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Abstract.  Free vibration analysis of power law and sigmoidal sandwich plates made up of functionally graded 
materials (FGMs) has been carried out using finite element based higher-order zigzag theory. The present model 
satisfies all-important conditions such as transverse shear stress-free conditions at the plate’s top and bottom surface 
along with continuity condition for transverse stresses at the interface. A Nine-noded C0 finite element having eleven 
degrees of freedom per node is used during the study. The present model is free from the requirement of any penalty 
function or post-processing technique and hence is computationally efficient. The present model’s effectiveness is 
demonstrated by comparing the present results with available results in the literature. Several new results have been 
proposed in the present work, which will serve as a benchmark for future works. It has been observed that the 
material variation law, power-law exponent, skew angle, and boundary condition of the plate widely determines the 
free vibration behavior of sandwich functionally graded (FG) plate. 
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1. Introduction 
 

Demerits related to laminated composite and sandwich plates such as delamination, matrix-

fiber de-bonding, stress channeling effects (Garg and Chalak 2021a, b, Patni et al. 2018), etc. 
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opens the way for the new class of materials called functionally graded materials. In functionally 

graded materials (FGMs), material property regularly varies in a particular direction. Initially, 

FGMs were designed for constructing space structures, but due to their excellent properties, they 

are absorbed by various fields such as automobile, naval, civil, etc. Bending, free vibration, 

buckling, and transient are among the critical behaviors studied for sandwich functionally graded 

(FG) structures during preliminary stages. 

Tornabene et al. (2015) presented detailed review of the differential quadrature-based finite 

element methods to analyze layered structures. Sayyad and Ghugal (2019) compiled the analysis 

work reported for the sandwich FG beams under various loading and environmental conditions. 

Zhang et al. (2019) summarized the available work related to analysis of FGM structures under 

bending, buckling and free vibration conditions. Ghatage et al. (2020) reported a review of the 

numerical modeling and analysis of multi-directional FGM structures. Garg et al. (2021a) 

presented detailed review on the analysis of sandwich FG structures. 

Various theories are available for studying the free vibration behavior of sandwich plates. The 

most straightforward theory available for the free vibration analysis of sandwich FG plates is the 

classical laminated plate theory (CLPT). This theory neglects transverse deformation effects and 

hence overpredicts the value of frequencies (Garg and Chalak 2019). First-order shear deformation 

theory (FOSDT) assumes a constant transverse displacement field across the plate’s thickness and 

cannot predict transverse shear stresses effectively (Carrera 2003). Tornabene (2009) carried out 

the free vibration behavior of annular plates using FOSDT. Thai et al. 2014 analyzed sandwich FG 

plates under free vibration conditions using FOSDT. Kurpa and Shmatko 2021 employed FOSDT 

for free vibration analysis of sandwich FG plates. To predict transverse shear stresses effectively, a 

shear correction factor is required (Birman and Bert 2002). The shear correction factor’s value 

depends upon various parameters such as end conditions, material properties, the thickness of 

layers, etc. (Pai 1995, Bouafia et al. 2021). 

The difficulties associated with FOSDT is handled efficiently by higher-order shear 

deformation theory (HOSDT). In HOSDTs, the displacement field is expressed in higher-order 

terms concerning the plate’s thickness. Zenkour 2005a, b carried out vibration analysis of FG 

plates using trigonometric shear deformation theory and sinusoidal shear deformation theory. Also, 

a generalized theory was put forwarded by Zenkour for the analysis of FG plates (Zenkour 2006). 

Hadji et al. (2011) used HOSDT for the analysis of sandwich FG plates. However, the formulation 

neglects normal transverse strains during formulation. Neves et al. (2013) proposed meshless 

based HOSDT for bending, free vibration, and buckling analysis of sandwich FG plates. Mahi et 

al. (2015) carried out an analysis of sandwich FG plates using hyperbolic shear deformation 

theory. Bacciocchi et al. (2016) carried out a Gauss quadrature-based analysis of plates with 

variable thickness. Analysis of imperfect FGM plates under hygro-thermo-mechanical conditions 

was carried out by Daouadji et al. (2016). Bennoun et al. (2016) employed fifth-order shear 

deformation theory for the free vibration analysis of sandwich FG plates and derived exact 

solutions using Navier’s solution. Meksi et al. (2019) proposed a hyperbolic shear deformation 

theory based on Navier solutions to analyze sandwich FG plates. Zouatnia and Hadji (2019) 

proposed closed form solutions for free vibration analysis of sandwich FG plates. Keddouri et al. 

(2019) proposed application of HOSDT for the analysis of porous FGM plates. Belalia et al. 

(2019) analyzed sandwich FG plates using the p version of the finite element method (FEM). To 

predict transverse behavior accurately, equilibrium equations were employed. Fu et al. (2020) 

carried out a free vibration analysis of sandwich FG plates using nth-order HOSDT along with the 

differential quadrature method. Singh and Harsha (2020) used non-linear HOSDT for vibration 
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analysis of sigmoidal sandwich FG plates resting on elastic foundation. Analytical solutions for 

analysis of sandwich FGM, beams based on HOSDT were published by Hadji and Bernard (2020). 

Ye et al. (2021) carried out a free vibration analysis of sandwich FG plates using HOSDT. 

Analytical solutions were derived using Navier’s solutions. Hadji et al. (2021, 2022) employed 

parabolic shear deformation theory (SDT) for analysis of porous FGM plates. Saad et al. (2021) 

carried out free vibration analysis of porous sandwich FG plates. Wave propagation analysis in 

FGM plates using quasi 3D HOSDT was carried out by Tahir et al. (2022). 

Burlayenko and Sadowski (2020), in their work, showed that stresses have nonlinear patterns 

across the thickness of sandwich FG plates. The nonlinear variation increases with an increase in 

the plate’s metallic phase for plates made with a power law. However, these nonlinear stresses 

across the plate’s thickness, especially at interfaces, cannot be predicted accurately by using 

HOSDT (Apetre et al. 2008, Brischetto 2009, Carrera et al. 2011). Another kind of theory called 

layerwise theory (LWT) can predict stresses efficiently. LWT’s are of two types: discrete and 

refined LWTs. In discrete LWT, each layer is analyzed separately and then the results are 

integrated over the entire domain. Pandey and Pradyumna (2015) proposed FE based discrete LWT 

for the free vibration analysis of sandwich FG plates. Ferreira et al. (2013) carried out an analysis 

of sandwich plates using Gauss quadrature based LWT. As in case of discrete LWT, each layer is 

analyzed separately, and hence is computationally costly as with an increase in layers, the number 

of unknowns also increases. In refined LWTs (also called zigzag theories), the number of 

unknowns at each layer is expressed in unknowns at the reference plane (usually middle plane). 

This makes the number of unknowns at each layer independent of the number of layers. 

Neves et al. (2012) reported bending behaviour of sandwich FG plates using hyperbolic zigzag 

theory and further extended for buckling analysis of sandwich FG plates (Neves et al. 2017). 

Iurlaro et al. (2014) and Di Sciuva and Sorrenti (2019) used HOZT for carrying out free vibration 

analysis of sandwich FG plates using the Ritz method in conjunction with Chebyshev polynomials. 

Garg et al. (2020a), Garg et al. (2021) analyzed exponential and power-law sandwich FG plates 

and beams using C-0 HOZT. The zigzag term was also included in the transverse displacement 

field, which helps predict thick sandwich plates’ behavior efficiently. Dorduncu (2020) used the 

peridynamic operator based zigzag theory to analyze power-law and exponentially graded 

sandwich FG plates. Chen and Su (2021) presented analytical solutions in framework of HOZT for 

studying the behavior of sandwich FG beams. Chanda and Sahoo (2021) presented non-

polynomial zigzag theory for analysis of sandwich plates. The choice of material homogenization 

rule widely affects the behavior of sandwich FGM structures (Garg et al. 2020b, 2021b, c). 

Regarding the benefits of including zigzag effects and normal transverse stresses, Brischetto 

and his co-authors (Brischetto 2009, Carrera et al. 2011) and Zenkour and his co-authors (Zenkour 

et al. 2009, Zenkour 2009) stated, “Refinements of classical theories that include additional in-

plane variables could result meaningless unless transverse normal strain effects are taken into 

account”. Linear 3D Elasticity based solutions for power-law sandwich FGM is carried out by Li 

et al. (2008). Liu et al. (2015) used FOSDT for face sheets and 3D elasticity solutions for the core 

for analyzing sandwich FG plates. 3D elasticity-based solutions are the most accurate but are 

computationally costly. 

