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Abstract.  In this paper, fracture analysis of a continuously inhomogeneous arch structure with two longitudinal 
cracks is developed in terms of the time-dependent strain energy release rate. The arch under consideration exhibits 
non-linear creep behavior. The cross-section of the arch is a rectangle. The material is continuously inhomogeneous 
along the thickness of the cross-section. The arch is loaded by two bending moments applied at its end sections. The 
mechanical behavior of the material is described by using a non-linear stress-strain-time relationship. The two 
longitudinal cracks are located symmetrically with respect to the mid-span of the arch. Due to the symmetry, only 
half of the arch is considered.  Time-dependent solutions to strain energy release rate are obtained by analyzing the 
balance of the energy. For verification, time-dependent solutions to the strain energy release rate are derived also by 
considering the time-dependent complementary strain energy. The evolution of the strain energy release rate with the 
time is analyzed. The effects of material inhomogeneity, locations of the two cracks along the thickness of the arch 
and the magnitude of the external loading on the time-dependent strain energy release rate are evaluated. 
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1. Introduction 
 

The advance in current engineering requires development and application of new materials. In 

particular, the continuously inhomogeneous structural materials whose properties are smooth 

functions of the coordinates are more efficacious in comparison to the conventional homogeneous 

materials. Very advantageous kind of continuously inhomogeneous materials are the functionally 

graded materials which have attracted significant attention as advanced structural materials in 

various engineering applications in the recent decades (Altunsaray and Bayer 2014, Altunsaray 

2017, Altunsaray et al. 2019, Avcar and Mohammed 2018, Butcher et al. 1999, Gasik 2010, Hedia 

et al. 2014). The functionally graded materials are continuously inhomogeneous composites which 
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are made of two or more constituent materials. One of the fundamental advantages of this kind of 

materials over the homogeneous materials is the fact that the properties of functionally graded 

materials can be formed by gradually varying the composition of the constituent materials along 

one or more directions in the solid during manufacturing (Hirai and Chen 1999, Kashinath Saha 

and Shubhankar Bhowmick 2020, Mahamood and Akinlabi 2017, Markworth et al. 1995, 

Miyamoto et al. 1999, Nemat-Allal et al. 2011, Rabenda 2015, Rabenda and Michalak 2015, 

Rabenda, 2016, Ridha et al. 2016, Saiyathibrahim et al. 2016). In this way, different performance 

requirements in different parts of a structural member can be satisfied. Therefore, functionally 

graded materials have been widely used for manufacturing of various sophisticated devices and 

structures in aeronautics, nuclear reactors, electronics, biomedicine, robotics and optics 

(Shrikantha Rao and Gangadharan 2014, Sofiyev and Avcar 2010, Sofiyev et al. 2012, Uslu Uysal 

and Kremzer 2015, Uslu Uysal 2016, Uslu Uysal and Güven 2015, Wu et al. 2014).   

The integrity of structures made of continuously inhomogeneous materials depends in high 

degree of their fracture behavior. Therefore, considerable attention has been paid to the problems 

of fracture of continuously inhomogeneous (functionally graded) materials and structures by the 

international research community in the recent years (Dolgov 2005, Dolgov 2016, Uslu Uysal and 

Güven 2016).   

Certain kinds of continuously inhomogeneous materials, such as the functionally graded 

materials, can be built-up layer-by-layer (Mahamood and Akinlabi 2017) which is a premise for 

appearance of longitudinal cracks between layers. Therefore, an adequate longitudinal fracture 

analysis of continuously inhomogeneous structural members and components is very important for 

evaluation of their operational performance. Recently, several papers which are focused on 

longitudinal fracture of continuously inhomogeneous beams have been published (Rizov 2020, 

Rizov 2020a, Rizov and Altenbach 2020, Rizov 2022). 

The present paper aims to develop a fracture analysis of a continuously inhomogeneous arch 

structure with two longitudinal cracks in contrast to (Rizov 2020, Rizov 2020a) where beam 

structures are analyzed. The originality of the present paper consists also in the fact that the arch 

under consideration exhibits non-linear creep behavior in contrast to (Rizov 2022) where fracture 

in beams is analyzed assuming linear creep behavior. The longitudinal fracture in the arch is 

studied in terms of the strain energy release rate. In order to take into account the non-linear creep 

behavior, time-dependent solutions to the strain energy release rate are derived. It should also be 

mentioned that the two cracks are located inside the arch structure in contrast to (Rizov 2020, 

Rizov 2020a, Rizov 2022) where the crack is located at the edge of the beam. Since the two cracks 

are inside the arch, the bending moments which are used to derive time-dependent solutions to the 

strain energy release rate are determined by analyzing the arch as a statically undetermined 

structure with one internal hyperstatic unknown.   

