig. 10, the values of the temperature for presence the gravity is small compared to those for 

absence the gravity. Figs. 11 and 12 investigate the variation of the normal stress component 𝜎𝑧𝑧 

and the tangential stress component 𝜎𝑥𝑧 against the 𝑧-axis. In these figures, the presence of gravity 
shows an increasing effect on the magnitude of the stress components. 
 

6.4 The 3D surface curves 
 

Figs. 13-15 are giving 3D surface curves for some physical quantities, i.e., the displacement 

component 𝑤, the temperature 𝑇 and the stress component 𝜎𝑧𝑧 of the effects of the magnetic field 
and gravity on a fiber-reinforced thermoelastic medium under the effect of variable thermal 
conductivity and being enlightened by memory-dependent derivative (MDD). These figures are  
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Fig. 12 Variation of stress component 𝜎𝑥𝑧  for different theories in the presence and 

absence the gravitational field 

 

 

Fig. 13 (3D curve) Distribution of the displacement 𝑤 versus the distances for 3PHL at 

𝑔 = 9.8 m ⋅ s−2, 𝐻0 = 120 A−1 ⋅ m−1 

 

 

Fig. 14 (3D curve) Distribution of the temperature 𝜃 versus the distances for 3PHL at 𝑔 =
9.8 m ⋅ s−2, 𝐻0 = 120 A−1 ⋅ m−1 
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Fig. 15 (3D curve) Distribution of the stress component 𝜎𝑧𝑧  versus the distances for 3PHL 

 at 𝑔 = 9.8 𝑚. 𝑠−2, 𝐻0 = 120 𝐴−1 ⋅ 𝑚−1 

 
 

very important to study the dependence of these physical quantities on the vertical component of 
distance. The deformation of a body depends on the nature of the applied forces due to the type of 
boundary conditions. 
 

 

7. Conclusions 
 

From the above discussions, we obtain the following important conclusions: 

• All the distributions considered have a nonzero value only in a bounded region of the half-
space. At the end of this region, the values vanish identically, which means that the region has 
not yet felt a thermal disturbance.  
• There are significant differences in the field quantities between the theories 3PHL, G-N: III, 
G-N: II and the L-S due to the phase-lags. 
• The effect of the magnetic field is much pronounced in all the resulting quantities. 
• It is noticed from the figures that the gravitational field plays a significant role in all the field 

quantities. 
• The field quantities are very sensitive to the applied mechanical loads (continuous load and 
impact load). 
• The method used in this article is applicable to a wide range of problems in thermodynamics. 
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Nomenclature 
 

𝐶𝐸   The specific heat at constant strain 

𝑒𝑘𝑘   The dilatation 

𝑛0, 𝑛1  An integer 

𝐷𝑤𝑖
  The memory-dependent derivative operator 

𝑒𝑖𝑗   represents strain components, 

𝐾  The coefficient of thermal conductivity 
K1 A non-positive small parameter 

𝐾*  The additional material constant 

K0 A constant 

σ𝑖𝑗  The components of stress 

𝜆, 𝜇  The elastic constants 

𝛼, 𝛽, ( 𝜇𝐿 − 𝜇𝑇),  The reinforcement parameters 

α𝑡  The thermal expansion coefficient 

𝑇0  The reference temperature 

θ = 𝑇 − 𝑇0,  where 𝑇is the temperature above the reference temperature 𝑇0 

𝜏𝑇   The phase-lag of temperature gradient 

𝜏𝑞  The phase-lag of heat flux 

𝜏𝜈   The phase-lag of thermal displacement gradient 

𝜌  The mass density 
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