In the present work, free vibration analysis of sandwich FG plates (non-skew and skew) is 

carried out using recently proposed HOZT (Chalak et al. 2012). The third-order variation of the in-

plane displacement field is taken along with the variation of the transverse displacement field 

across the plate’s thickness. The zigzag effects are introduced using a linear unit Heaviside step 

function. The present theory satisfies interlaminar transverse stress continuity at the interface and 
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zero condition at the plate’s top and bottom surfaces for transverse shear stresses. Nine-noded C0 

FE having twelve degrees of freedom per node is used during analysis. The present model does not 

require penalty approach or post-processing technique and hence is computationally more 

efficient. A comparative study has been carried out on the free vibration behavior of sandwich FG 

plates made of power-law and sigmoidal homogenization rules. Present results are validated with 

available results in the literature. Several new results are also given, especially for sigmoidal 

sandwich FG plates, which will serve as the benchmark for future studies. 

 

 

2. Mathematical and material modeling 
 

Governing Equation: The equation of motion of the beam/plate system can be obtained by 

applying Hamilton’s principle 

𝛿 ∫ (𝑇 − 𝑈)𝑑𝑡
𝑡

0
= 0                                                               (1) 

In the above Eq. (1), the work done by external forces is neglected and the damping is also not 

considered. The Hamilton’s principle leads to the following equilibrium equation of a system 

[𝐾′]{𝜓} = 𝜔2[𝑀]{𝜓}                                                            (2) 

Considering a plate made up of FGM lying in X-Y plane. The thickness of plate lies along the 

Z-axis as shown in Fig. 1. The variation of in-plane displacement (along x-direction) across the 

thickness of a sandwich FG plate may be expressed as follows (Chalak et al. 2012) 

𝑈 = 𝑢0 + 𝑧𝜃𝑥 + ∑ (𝑧 − 𝑧𝑖
𝑢)𝐻(𝑧 − 𝑧𝑖

𝑢)𝛼𝑥𝑢
𝑖𝑛𝑢−1

𝑖=1 + ∑ (𝑧 − 𝑧𝑖
𝑙)𝐻(−𝑧 + 𝑧𝑖

𝑙)𝛼𝑥𝑙
𝑗𝑛𝑙−1

𝑗=1 + 𝛽𝑥𝑧2 +

𝜂𝑥𝑧3  
(3) 

Similarly, the in-plane displacement along the y-direction is expressed as 

𝑉 = 𝑣0 + 𝑧𝜃𝑦 + ∑ (𝑧 − 𝑧𝑖
𝑢)𝐻(𝑧 − 𝑧𝑖

𝑢)𝛼𝑦𝑢
𝑖𝑛𝑢−1

𝑖=1 + ∑ (𝑧 − 𝑧𝑖
𝑙)𝐻(−𝑧 + 𝑧𝑖

𝑙)𝛼𝑦𝑙
𝑗𝑛𝑙−1

𝑗=1 + 𝛽𝑦𝑧2 +

𝜂𝑦𝑧3  
(4) 

where, 𝑢0  and 𝑣0  denotes the in-plane displacements of the mid surface, 𝜃𝑥   and 𝜃𝑦  are the 

rotations of the normal to the middle plane about the y- axis and x- axis respectively, 𝑛𝑢 and 𝑛𝑙 are 

number of upper and lower layers respectively, 𝛽𝑥, 𝛽𝑦, 𝜂𝑥 and 𝜂𝑦 are the higher order unknown 

terms, 𝛼𝑥𝑢
𝑖 , 𝛼𝑥𝑙

𝑗
, 𝛼𝑦𝑢

𝑖 , and 𝛼𝑦𝑙
𝑗

 are the slopes of i-th/j-th layer interfaces corresponding to upper and 

lower layers respectively and 𝐻(𝑧 − 𝑧𝑖
𝑢) and 𝐻(−𝑧 + 𝑧𝑖

𝑢) are the unit step functions. 

The transverse displacement is assumed to vary quadratically through the core thickness and 

constant over the face sheets and it may be expressed as 

 𝑊 =
𝑙1𝑤𝑢 + 𝑙2𝑤0 + 𝑙3𝑤𝑙

𝑤𝑢

𝑤𝑙

  
for core

for upper face layers
for lower face layers

                                      (5) 

where 𝑤𝑢, 𝑤0, and 𝑤𝑙 are the values of the transverse displacement at the top, middle and bottom 

of the core layer respectively; and 𝑙1 , 𝑙2  and 𝑙3  are Lagrangian interpolation functions in the 

thickness co-ordinate which can be expressed as 

 𝑙1 =
𝑧(𝑧+ℎ𝑙)

ℎ𝑢(ℎ𝑢+ℎ𝑙)
, 𝑙2 =

(𝑧+ℎ𝑙)(ℎ𝑢−𝑧)

ℎ𝑢ℎ𝑙
, 𝑙3 =

𝑧(−𝑧+ℎ𝑢)

−ℎ𝑙(ℎ𝑢+ℎ𝑙)
                                      (6) 
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Fig. 1 Geometry of skew sandwich FG plate 

 

 

The stress-strain relationship of an orthotropic layer/ lamina (say k-th layer) having any fiber 

orientation with respect to structural axes system (x-y-z) may be expressed as 

 {𝜎̅} = [𝑄̅]𝑘{𝜀}̅                                                               (7) 

where {𝜎̅}, {𝜀}̅ and [𝑄̅]𝑘 are the stress vector, the strain vector, and the transformed rigidity matrix 

of k-th lamina, respectively. 

The strain vector {𝜀}̅  in the above equation may be expressed in terms of displacement 

components as 

 {𝜀}̅ = [
𝜕𝑈

𝜕𝑥
 
𝜕𝑉

𝜕𝑦
 
𝜕𝑊

𝜕𝑧
 
𝜕𝑈

𝜕𝑦
+

𝜕𝑉

𝜕𝑥
 
𝜕𝑈

𝜕𝑧
+

𝜕𝑊

𝜕𝑥
 
𝜕𝑉

𝜕𝑧
+

𝜕𝑊

𝜕𝑥
]                                      (8) 

Utilizing the following conditions: (𝜎𝑥𝑧 = 𝜎𝑦𝑧 = 0 at 𝑧 = ±ℎ/2) , (𝜎𝑥𝑧
𝑖 = 𝜎𝑥𝑧

𝑖+1 and 𝜎𝑥𝑧
𝑖 =

𝜎𝑥𝑧
𝑖+1) at the interfaces, 𝑈 = 𝑢𝑢 and 𝑉 = 𝑣𝑢 at the top and 𝑈 = 𝑢𝑙 and 𝑉 = 𝑣𝑙 at the bottom of the 

plate, 𝛽𝑥, 𝛽𝑦, 𝜂𝑥, 𝜂𝑦, 𝛼𝑥𝑢
𝑖 , 𝛼𝑥𝑙

𝑗
, 𝛼𝑦𝑢

𝑖 , 𝛼𝑦𝑙
𝑗

, (𝜕𝑤𝑢 𝜕𝑥⁄ ), (𝜕𝑤𝑙 𝜕𝑥⁄ ), (𝜕𝑤𝑢 𝜕𝑦⁄ ) and (𝜕𝑤𝑙 𝜕𝑦⁄ ) may be 

expressed in terms of the displacements 𝑢0, 𝑣0, 𝜃𝑥, 𝜃𝑦, 𝑢𝑢, 𝑣𝑢, 𝑢𝑙 and 𝑣𝑙 as 

 {𝐵} = [𝐴]{𝛼}                                                            (9) 

where, {𝐵} = {𝛽𝑥  𝛽𝑦 𝜂𝑥  𝜂𝑦 𝛼𝑥𝑢
1  𝛼𝑥𝑢

2 … 𝛼𝑥𝑢
𝑛𝑢−1

 𝛼𝑥𝑙
1  𝛼𝑥𝑙

2 … 𝛼𝑥𝑙
𝑛𝑙−1

 𝛼𝑥𝑢
1  𝛼𝑥𝑢

2 … 𝛼𝑥𝑢
𝑛𝑢−1

 𝛼𝑥𝑙
1  𝛼𝑥𝑙

2 …   

𝛼𝑥𝑙
𝑛𝑙−1

 (𝜕𝑤𝑢 𝜕𝑥⁄ ) (𝜕𝑤𝑙 𝜕𝑥⁄ ) (𝜕𝑤𝑢 𝜕𝑦⁄ ) (𝜕𝑤𝑙 𝜕𝑦⁄ )}𝑇 , {𝛼} = {𝑢0 𝑣0 𝜃𝑥  𝜃𝑦 𝑢𝑢 𝑣𝑢 𝑢𝑙  𝑣𝑙}
𝑇

 and the 

elements of [A] are dependent on material properties. It is to be noted that last two entries of the 

vector {B} helps to define the derivatives of transverse displacement at the top and bottom faces of 

the plate in terms of the displacements 𝑢0, 𝑣0, 𝑤0, 𝜃𝑥, 𝜃𝑦, 𝑢𝑢, 𝑣𝑢, 𝑤𝑢, 𝑢𝑙, 𝑣𝑙, and 𝑤𝑙 to overcome 

the problem of C1 continuity as mentioned before. 