 

 

2. Inhomoheneous arch structure with two longitudinal cracks under non-linear 
creep 

 

The inhomogeneous half-sine slender arch with small initial curvature shown in Fig. 1 is under 

consideration. The cross-section of the arch is a rectangle of width, 𝑏, and thickness, ℎ. Two 

longitudinal cracks, 𝐵1𝐵2 and 𝐶1𝐶2, are located symmetrically with respect to the mid-span of the 

arch as shown in Fig. 1. The lengths of cracks, 𝐵1𝐵2  and 𝐶1𝐶2 , are denoted by 2𝑎1  and 2𝑎2 , 

respectively. In portion, 𝐷2𝐷3, the arch is divided by the two cracks in inner, middle and outer pats  
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Fig. 1 Geometry and loading of an inhomogeneous arch structure with two longitudinal cracks 

 

 

of thicknesses, 1h , ℎ2 and ℎ3, respectively. In portions, 𝐷1𝐷2  and 𝐷3𝐷4 , the arch is divided by 

crack, 𝐵1𝐵2 , in inner and outer pats of thicknesses, ℎ1  and ℎ2 + ℎ3 , respectively. The external 

loading consists of two bending moments, 𝑀, applied at the ends of the arch. 

A notch of depth, ℎ1, is cut-out in the inner part of the arch as shown in Fig. 1. Due to the 

notch, the inner part of the arch in portion, 𝐷1⥂𝐷4, is free of stresses. The initial shape of the arch 

is written as (Fig. 1) 

sinmff = ,                                                                (1) 

where  

 0 .                                                                 (2) 

In formula (1), 𝑓𝑚 is the rise of the arch.  

The arch exhibits non-linear creep. Therefore, the mechanical behavior of the material is treated 

by using the following non-linear stress-strain-time-relationship (Kishkilov and Apostolov, 1994):    
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where 𝜀  is the strain, 𝜎  is the stress, 𝐸  is the modulus of elasticity, 𝑛, 𝐿, 𝑞  and 𝐻  are material 

parameters, 𝑡 is time. The material of the arch is continuously inhomogeneous in the thickness 

direction. Therefore, the continuous distribution of the modulus of elasticity along the thickness of 

the arch is expressed as 
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where   
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In formula (4), 𝐸𝐹 is the value of the modulus of elasticity in the outer surface of the arch, 𝑔 is 

a material parameter that controls the material inhomogeneity in the thickness direction, 𝑧 is the 

vertical centroidal axis of the cross-section.     

  In the present paper, time-dependent solutions to the strain energy release rate, 𝐺, are derived 

by considering the balance of the energy. Only the right-hand half of the arch is analyzed due to  

17



 

 

 

 

 

 

Victor I. Rizov and Holm Altenbach 

 

Fig. 2 Cross-section of the middle part of portion, 𝐷2𝐷3, of the arch 

 

 

the symmetry. First, a time-dependent solution to the strain energy release rate is derived assuming 

a small increase, 𝛿𝑎1, of the length of crack, 𝐵1𝐵2. For this purpose, the balance of the energy is 

written as 
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where 𝜙 is the angle of rotation of the end section of the arch, 𝑈 is the strain energy cumulated in 

half of the arch.  Form (6), 𝐺 is expressed as 
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The expression in the brackets in (7) is doubled in view of the symmetry (Fig. 1).  

The angle of rotation of the end section of the arch is obtained by applying the integrals of 

Maxwell-Mohr  
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where 𝜅1, 𝜅2 and 𝜅3 are, respectively, the changes in the curvatures of the middle part of portion, 

𝐷2𝐷3, of the arch, of the outer part of portion, 𝐷3𝐷4, of the arch and of the un-cracked portion, 

𝐵2𝑃, of the arch, 𝑠𝑙 is half length of the arch.  