Using the above equations, the in-plane displacement fields as given in Eqs. (3) and (4) may be 

expressed as 

 
𝑈 = 𝑏1𝑢0 + 𝑏2𝑣0 + 𝑏3𝜃𝑥 + 𝑏4𝜃𝑦 + 𝑏5𝑢𝑢 + 𝑏6𝑣𝑢 + 𝑏7𝑢𝑙 + 𝑏8𝑣𝑙

𝑉 = 𝑐1𝑢0 + 𝑐2𝑣0 + 𝑐3𝜃𝑥 + 𝑐4𝜃𝑦 + 𝑐5𝑢𝑢 + 𝑐6𝑣𝑢 + 𝑐7𝑢𝑙 + 𝑐8𝑣𝑙
                     (10) 

where, the coefficients bi’s and ci’s are function of thickness coordinates, unit step functions and 

material properties. 
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The generalized displacement vector {𝛿} for the present plate model can now be written with 

the help of Eqs. (9) and (10) as 

 {𝛿} = {𝑢0 𝑣0 𝑤0 𝜃𝑥  𝜃𝑦 𝑢𝑢 𝑣𝑢 𝑤𝑢 𝑢𝑙  𝑣𝑙  𝑤𝑙}
𝑇

                                    (11) 

Using linear strain-displacement relation and Eqs. (8) - (11), the strain vector may be expressed 

in terms of unknowns (for the structural deformation) as 

 {𝜀}̅ = [
𝜕𝑈

𝜕𝑥
 
𝜕𝑉

𝜕𝑦
 
𝜕𝑊

𝜕𝑧
 
𝜕𝑈

𝜕𝑦
+

𝜕𝑉

𝜕𝑥
 
𝜕𝑈

𝜕𝑧
+

𝜕𝑊

𝜕𝑥
 
𝜕𝑉

𝜕𝑧
+

𝜕𝑊

𝜕𝑥
] or {𝜀}̅ = [𝐻]{𝜀}                  (12) 

where, 
{𝜀} =

{𝑢0 𝑣0 𝑤0 𝜃𝑥  𝜃𝑦 𝑢𝑢 𝑣𝑢 𝑤𝑢 𝑢𝑙  𝑣𝑙  𝑤𝑙  (𝜕𝑢0 𝜕𝑥⁄ ) (𝜕𝑢0 𝜕𝑦⁄ ) (𝜕𝑣0 𝜕𝑥⁄ ) (𝜕𝑣0 𝜕𝑦⁄ ) (𝜕𝑤0 𝜕𝑥⁄ )

(𝜕𝑤0 𝜕𝑦⁄ ) (𝜕𝜃𝑥 𝜕𝑥⁄ ) (𝜕𝜃𝑥 𝜕𝑦⁄ ) (𝜕𝜃𝑦 𝜕𝑥⁄ ) (𝜕𝜃𝑦 𝜕𝑦⁄ ) (𝜕𝑢𝑢 𝜕𝑥⁄ ) (𝜕𝑢𝑢 𝜕𝑦⁄ ) (𝜕𝑣𝑢 𝜕𝑥⁄ ) 

(𝜕𝑣𝑢 𝜕𝑦⁄ ) (𝜕𝑤𝑢 𝜕𝑥⁄ ) (𝜕𝑤𝑢 𝜕𝑦⁄ ) (𝜕𝑢𝑙 𝜕𝑥⁄ ) (𝜕𝑢𝑙 𝜕𝑦⁄ ) (𝜕𝑣𝑙 𝜕𝑥⁄ ) (𝜕𝑣𝑙 𝜕𝑦⁄ ) (𝜕𝑤𝑙 𝜕𝑥⁄ )  (𝜕𝑤𝑙 𝜕𝑦⁄ )}

  

and the elements of [H] are functions of z and unit step functions. 

In the present problem, a nine-node quadratic element with eleven field variables (𝑢0, 𝑣0, 𝑤0, 

𝜃𝑥, 𝜃𝑦, 𝑢𝑢, 𝑣𝑢, 𝑤𝑢, 𝑢𝑙, 𝑣𝑙, and 𝑤𝑙) per node is employed. 

Using the finite element method, the generalized displacement vector {δ} at any point may be 

expressed as (Garg and Chalak 2021a) 

 {𝛿} = ∑ 𝑁𝑖{𝛿}𝑖
𝑛
𝑖=1                                                              (13) 

where, {𝛿}𝑖 is the displacement vector corresponding to node i, Ni is the shape function associated 

with the node i. 

The strain vector {𝜀} that appeared in Eq. (12) may be expressed in terms of unknowns (for the 

structural deformation) using Eq. (13) as 

 {𝜀} = [𝐵]{𝛿}                                                                  (14) 

where [B] is the strain-displacement matrix in the Cartesian coordinate system. 

The consistent mass matrix can be derived as that of stiffness matrix. The acceleration vector at 

any point within the laminated plate structure may be expressed as 

 {𝑑2𝜓̅ 𝑑𝑡2⁄ } = {

𝑑2𝑈 𝑑𝑡2⁄

𝑑2𝑉 𝑑𝑡2⁄

𝑑2𝑊 𝑑𝑡2⁄

} = −𝜔2 {
𝑈
𝑉
𝑊

} = −𝜔2[𝐹]{𝜓}                           (15) 

where matrix [𝐹] of order 3 × 11 contains z terms and some constant quantities as that of [H]. 

 [𝑀𝑒] = ∑ ∭ 𝜌𝑖[𝑁]𝑇 [𝐹]𝑇[𝑁][𝐹]𝑑𝑥𝑑𝑦𝑑𝑧
𝑛𝑢+𝑛𝑙
𝑖=1 = ∬[𝑁]𝑇[𝐿][𝑁]𝑑𝑥𝑑𝑦                (16) 

where ρi is the mass density of the i-th layer and the matrix [𝐿] is 

 [𝐿] = ∑ ∫ 𝜌𝑖[𝐹]𝑇[𝐹]𝑑𝑧
𝑛𝑢+𝑛𝑙
𝑖=1                                                   (17) 

For skew plate it is assumed that the plate is skew with respect to the Y-axis only (Fig. 1). 

Therefore, the stiffness matrix for the elements lying on the skew edges must be transformed from 

the local axis (X-Y-Z) to the global axis (X-Y’-Z), which is carried out using the simple 

transformation rules can be stated as (Chalak et al. 2014) 

 {𝛿1}𝑇 = [𝑇𝑁]{𝛿}𝑇                                                             (18) 
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Free vibration analysis of power-law and sigmoidal sandwich FG plates using refined zigzag theory 

Table 1 Material homogenization laws 

Nomenclature 
Faces 𝑉𝑐(𝑧) Fig. 

No. Bottom Core Top 𝑧 ∈ [ℎ0, ℎ1] 𝑧 ∈ [ℎ1, ℎ2] 𝑧 ∈ [ℎ2, ℎ3] 

H-Type-A FGM Ceramic FGM (
𝑧−ℎ0

ℎ1−ℎ0
)

𝑛

  1 (
𝑧−ℎ3

ℎ2−ℎ3
)

𝑛

  2(a) 

S-Type-A FGM Metal FGM 1 − (
𝑧−ℎ0

ℎ1−ℎ0
)

𝑛

  0 1 − (
𝑧−ℎ3

ℎ2−ℎ3
)

𝑛

  2(b) 

CT-Type-B Metal FGM Ceramic 0 (
𝑧−ℎ1

ℎ2−ℎ1
)

𝑛

  1 3(a) 

MT-Type-B Ceramic FGM Metal 1 1 − (
𝑧−ℎ1

ℎ2−ℎ1
)

𝑛

  0 3(b) 

H-Type-S FGM Ceramic FGM 

0.5 (
𝑧−ℎ0

ℎ𝑚1−ℎ0
)

𝑛

  

for 𝑧 ∈ [ℎ0, ℎ𝑚1] 
where ℎ𝑚1 =
(ℎ0 + ℎ1) 2⁄  

1 − 0.5 (
𝑧−ℎ1

ℎ𝑚1−ℎ1
)

𝑛

 for 

𝑧 ∈ [ℎ𝑚1, ℎ1] 

1 

1 − 0.5 (
𝑧−ℎ2

ℎ𝑚2−ℎ2
)

𝑛

  

for 𝑧 ∈ [ℎ2, ℎ𝑚2] where 

ℎ𝑚2 = (ℎ2 + ℎ3) 2⁄   

0.5 (
𝑧−ℎ3

ℎ𝑚2−ℎ3
)

𝑛

 for 𝑧 ∈

[ℎ𝑚2, ℎ3] 

4(a) 

S-Type-S FGM Metal FGM 1 − 𝑉𝑐(𝑧) for H-Type-S 0 1 − 𝑉𝑐(𝑧) for H-Type-S 4(b) 

 

 

where [𝑇𝑁] is the node transformation matrix and {𝛿1} is displacement vector in the localized 

coordinate system. 

Material Homogenization laws adopted during the present study are power-law and sigmoidal 

laws. These laws are summarized in Table 1. Material properties used during the present study are: 

Metallic phase is made up of Aluminium ( 𝐴𝑙 ) 𝐸 = 70 GPa, 𝜈 = 0.30, 𝜌 = 2707 kg/m3 . The 

ceramic phase is made up of Alumina (𝐴𝑙2𝑂3) 𝐸 = 380 GPa, 𝜈 = 0.30, 𝜌 = 3800 kg/m3 . The 

relationship used to convert the dimensional natural frequency to its non-dimensional form is as 

𝜔̅ = 𝜔𝑎2 ℎ⁄ × √𝜌0 𝐸0⁄  where 𝜌0 = 1 kg/m3, 𝐸0 = 1 GPa. 

In above table, n represents power-law coefficient which describes how the phase 

transformation will take place from metal to ceramic or vice versa. The symbols ℎ0, ℎ1, ℎ2, and ℎ3 

represents the thickness of each layer as indicated in Figs. 2-4. The term a/h in the manuscript 

represents the thickness ratio (ratio of length of plate parallel to X-axis to its total thickness), and 

Ξ0 represents the skew angle of the plate with respect to the Y-axis (Fig. 1). The thickness of each 

layer of the FGM is defined as 1-2-1 which represents the thickness of top face-core-bottom face 

i.e., the thickness of core is 2 times of that of face layers and the thickness of both the faces are 

same. 

Boundary conditions: Following boundary conditions are used during the present study: 

Clamped end (C): All degrees of freedom are restrained. Free (F): All degrees of freedom are free. 

Simply supported (S): (parallel to X-axis) Degrees of freedom 𝑢0, 𝑣0, 𝑤0, 𝜃𝑥, 𝑢𝑢, 𝑤𝑢, 𝑢𝑙, 𝑤𝑙 are 

allowed and 𝜃𝑦, 𝑣𝑢, 𝑣𝑙 are restrained at one edge, whereas on the opposite edge, 𝑤0, 𝑤𝑢, 𝑤𝑙  are 

restrained and other are free. For edges parallel to Y-axis: 𝑢0 , 𝑣0 , 𝑤0 , 𝜃𝑦 , 𝑣𝑢 , 𝑤𝑢 , 𝑣𝑙 , 𝑤𝑙  are 

allowed and 𝜃𝑦, 𝑢𝑢, 𝑢𝑙 are restrained, whereas on the opposite edge, 𝑤0, 𝑤𝑢, 𝑤𝑙 are restrained and 

other are free. 
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(a) (b) 

Fig. 2 Variation of Young’s modulus across the thickness for 1-1-1 (a) H-Type-A and (b) S-Type-A sandwich 

FG plate 

 

 

3. Results and discussion 
 

Convergence study: To choose an appropriate mesh size, a convergence study is carried out 

firstly. The convergence study is carried out on Type-A 1-1-1, simply supported sandwich plate 

(a/h=100). Results for convergence of non-dimensional natural frequency (𝜔̅) are reported in Fig. 

5. Present results converged at mesh size of 14×14. Therefore, in further studies, the same mesh 

size is taken. 

Type-A sandwich FG plate: All-around simply supported Type-A sandwich FG plate is 

analyzed under free vibration conditions. Results for non-dimensional natural frequencies for H-

Type-A and S-Type-A plates are reported in Table 2 for a/h=100 and 10 and n=0.5, 1, 5, and 10. 

Present results are compared with the 3D Elasticity based results given by Li et al. (2008) and 

CLPT, FOSDT, and various shear deformation theories (HOSDT, Sinusoidal shear deformation 

theory (SSDT)) published by Zenkour (2005b). Present results are in very good agreement with 

elasticity-based results for both H-Type-A and S-Type-A plates for both symmetric and 

unsymmetric thickness schemes. For unsymmetric thickness schemes (2-2-1, 2-1-1), the present 

model predicts non-dimensional natural frequency slightly on the higher side but more accurate 

than FOSDT and HOSDT. The CLPT overpredicts the non-dimensional natural frequency while 

FOSDT underpredicts non-dimensional natural frequency for H-Type-A plates. With increase in 

value of a/h, value of non-dimensional natural frequency decreases for both H-Type-A and S-

Type-A plates. With increase in value of n, value of non-dimensional natural frequency decreases 

for H-Type-A plate and increases for S-Type-A plate. with increase in thickness of core, value of  
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(a) (b) 

Fig. 3 Variation of Young’s modulus across the thickness for 1-1-1 (a) CT-Type-B and (b) MT-Type-B 

sandwich FG plate 

 

  
(a) (b) 

Fig. 4 Variation of Young’s modulus across the thickness for 1-1-1 (a) H-Type-S and (b) S-Type-S sandwich 

FG plate 
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Fig. 5 Convergence study for SSSS H-Type-A sandwich plate (a/h=100, n=0.5) 

 
Table 2 Variation of non-dimensional natural frequency for SSSS square-shaped Type-A sandwich FG plate 

a/h n Source 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1 1-8-1 

H-Type-A 

100 

0.5 

Present 1.5398 1.5904 1.5634 1.6192 1.6102 1.7717 

3D Elasticity (Li et al. 2008) 1.5235 - 1.5604 1.5903 1.6191 1.7635 

% Error 1.070 - 0.192 1.817 -0.550 0.465 

1 

Present 1.3455 1.4240 1.3848 1.4732 1.4766 1.7074 

3D Elasticity (Li et al. 2008) 1.3297 - 1.3851 1.4299 1.4755 1.6990 

% Error 1.188 - -0.022 3.028 0.075 0.494 

5 

Present 0.9831 1.0988 1.0404 1.1464 1.2045 1.5651 

3D Elasticity (Li et al. 2008) 0.9990 - 1.0630 1.1302 1.1969 1.5698 

% Error -1.592 - -2.126 1.433 0.635 -0.299 

10 

Present 0.9579 1.0549 1.0133 1.0952 1.1588 1.5408 

3D Elasticity (Li et al. 2008) 0.9593 - 1.0123 1.0806 1.1440 1.5416 

% Error -0.146  0.099 1.351 1.294 -0.052 

10 

0.5 

Present 1.4865 1.5059 1.5290 1.5500 1.5945 1.7185 

3D Elasticity (Li et al. 2008) 1.4860 1.5084 1.5213 1.5492 1.5766 1.7113 

% Error 0.034 -0.166 0.506 0.052 1.135 0.421 

CLPT (Zenkour 2005b) 1.5124 1.5426 1.5490 1.5837 1.6072 - 

FOSDT (Zenkour 2005b) 1.4815 1.5103 1.5169 1.5500 1.5727 - 

HOSDT (Zenkour 2005b) 1.4840 1.5125 1.5192 1.5519 1.5745 - 

1 

Present 1.3037 1.3484 1.3600 1.3963 1.4590 1.6587 

3D Elasticity (Li et al. 2008) 1.3018 1.3351 1.3552 1.3976 1.4413 1.6511 

% Error 0.146 0.996 0.354 -0.093 1.228 0.460 

CLPT (Zenkour 2005b) 1.3202 1.3715 1.3752 1.4324 1.4649 - 

FOSDT (Zenkour 2005b) 1.2972 1.3463 1.3507 1.4055 1.4372 - 

HOSDT (Zenkour 2005b) 1.3001 1.3488 1.3533 1.4078 1.4393 - 

SSDT (Zenkour 2005b) 1.3002 1.3489 1.3533 1.4079 1.4393 - 
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Table 2 Continued 