The change of the curvature, 𝜅1, is determined in the following way. First, the equations for 

equilibrium of the cross-section of the middle part of portion, 𝐷2𝐷3, of the arch are written as 
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where 𝑁1 and 𝑀1 are the axial force and the bending moment (it is obvious that 𝑁1 = 0), 𝜎 is the 

normal stress, 𝑧1 is the vertical centroidal axis, 𝐴1 is area of the  cross-section of the middle part of 
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portion, 𝐷2𝐷3, of the arch (Fig. 2). The stress, 𝜎, has to be expressed in a function of 𝑧1 in order to 

perform the integration in (9) and (10). However, the normal stress can not be obtained explicitly 

from (3). Therefore, 𝜎 is expanded in series of Maclaurin by retaining the first three members 
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Expression (11) is rewritten as 

2

111)( zzz  ++ .                                                       (12) 

The coefficients, 𝛿, 𝜑 and 𝜂, involved in (12) are determined in the following way. First, the 

distribution of the strain, 𝜀, that is involved in (3) is written as    

 11zct  += ,                                                             (13) 

where 𝜀𝑐𝑡 is the strain in the centre of the cross-section of the middle part of portion, 𝐷2𝐷3, of the 

arch. It should be noted that formula (19) is based on the assumption that plane cross-sections 

remain plane after deformation since the arch is thin (the thickness of the arch is much smaller 

than the radius). By using (4), the distribution of the modulus of elasticity in the middle part of the 

arch is expressed as 
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By substituting of (12), (13) and (14) in (3), one obtains 
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At 𝑧1 = 0 equation (16) takes the form 
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By substituting of 𝑧1 = 0 in the first and the second derivatives of (16) with respect to 𝑧1, one 

obtains 
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where 𝑚 = ℎ − ℎ1 − ℎ2/2. After substitution of (12) in (9) and (10), one arrives at 

3
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There are six unknowns, 𝑀1, 𝜅1, 𝜀𝑐𝑡, 𝛿,   and 𝜂, in Eqs. (17)-(21).  

Analogically, five equations are obtained by expanding in series of Maclaurin the normal stress, 

𝜎𝑜𝑢, in the outer part of portion, 𝐷2𝐷3, of the arch and by using the equations for equilibrium of 

the cross-section of the outer part 
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where 𝜀𝑐𝑡𝑜𝑢 is the strain in the centre of the cross-section of outer part of portion, 𝐷2𝐷3, of the 

arch, 𝜅4 is the change of the curvature, 𝑁2 and 𝑀2 are, respectively, the axial force and the bending 

moment (apparently, 𝑁2 = 0), 𝛿𝑜𝑢, 𝜑𝑜𝑢 and 𝜂𝑜𝑢 are the coefficients in the series of Maclaurin.     

One equation is written by considering the equilibrium of the bending moments in the middle 

and outer parts of portion, 𝐷2𝐷3, of the arch 

                            MMM =+ 21
.                                                                   (27) 

It should be noted here that the bending moment in the inner part of the portion, 𝐷1𝐷4, of the 

arch is zero due to the notch. 

Further one equation is composed by treating the arch as a structure with one degree of internal 

static indeterminacy (the bending moment in the outer part of portion, 𝐷2𝐷3, of the arch is taken as 

hyperstatic unknown). The static indeterminacy is resolved by applying the theorem of Castigliano 

for structures which exhibit non-linear mechanical behavior of the material 
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where the complementary strain energy, 𝑈*, is found as 
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In formula (29), 𝑈𝑚𝑑
* , 𝑈𝑜𝑢

*  and 𝑈𝑜𝑢34
*  are the complementary strain energies cumulated in the 

middle and in the outer parts of portion, 𝐷2𝐷3, of the arch and in the outer part of portion, 𝐷3𝐷4, 

of the arch, respectively. It should be noted that that the complementary strain energy cumulated in 

the un-cracked portion, 𝐵2𝑃, of the arch does not depend 𝑀2. Therefore, the complementary strain 

energy in the un-cracked portion of the arch is not involved in (29).  