a/h n Source 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1 1-8-1 

10 

5 

Present 0.9842 1.0727 1.0269 1.1227 1.1811 1.5252 

3D Elasticity (Li et al. 2008) 0.9810 1.0294 1.0453 1.1098 1.1756 1.5299 

% Error 0.326 0.321 -1.760 1.162 0.468 -0.307 

CLPT (Zenkour 2005b) 0.9919 1.0879 1.0556 1.1619 1.1886 - 

FOSDT (Zenkour 2005b) 0.9787 1.0715 1.0418 1.1446 1.1715 - 

HOSDT (Zenkour 2005b) 0.9818 1.0743 1.0446 1.1473 1.1739 - 

SSDT (Zenkour 2005b) 0.9820 1.0744 1.0448 1.1474 1.1739 - 

10 

Present 0.9412 1.0078 0.9979 1.0997 1.1197 1.5022 

3D Elasticity (Li et al. 2008) 0.9407 0.9892 0.9952 1.0610 1.1246 1.5033 

% Error 0.053 1.880 0.271 3.648 -0.436 -0.073 

CLPT (Zenkour 2005b) 0.9524 1.0518 1.0052 1.1188 1.1361 - 

FOSDT (Zenkour 2005b) 0.9396 1.0358 0.9925 1.1026 1.1206 - 

HOSDT (Zenkour 2005b) 0.9429 1.0386 0.9955 1.1053 1.1231 - 

SSDT (Zenkour 2005b) 0.9433 1.0455 0.9951 1.0415 1.1346 - 

S-Type-A 

100 

0.5 

Present 1.6482 1.7553 1.6006 1.6174 1.5063 1.2839 

3D Elasticity (Li et al. 2008) 1.6229 - 1.5817 1.5227 1.5065 1.2655 

% Error 1.559 - 1.195 6.219 -0.013 1.454 

1 

Present 1.7924 1.8729 1.7663 1.6939 1.6852 1.3794 

3D Elasticity (Li et al. 2008) 1.7916 - 1.7537 1.6818 1.6749 1.3833 

% Error 0.045 - 0.718 0.719 0.615 -0.282 

5 

Present 1.9112 1.9918 1.9150 1.8811 1.8895 1.5513 

3D Elasticity (Li et al. 2008) 1.9431 - 1.9362 1.8620 1.8853 1.5703 

% Error -1.642 - -1.095 1.026 0.223 -1.210 

10 

Present 1.9117 1.9919 1.9251 1.9117 1.9195 1.6165 

3D Elasticity (Li et al. 2008) 1.9468 - 1.9504 1.8804 1.9116 1.6045 

% Error -1.803 - -1.297 1.665 0.413 0.748 

10 

0.5 

Present 1.5292 1.6209 1.4967 1.4789 1.4457 1.2038 

3D Elasticity (Li et al. 2008) 1.5258 - 1.4845 1.4341 1.4166 1.2055 

% Error 0.223 - 0.822 3.124 2.054 -0.141 

1 

Present 1.6758 1.7243 1.6982 1.5742 1.5588 1.3129 

3D Elasticity (Li et al. 2008) 1.6743 - 1.6305 1.5703 1.5578 1.3082 

% Error 0.090 - 4.152 0.248 0.064 0.359 

5 

Present 1.8303 1.8451 1.8017 1.7874 1.7633 1.4690 

3D Elasticity (Li et al. 2008) 1.8261 - 1.7895 1.7272 1.7267 1.4664 

% Error 0.230 - 0.682 3.485 2.120 0.177 

10 

Present 1.8418 1.8579 1.8180 1.7942 1.7751 1.4980 

3D Elasticity (Li et al. 2008) 1.8398 - 1.8081 1.7477 1.7481 1.4948 

% Error 0.109 - 0.548 2.661 1.545 0.214 

 

 

non-dimensional natural frequency increases for H-Type-A plate and decreases for S-Type-A plate. 

When thickness of core is less, H-type-A plates exhibits less stiff behavior as compared to 

corresponding S-Type-A plates. But when thickness of core increases, H-Type-A plate shows 

stiffer behavior as compared to corresponding S-Type-A plate. 
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Table 3 Variation of non-dimensional natural frequency for Type-A square shaped (a/h=4) sandwich FG 

plate with different end conditions 

Thickness scheme n CCCC SSCC CCCF CCFF SSSS CFFF 

H-Type-A 

2-1-2 

0.5 2.0207 1.7078 1.4025 1.3335 1.3520 0.2588 

1 1.8378 1.5374 1.2788 1.2180 1.1915 0.2304 

5 1.4117 1.1612 0.9998 0.9567 0.8830 0.1784 

10 1.3747 1.1561 0.9513 0.9046 0.9033 0.1724 

2-1-1 

0.5 2.0373 1.7241 1.4136 1.3430 1.3675 0.2613 

1 1.8841 1.5881 1.3003 1.2352 1.2421 0.2348 

5 1.4928 1.2479 1.0361 0.9859 0.9661 0.1855 

10 1.4082 1.1786 0.9836 0.9369 0.9188 0.1796 

1-1-1 

0.5 2.0583 1.7410 1.4283 1.3573 1.3800 0.2637 

1 1.9137 1.6097 1.3233 1.2578 1.2560 0.2383 

5 1.3714 1.0554 1.0523 1.0203 0.7805 0.1863 

10 1.4166 1.1506 1.0157 0.9725 0.8599 0.1794 

2-2-1 

0.5 2.0748 1.7558 1.4416 1.3691 1.3926 0.2666 

1 1.9484 1.6420 1.3478 1.2798 1.2851 0.2437 

5 1.6052 1.3346 1.1172 1.0626 1.0229 0.1965 

10 1.5479 1.2940 1.0702 1.0159 0.9948 0.1891 

1-2-1 

0.5 2.1006 1.7778 1.4606 1.3869 1.4107 0.2704 

1 1.9912 1.6781 1.3798 1.3098 1.3144 0.2499 

5 1.7023 1.4187 1.1783 1.1178 1.0803 0.2050 

10 1.6087 1.3237 1.1327 1.0775 0.9963 0.1970 

1-8-1 

0.5 2.2255 1.8881 1.5626 1.4798 1.5092 0.2945 

1 2.1770 1.8434 1.5271 1.4458 1.4645 0.2848 

5 2.0611 1.7377 1.4435 1.3652 1.3621 0.2632 

10 2.0399 1.7186 1.4284 1.3506 1.3441 0.2594 

S-Type-A 

2-1-2 

0.5 1.7242 1.5177 1.3230 1.2453 1.1755 0.2906 

1 1.8155 1.5979 1.3912 1.3118 1.2375 0.3087 

5 1.9447 1.7035 1.4675 1.4001 1.3205 0.3267 

10 1.9624 1.7158 1.4723 1.4106 1.3305 0.3271 

2-1-1 

0.5 1.7215 1.5182 1.3233 1.2340 1.1629 0.2851 

1 1.8175 1.6035 1.3939 1.3004 1.2245 0.3020 

5 2.0036 1.7594 1.5091 1.4250 1.3433 0.3232 

10 2.0673 1.8095 1.5434 1.4680 1.3859 0.3265 

1-1-1 

0.5 1.6563 1.4633 1.2842 1.1989 1.1306 0.2842 

1 1.7195 1.5217 1.3377 1.2471 1.1746 0.3012 

5 1.7985 1.5900 1.3917 1.3040 1.2261 0.3200 

10 1.8083 1.5968 1.3939 1.3099 1.2315 0.3211 

2-2-1 

0.5 1.6456 1.4553 1.2776 1.1837 1.1146 0.2777 

1 1.7080 1.5136 1.3296 1.2284 1.1549 0.2927 

5 1.7873 1.5844 1.3845 1.2824 1.2032 0.3108 

10 1.7967 1.5911 1.3870 1.2880 1.2083 0.3120 
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Table 3 Continued 