The complementary strain energy cumulated in half of the middle part of portion, 𝐷2𝐷3, of the 

arch is expressed as 
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where 𝑢0𝑚𝑑
*  is the complementary strain energy density. In principle, the complementary strain 

energy density is equal to the area that supplements the area enclosed by the stress-strain curve to a 

rectangle. Thus, 𝑢0𝑚𝑑
*  is written as 
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where the strain energy density,  𝑢0𝑚𝑑, is equal to the area enclosed by the stress-strain curve 
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By combining of (3), (31) and (32), one derives the following expressions for the time-

dependent strain energy and complementary strain energy densities 
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The complementary strain energy in the outer part of portion, 𝐷2𝐷3 , of the arch, 𝑢0𝑜𝑢
* ,  is 

obtained by replacing of 𝜎 with 𝜎𝑜𝑢 in (34). The complementary strain energy density, 𝑢0𝑜𝑢34
* , in 

the outer part of portion, 𝐷3𝐷4, of the arch is calculated by replacing of 𝜎 with 𝜎𝑜𝑢34 in (34). The 

normal stress, 𝜎𝑜𝑢34 , in the outer part of portion, 𝐷3𝐷4 , of the arch is expanded in series of 

Maclaurin. The coefficients of the series are determined by using the following equations 
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where 𝜀𝑐𝑡𝑜𝑢34 is the strain in the centre of the cross-section of outer part of portion, 𝐷3𝐷4, of the 

arch, 𝑁3 and 𝑀3 are, respectively, the axial force and the bending moment (it is obvious that 𝑁3 =
0), 𝛿𝑜𝑢34, 𝜑𝑜𝑢34 and 𝜂𝑜𝑢34 are the coefficients in the series of Maclaurin. The bending moment, 

𝑀3, in the outer part of portion, 𝐷3𝐷4, of the arch is written as (Fig. 1) 

                                   MM =3
.                                                               (40)  

Eqs. (35)-(39) are solved with respect to 𝜀𝑐𝑡𝑜𝑢34 , 𝜅2 ,  𝛿𝑜𝑢34 , 𝜑𝑜𝑢34  and 𝜂𝑜𝑢34  by using the 

MatLab computer program.  

The complementary strain energies, 𝑈𝑜𝑢
*  and 𝑈𝑜𝑢34

* , are expressed as 
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where 𝐴2 and 𝐴3 are the areas of the cross-sections of the outer parts of portion, 𝐷2𝐷3, of the arch 

and the area of the outer part of portion, 𝐷3𝐷4, of the arch, respectively.  

Eqs. (17)-(28) are solved with respect to 𝑀1, 𝜅1, 𝜀𝑐𝑡, 𝛿, 𝜑, 𝜂, 𝑀2, 𝜀𝑐𝑡𝑜𝑢, 𝜅4, 𝛿𝑜𝑢, 𝜑𝑜𝑢 and 𝜂𝑜𝑢 

by using the MatLab computer program.  

The strain energy, 𝑈, that is involved in (7) is written as 

                         uncououmd UUUUU +++= 34 ,                                                  (43) 

where 𝑈𝑚𝑑
⥂ , 𝑈𝑜𝑢, 𝑈𝑜𝑢34 and 𝑈𝑢𝑛𝑐 are the strain energies in half of the middle and in half of the 

outer parts of portion, 𝐷2𝐷3, of the arch, in the outer part of portion, 𝐷3𝐷4, of the arch, and in the 

un-cracked portion, 𝐵2𝑃, of the arch, respectively. It should be noted here that the strain energy in 

the inner part of portion, 𝐷1𝐷4, of the arch is zero since this part is free of stresses (Fig. 1).  

The strain energies, 𝑈𝑚𝑑, 𝑈𝑜𝑢, 𝑈𝑜𝑢34, are obtained by applying formulae (30), (41) and (42), 

respectively. For this purpose, 𝑢0𝑚𝑑
* , 𝑢0𝑜𝑢

*  and 𝑢0𝑜𝑢34
*  are replaced by the strain energy densities, 

𝑢0𝑚𝑑, 𝑢0𝑜𝑢 and 𝑢0𝑜𝑢34, respectively. The strain energy density, 𝑢0𝑚𝑑, is calculated by (33). The 

strain energy densities, 𝑢0𝑜𝑢 and 𝑢0𝑜𝑢34, are found by replacing of 𝜎 with 𝜎𝑜𝑢 and 𝜎𝑜𝑢34 in (33). 