Thickness scheme n CCCC SSCC CCCF CCFF SSSS CFFF 

1-2-1 

0.5 1.5878 1.4068 1.2424 1.1509 1.0848 0.2748 

1 1.6282 1.4477 1.2846 1.1842 1.1144 0.2901 

5 1.6684 1.4890 1.3263 1.2179 1.1429 0.3110 

10 1.6699 1.4904 1.3270 1.2193 1.1436 0.3118 

1-8-1 

0.5 1.4469 1.2701 1.1052 1.0401 0.9825 0.2333 

1 1.4743 1.3015 1.1450 1.0645 1.0043 0.2458 

5 1.5066 1.3440 1.2038 1.0967 1.0318 0.2672 

10 1.5090 1.3481 1.2105 1.0997 1.0341 0.2701 

 
Table 4 Variation of non-dimensional natural frequency for SSSS square-shaped Type-B sandwich FG plate 

a/h n Source 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1 1-8-1 

CT-Type-B 

100 

0.5 

Present 1.3165 1.2482 1.4171 1.4160 1.3544 1.3440 

3D Elasticity (Li et al. 2008) - - - - - 1.3393 

% Error      0.351 

1 

Present 1.3451 1.3081 1.3987 1.2146 1.1991 1.3805 

3D Elasticity (Li et al. 2008) - - - - - 1.3866 

% Error      -0.440 

5 

Present 1.5275 1.5846 1.5495 1.5121 1.5691 1.5478 

3D Elasticity (Li et al. 2008) - - - - - 1.5314 

% Error      1.071 

10 

Present 1.5447 1.5994 1.5651 1.5290 1.5768 1.5964 

3D Elasticity (Li et al. 2008) - - - - - 1.5910 

% Error      0.339 

10 

0.5 

Present 1.0708 1.0198 1.1679 1.1758 1.1160 1.3107 

3D Elasticity (Li et al. 2008) - - - - - 1.2975 

% Error      1.017 

1 

Present 1.2943 1.2707 1.3484 1.1854 1.1600 1.3358 

3D Elasticity (Li et al. 2008) - - - - - 1.3484 

% Error      -0.934 

5 

Present 1.1755 1.5388 1.3927 1.3741 1.4868 1.4802 

3D Elasticity (Li et al. 2008) - - - - - 1.4930 

% Error      -0.857 

10 

Present 1.5142 1.6318 1.5181 1.4336 1.5315 1.5268 

3D Elasticity (Li et al. 2008) - - - - - 1.5498 

% Error      -1.484 

MT-Type-B 

100 

0.5 Present 1.3584 1.1408 0.9853 1.1620 1.1873 1.3052 

1 Present 1.3104 1.1267 1.3542 1.1486 1.2039 1.3741 

5 Present 1.6210 1.5109 1.6707 1.5569 1.6403 1.8250 

10 Present 1.5371 1.3093 1.5895 1.5119 1.6838 1.8990 

10 

0.5 Present 1.2026 1.0889 1.0612 1.1141 1.1470 1.2559 

1 Present 1.2708 1.1779 1.3040 1.1152 1.2691 1.3276 

5 Present 1.4881 1.2663 1.5285 1.4156 1.5972 1.7713 

10 Present 1.5937 1.3652 1.6470 1.5693 1.7391 1.9406 
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Table 3 shows the non-dimensional natural frequency for Type-A plates with different end 

conditions (a/h=4). The minimum value of non-dimensional natural frequency is observed for the 

CFFF plate for all cases and maximum for the CCCC case as expected. The nature of boundary 

conditions, along with the thickness scheme, widely affects the free vibration behavior of the plate. 

Type-B sandwich FG plate: Table 4 shows values for non-dimensional natural frequency for 

CT-Type-B and MT-Type-B plates for different thickness schemes and power-law exponent (n). 

present results are compared with the 3D Elasticity-based results given by Li et al. (2008) for a 1-

8-1 thickness scheme and are in good agreement. With an increase in the value of n, the value of 

non-dimensional natural frequency also increases for both Type-B plate types. Due to unsymmetric 

material distribution across the plate’s thickness concerning the reference plane, no definite pattern 

is observed on the variation of non-dimensional natural frequency as observed for Type-A plate. 

The value of n and a/h are found to be the important factors governing the variation of non-

dimensional natural frequency with change in the thickness of the core. Generally, it increases 

when the thickness of the core increases from 2-1-2 case to 1-1-1 case and then decreases for CT-

Type-B plate, whereas opposite behavior is observed for MT-Type-B plate. plate with higher 

ceramic content exhibits stiff behavior. Compared to Type-A plate, at lower values of n, Type-B 

plate shows stiffer behavior, but at higher values of n, Type-A plates exhibit stiffer behavior. Table 

5 shows values of non-dimensional natural frequency for the plate with a/h=4 with different end  

 

 
Table 5 Variation of non-dimensional natural frequency for Type-B square shaped (a/h=4) sandwich FG 

plate with different end conditions 

Thickness scheme n CCCC SSCC CCCF CCFF SSSS CFFF 

CT-Type-B 

2-1-2 

0.5 1.7901 1.5076 1.2458 1.1875 1.1984 0.2320 

1 1.7827 1.5123 1.2255 1.1651 1.2061 0.2293 

5 1.6033 1.3521 1.1344 1.0836 1.0918 0.2229 

10 1.6011 1.3619 1.1194 1.0652 1.1074 0.2217 

2-1-1 

0.5 1.8788 1.5406 1.3678 1.3137 1.1996 0.2546 

1 1.9552 1.6290 1.3528 1.2133 1.2184 0.2470 

5 1.9222 1.6448 1.2736 1.1987 1.2620 0.2321 

10 1.8944 1.6252 1.2522 1.1775 1.2510 0.2294 

1-1-1 

0.5 1.9070 1.6231 1.2920 1.2249 1.2798 0.2383 

1 1.8885 1.6149 1.2604 1.1872 1.2580 0.2332 

5 1.5865 1.3468 1.1176 1.0659 1.0949 0.2229 

10 1.5564 1.3304 1.0918 1.0383 1.0944 0.2215 

2-2-1 

0.5 1.9775 1.6587 1.3946 1.3312 1.3129 0.2601 

1 1.8333 1.5022 1.3341 1.2820 1.1633 0.2498 

5 1.8248 1.5447 1.2122 1.1397 1.1247 0.2274 

10 1.5903 1.3311 1.1386 1.0908 1.0686 0.2236 

1-2-1 

0.5 1.8986 1.5938 1.3354 1.2727 1.2608 0.2494 

1 1.8525 1.5563 1.2827 1.2159 1.2040 0.2407 

5 1.5571 1.3293 1.0992 1.0477 1.0932 0.2239 

10 1.5072 1.2977 1.0628 1.0096 1.0856 0.2224 

1-8-1 

0.5 2.0558 1.7431 1.4437 1.3752 1.4040 0.2764 

1 1.8671 1.5726 1.3252 1.2657 1.2603 0.2547 

5 1.5168 1.3051 1.0727 1.0206 1.0903 0.2232 

10 1.4435 1.2529 1.0242 0.9711 1.0682 0.2201 
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Table 5 Continued 

Thickness scheme n CCCC SSCC CCCF CCFF SSSS CFFF 

MT-Type-B 

2-1-2 

0.5 1.7572 1.4978 1.2004 1.2012 1.1395 0.2270 

1 1.7773 1.4730 1.0190 1.2164 1.1652 0.2295 

5 1.8243 1.5356 1.2137 1.2670 1.2065 0.2344 

10 1.8430 1.5543 1.2274 1.2746 1.2124 0.2354 

2-1-1 

0.5 1.4636 1.2205 1.0062 1.0827 1.0423 0.2218 

1 1.4779 1.2218 1.0044 1.0993 1.0595 0.2217 

5 1.5049 1.2300 1.0056 1.1249 1.0850 0.2215 

10 1.5102 1.2324 1.0065 1.1293 1.0895 0.2216 

1-1-1 

0.5 1.5377 1.2240 0.9626 1.1823 1.1477 0.2307 

1 1.7991 1.5225 1.2161 1.2445 1.1859 0.2332 

5 1.8988 1.6007 1.2631 1.3144 1.2513 0.2417 

10 1.9217 1.6216 1.2799 1.3286 1.2639 0.2443 

2-2-1 

0.5 1.5261 1.2717 1.0399 1.1235 1.0824 0.2268 

1 1.6707 1.4007 1.0828 1.1761 1.1229 0.2293 

5 1.7474 1.4549 1.1577 1.2425 1.1896 0.2324 

10 1.8145 1.5250 1.2062 1.2644 1.2050 0.2342 

1-2-1 

0.5 1.6400 1.3592 1.0922 1.2001 1.1558 0.2344 

1 1.7285 1.4252 1.1304 1.2599 1.2123 0.2398 

5 1.9860 1.6756 1.3256 1.3791 1.3132 0.2545 

10 2.0264 1.7135 1.3591 1.4043 1.3358 0.2597 

1-8-1 

0.5 1.7144 1.4445 1.1706 1.2317 1.1816 0.2436 

1 1.8494 1.5546 1.2474 1.3181 1.2625 0.2539 

5 2.1457 1.8212 1.4612 1.4949 1.4220 0.2824 

10 2.2062 1.8769 1.5140 1.5381 1.4620 0.2929 

 

 

conditions. in the case of thick plates, the trend of variation of non-dimensional natural frequency 

with n can be observed clearly. With an increase in the value of n, the non-dimensional natural 

frequency decreases for the CT-Type-B plate and increases for the MT-Type-B plate. 

Type-S sandwich FG plate: Table 6 shows the non-dimensional natural frequency for the Type-

S sandwich FG plate. With an increase in the value of n, the value of non-dimensional natural 

frequency decreases for the H-Type-S plate and increases for the S-Type-S plate. H-Type-S plate 

gives a lower value of non-dimensional natural frequency as compared to the S-Type-S plate. With 

an increase in the core’s thickness, non-dimensional natural frequency increases for the H-Type-S 

plate and decreases for the S-Type-S plate. Table 7 shows the value for the Type-S plate’s non-

dimensional natural frequency with a/h=4 for different end conditions. The maximum value for the 

non-dimensional natural frequency is observed for CCCC plate whereas minimum for the CFFF 

one as expected. 

Tables 8-10 show the value of non-dimensional natural frequency for Type-A, B, and S simply 

supported rhombic plates, respectively (a/h=10). With an increase in the value of the plate’s skew 

angle, non-dimensional natural frequency increases for all the cases. This is because, as the skew 

angle of the plate is increasing, the influence of the boundary condition towards the central portion 

of the plate increases and effective length of the plate (projected length of the plate along Y-axis) 

decreases. 
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Table 6 Variation of non-dimensional natural frequency for SSSS square-shaped Type-S sandwich FG plate 

a/h n 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1 1-8-1 

H-Type-S 

100 

0.5 
1.3457 1.4846 1.4687 1.2905 1.5316 1.7465 

1.3555 1.4342 1.4400 1.2596 1.5157 1.7416 

1 
1.2748 1.3561 1.3801 1.2012 1.4930 1.7338 

1.2590 1.3546 1.3778 1.1952 1.4963 1.7329 

5 
1.3137 1.4445 1.4315 1.1288 1.4925 1.6952 

1.3237 1.3980 1.4048 1.1092 1.4775 1.6907 

10 
1.2476 1.3246 1.3484 1.0672 1.4560 1.6831 

1.2323 1.3228 1.3460 1.0620 1.4589 1.6823 

S-Type-S 

10 

0.5 
1.9487 1.9283 1.9315 1.6347 1.8822 1.5228 

1.9924 1.9633 1.9631 1.6573 1.8979 1.5301 

1 
2.0700 2.0014 2.0181 1.6962 1.9245 1.5426 

2.0803 1.9959 2.0232 1.6997 1.9249 1.5443 

5 
1.8071 1.7988 1.7746 1.1089 1.7219 1.4260 

1.8358 1.8169 1.7959 1.1084 1.7334 1.4322 

10 
1.8669 1.8199 1.8210 1.0820 1.7461 1.4421 

1.8662 1.8075 1.8191 1.0735 1.7433 1.4432 

 
Table 7 Variation of non-dimensional natural frequency for Type-S square shaped (a/h=4) sandwich FG 

plate with different end conditions 

Thickness scheme n CCCC SSCC CCCF CCFF SSSS CFFF 

H-Type-S 

2-1-2 

0.5 1.8425 1.5305 1.3043 1.2467 1.1808 0.2394 

1 1.8378 1.5374 1.2788 1.2180 1.1915 0.2304 

5 1.7598 1.4724 1.2112 1.1516 1.1322 0.2133 

10 1.7422 1.4569 1.1997 1.1408 1.1193 0.2111 

2-1-1 

0.5 1.9232 1.6256 1.3311 1.2645 1.2826 0.2441 

1 1.8928 1.5958 1.3066 1.2413 1.2495 0.2364 

5 1.8319 1.5397 1.2596 1.1964 1.1933 0.2240 

10 1.8264 1.5356 1.2554 1.1922 1.1908 0.2235 

1-1-1 

0.5 1.9394 1.6322 1.3464 1.2804 1.2789 0.2451 

1 1.9183 1.6138 1.3265 1.2608 1.2598 0.2391 

5 1.8653 1.5670 1.2853 1.2211 1.2155 0.2289 

10 1.8612 1.5637 1.2825 1.2184 1.2131 0.2285 

2-2-1 

0.5 0.8986 0.6941 0.6576 0.6265 0.6963 0.2020 

1 0.8985 0.6940 0.6562 0.6261 0.6957 0.1992 

5 0.8896 0.6938 0.6474 0.6192 0.6925 0.1928 

10 0.8863 0.6938 0.6450 0.6169 0.6910 0.1919 

1-2-1 

0.5 2.0109 1.6961 1.3948 1.3243 1.3323 0.2539 

1 1.9988 1.6850 1.3853 1.3150 1.3210 0.2513 

5 1.9764 1.6656 1.3690 1.2995 1.3034 0.2476 

10 1.9774 1.6667 1.3699 1.3004 1.3052 0.2481 

1-8-1 

0.5 2.2085 1.8721 1.5500 1.4677 1.4923 0.2908 

1 2.2035 1.8677 1.5464 1.4643 1.4886 0.2900 

5 2.1946 1.8601 1.5402 1.4584 1.4822 0.2888 

10 2.1935 1.8592 1.5395 1.4577 1.4815 0.2886 
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Table 7 Continued 

Thickness scheme n CCCC SSCC CCCF CCFF SSSS CFFF 

S-Type-S 

2-1-2 

0.5 1.8360 1.6094 1.3914 1.3225 1.2491 0.3045 

1 1.8155 1.5979 1.3912 1.3118 1.2375 0.3087 

5 1.7101 1.5213 1.3476 1.2456 1.1703 0.3114 

10 1.6805 1.4984 1.3321 1.2261 1.1509 0.3105 

2-1-1 

0.5 1.8525 1.6269 1.4039 1.3223 1.2475 0.2990 

1 1.8153 1.6008 1.3910 1.2984 1.2227 0.3006 

5 1.7061 1.5155 1.3376 1.2304 1.1549 0.2990 

10 1.6697 1.4853 1.3164 1.2074 1.1327 0.2965 

1-1-1 

0.5 1.7312 1.5273 1.3352 1.2526 1.1808 0.2977 

1 1.7185 1.5207 1.3368 1.2463 1.1739 0.3008 

5 1.6490 1.4719 1.3130 1.2035 1.1304 0.3029 

10 1.6243 1.4531 1.3012 1.1874 1.1144 0.3020 

2-2-1 

0.5 0.7076 0.5917 0.5925 0.5274 0.4912 0.1858 

1 0.6999 0.5915 0.5928 0.5223 0.4860 0.1851 

5 0.6671 0.5914 0.5637 0.4993 0.4636 0.1795 

10 0.6592 0.5915 0.5561 0.4937 0.4583 0.1780 

1-2-1 

0.5 1.6308 1.4471 1.2797 1.1843 1.1150 0.2876 

1 1.6270 1.4462 1.2828 1.1830 1.1134 0.2892 

5 1.5868 1.4186 1.2713 1.1584 1.0885 0.2900 

10 1.5695 1.4055 1.2635 1.1469 1.0773 0.2890 

1-8-1 

0.5 1.4572 1.2822 1.1209 1.0495 0.9909 0.2384 

1 1.4598 1.2851 1.1246 1.0517 0.9929 0.2394 

5 1.4578 1.2853 1.1283 1.0513 0.9921 0.2407 

10 1.4558 1.2840 1.1282 1.0502 0.9910 0.2408 

 
Table 8 Non-dimensional natural frequency for SSSS Type-A rhombic plate (a/h=10) 

Ξ0 n 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1 1-8-1 

H-Type-A 

15° 

0.5 1.6117 1.6318 1.6457 1.6615 1.6831 1.8138 

1 1.3992 1.4659 1.4784 1.5165 1.5509 1.7508 

5 1.0198 1.1323 0.8817 1.1852 1.2479 1.6102 

10 1.0676 1.0847 0.9835 1.1609 1.1428 1.5860 

30° 

0.5 1.9136 1.9368 1.9534 1.9720 1.9976 2.1519 

1 1.6660 1.7413 1.7566 1.8010 1.8418 2.0777 

5 1.2161 1.3437 1.0552 1.4072 1.4851 1.9119 

10 1.2676 1.2864 1.1777 1.3784 1.3649 1.8834 

45° 

0.5 2.6427 2.6740 2.6970 2.7225 2.7578 2.9685 

1 2.3080 2.4081 2.4296 2.4901 2.5463 2.8682 

5 1.6851 1.8552 1.4497 1.9448 2.0597 2.6432 

10 1.7514 1.7731 1.6370 1.9058 1.8969 2.6043 

60° 

0.5 4.6141 4.4506 4.5804 4.5021 4.5766 4.7230 

1 4.0579 4.2333 4.2718 4.3763 4.4750 4.6851 

5 2.9611 3.2573 1.7812 3.4249 3.6364 4.6453 

10 1.6410 3.1016 2.8806 3.3564 3.3531 4.5812 
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Table 8 Continued 

Ξ0 n 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1 1-8-1 

S-Type-A 

15° 

0.5 1.8221 1.8133 1.7873 1.7684 1.7332 1.4687 

1 1.9342 1.9223 1.8937 1.8685 1.8306 1.5516 

5 2.0440 2.0505 2.0121 1.9868 1.9601 1.6938 

10 2.0456 2.0647 2.0186 1.9938 1.9722 1.7136 

30° 

0.5 2.1470 2.1375 2.1040 2.0824 2.0396 1.7325 

1 2.2776 2.2658 2.2267 2.1984 2.1511 1.8281 

5 2.4060 2.4198 2.3618 2.3340 2.2969 1.9909 

10 2.4081 2.4397 2.3689 2.3416 2.3099 2.0134 

45° 

0.5 2.9074 2.8998 2.8447 2.8198 2.7565 2.3578 

1 3.0794 3.0719 3.0023 2.9708 2.8976 2.4810 

5 3.2506 3.2866 3.1720 3.1428 3.0749 2.6870 

10 3.2542 3.3237 3.1802 3.1516 3.0891 2.7147 

60° 

0.5 3.2702 3.4012 3.2682 3.3386 3.2327 0.2890 

1 3.4428 3.6071 3.4341 3.5257 3.3895 3.0000 

5 3.7399 3.9714 3.7095 3.8328 3.6595 3.2104 

10 3.7994 4.0693 3.7597 3.8860 3.7051 3.2431 

 

Table 9 Non-dimensional natural frequency for SSSS Type-B rhombic plate (a/h=10) 

Ξ0 n 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1 1-8-1 

CT-Type-B 

15° 

0.5 1.4467 1.3919 1.5632 1.5567 1.4943 1.6991 

1 1.4746 1.5635 1.5853 1.3572 1.4440 1.5141 

5 1.3439 1.5351 1.3623 1.4039 1.3771 1.3915 

10 1.3857 1.5263 1.3896 1.2990 1.4035 1.3987 

30° 

0.5 1.7154 1.6463 1.8829 1.8432 1.7715 2.1023 

1 1.7573 0.9891 1.7875 1.6104 1.7374 1.7914 

5 1.5858 1.8646 1.6085 1.7513 1.6256 1.6433 

10 1.6388 1.8511 1.6424 1.5302 1.6578 1.6519 

45° 

0.5 2.3629 2.2558 2.3221 2.5341 2.4400 2.7663 

1 2.4329 0.7077 1.3888 2.2170 2.4353 2.4579 

5 2.1661 2.6306 2.1983 1.6337 2.2199 2.2444 

10 2.2449 2.6094 2.2463 2.0845 2.2633 2.2538 

60° 

0.5 3.6545 3.9187 2.0402 4.4167 4.2626 4.7779 

1 2.9378 0.5614 1.1375 3.4796 2.8932 4.2629 

5 3.7251 2.4915 3.7770 1.3520 3.8026 3.4586 

10 3.8627 2.5747 3.7481 3.5788 3.4828 3.0923 

MT-Type-B 

15° 

0.5 1.4902 1.2501 1.1150 1.2772 1.3124 1.4286 

1 1.4825 1.2383 1.4857 1.2845 1.3364 1.5047 

5 1.4541 1.2261 1.5078 1.3866 1.5800 1.7637 

10 1.4710 1.2250 1.5274 1.4446 1.6245 1.8368 

30° 

0.5 1.7875 1.4662 1.3039 1.4996 1.5435 1.6853 

1 1.7551 1.4518 1.7709 1.5287 1.5740 1.7776 

5 1.7237 1.4371 1.7889 1.6380 1.8738 2.0912 

10 1.7451 1.4358 1.8127 1.7115 1.9278 2.1780 
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Table 9 Continued 

Ξ0 n 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1 1-8-1 

45° 

0.5 2.4812 1.9821 1.7534 2.0309 2.0967 2.3003 

1 2.4593 1.9617 2.4492 2.1147 2.1438 2.4334 

5 2.3746 1.9418 2.4680 2.2435 2.5839 2.8811 

10 2.4069 1.9402 2.5021 2.3556 2.6604 3.0003 

60° 

0.5 2.1939 3.4655 2.9734 3.4541 3.5914 3.6681 

1 3.2557 3.3195 2.6054 3.7111 3.6922 3.9744 

5 4.1446 3.2946 4.2420 3.8867 4.4729 4.5333 

10 4.2068 3.2927 4.3758 4.1073 4.4671 4.6410 

 
Table 10 Non-dimensional natural frequency for SSSS Type-S rhombic plate (a/h=10) 

Ξ0 n 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1 1-8-1 

H-Type-S 

15° 

0.5 1.3908 1.5251 1.5120 1.1947 1.5757 1.7893 

1 1.3992 1.4760 1.4835 1.1745 1.5599 1.7845 

5 1.3179 1.3988 1.4238 1.1308 1.5372 1.7765 

10 1.3019 1.3969 1.4212 1.1253 1.5402 1.7756 

30° 

0.5 1.6615 1.8109 1.7970 1.4210 1.8712 2.1231 

1 1.6660 1.7532 1.7625 1.3990 1.8524 2.1174 

5 1.5672 1.6623 1.6915 1.3497 1.8255 2.1080 

10 1.5486 1.6602 1.6884 1.3433 1.8290 2.1069 

45° 

0.5 2.3058 2.5021 2.4851 1.9181 2.5861 2.9297 

1 2.3080 2.4241 2.4377 1.8932 2.5606 2.9219 

5 2.1711 2.3012 2.3405 1.8330 2.5238 2.9089 

10 2.1457 2.2985 2.3362 1.8244 2.5285 2.9075 

60° 

0.5 4.0429 4.3532 4.3623 2.1371 4.5401 4.7064 

1 4.0579 4.2600 4.2855 2.1297 4.4989 4.7053 

5 3.8305 4.0549 4.1223 2.1133 4.4364 4.7039 

10 3.7861 4.0499 4.1145 2.1086 4.4438 4.7035 

S-Type-S 

15° 

0.5 1.9045 1.8963 1.8692 1.1598 1.8130 1.5024 

1 1.9342 1.9146 1.8912 1.1586 1.8249 1.5089 

5 1.9646 1.9159 1.9162 1.1289 1.8356 1.5193 

10 1.9633 1.9022 1.9138 1.1197 1.8383 1.5204 

30° 

0.5 2.2451 2.2386 2.1997 1.3316 2.1313 1.7714 

1 2.2776 2.2570 2.2240 1.3280 2.1447 1.7789 

5 2.3049 2.2516 2.2478 1.2873 2.1568 1.7907 

10 2.3013 2.2335 2.2436 1.2753 2.1591 1.7918 

45° 

0.5 3.0427 3.0447 2.9709 1.6992 2.8734 2.4078 

1 3.0794 3.0610 2.9989 1.6900 2.8898 2.4177 

5 3.0927 3.0338 3.0161 1.6248 2.8988 2.4324 

10 3.0821 3.0044 3.0065 1.6071 2.8995 2.4336 

60° 

0.5 3.4095 3.6095 3.4003 1.7265 3.3679 2.9405 

1 3.4428 3.6018 3.4280 1.7339 3.3781 2.9427 

5 3.5939 3.6708 3.5273 1.7641 3.4182 2.9463 

10 3.6354 3.6945 3.5503 1.7687 3.4232 2.9464 

61
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4. Conclusions 
 

In present work, free vibration analysis of sandwich FG plates is carried out using recently 
proposed higher-order zigzag theory. Comparative study has been carried out between different 
kinds of power-law and sigmoidal sandwich FG plates. It has been observed that the power-law 
exponent and thickness scheme widely determine the free vibration behavior of the plate. in most 
of the cases, power-law plate outperforms the sigmoidal sandwich FG plate. Boundary condition 
and skew angle also affects the vibration behavior of the plate. 

• Plate with higher content of ceramic content exhibits higher value for non-dimensional natural 
frequency due to more inertia of ceramic phase used during the present study. 
• CFFF plate exhibits lowest value for the non-dimensional natural frequency, whereas the 
CCCC plate shows the highest value. 
• For Type-A plate with value of n≤1, H-Type-A plate shows higher value for non-dimensional 
natural frequency as compared to S-type-A plate for all boundary conditions. Opposite trend is 
observed when the value of n>1. In this respect, the behavior of CT-Type-B plate is similar to 
H-Type-A plate and MT-Type-B plate is similar to S-Type-A plate. The behavior of H- and S-
Type-S plates for different values of n depends widely on its boundary condition. 
• Increasing the skew angle of the plate, non-dimensional natural frequency increases as the 
influence of the boundary conditions towards the central portion increases. 
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