The strain energy in the un-cracked portion of the arch is expressed as 

                          dAuasU unc

A

lunc 0

)(

1

4

)( −= ,                                                     (44) 

where 𝐴4 is the area of the cross-section of the arch. The strain energy density, 𝑢0𝑢𝑛𝑐, is found by 

replacing of 𝜎 with 𝜎𝑢𝑛𝑐 in (33). The normal stress, 𝜎𝑢𝑛𝑐, in the un-cracked portion of the arch is 

expanded in series of Maclaurin. The coefficients of the series are obtained from the following 

equations 
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where 𝜀𝑐𝑡𝑢𝑛𝑐 is the strain in the centre of the cross-section of the un-cracked portion of the arch, 

𝑁4 is the axial force (obviously, 𝑁4 = 0), 𝛿𝑢𝑛𝑐 , 𝜑𝑢𝑛𝑐 and 𝜂𝑢𝑛𝑐 are the coefficients in the series of 

Maclaurin. Eqs. (45)-(49) are solved with respect to 𝜀𝑐𝑡𝑢𝑛𝑐, 𝜅3, 𝛿𝑢𝑛𝑐 , 𝜑𝑢𝑛𝑐 and 𝜂𝑢𝑛𝑐 by using the 

MatLab computer program.  

By substituting of 𝜙 and 𝑈 in (7), one derives the following solution to the strain energy release 

rate at increase of the length of crack, 𝐵1𝐵2 
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The integration in (50) is carried-out by using the MatLab computer program.  

A solution to the strain energy release rate is obtained also at increase of the length of crack, 

𝐶1𝐶2. For this purpose, (7) is re-written as  

 

 

 

Fig. 3 The strain energy release rate in non-dimensional form plotted against the non-

dimensional time (curve 1 - at increase of crack, 𝐵1𝐵2, curve 2 - at increase of crack, 𝐶1𝐶2) 
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Fig. 4. The strain energy release rate in non-dimensional form plotted against ℎ1/ℎ ratio (curve 1 

- at increase of crack, 𝐵1𝐵2, curve 2 - at increase of crack, 𝐶1𝐶2) 
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By substituting of 𝜙 and 𝑈 in (51), one derives 
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The MatLab computer program is used to carry-out the integration in (52).   

It should be mentioned that solutions (50) and (52) are time-dependent sine the strain energy 

densities and the changes of the curvatures are functions of time. Therefore, the solutions can be 

applied to calculate the strain energy release rate for any particular time.     

In order to verify (50) and (52), the time-dependent strain energy release rate is obtained also 

by differentiating the complementary strain energy with respect to the crack area (Rizov 2020). 

First, an elementary increase, 𝑑𝑎1, of the length of crack, 𝐵1𝐵2, is assumed and the strain energy 

release rate is written as 

                               
1

*

2
bda

dU
G = .                                                                 (53) 

The right-hand of (53) is doubled in view of the symmetry. The complementary strain energy, 

𝑈*, is found by (43). For this purpose, 𝑈𝑚𝑑, 𝑈𝑜𝑢, 𝑈𝑜𝑢34 and 𝑈𝑢𝑛𝑐 are replaced, respectively, with 

𝑈𝑚𝑑
* , 𝑈𝑜𝑢

* , 𝑈𝑜𝑢34
*  and 𝑈𝑢𝑛𝑐

* .  

The complementary strain energy in the un-cracked portion of the arch is obtained by replacing 

of 𝑢0𝑢𝑛𝑐  with the complementary strain energy density, 𝑢0𝑢𝑛𝑐
* . Formula (34) is used to calculate 

𝑢0𝑢𝑛𝑐
* . For this purpose, 𝜎 is replaced with 𝜎𝑢𝑛𝑐. By substituting of the strain energy in (53), one 

obtains 
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Fig. 5 The strain energy release rate in non-dimensional form plotted against 𝑔 (curve 1 - at 

ℎ2/ℎ = 0.3, curve 2 - at ℎ2/ℎ = 0.4 and curve 3 - at ℎ2/ℎ = 0.5) 
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The integration in (54) is performed by using the MatLab computer program. It should be noted 

that the strain energy release rate found by (54) is exact match of that obtained by (51). This fact 

verifies the solution to the strain energy release rate at increase of crack, 𝐵1𝐵2.  

The strain energy release rate is derived also assuming an elementary increase of the length of 

crack, 𝐶1𝐶2. By replacing of 𝑑𝑎1 with 𝑑𝑎2 and substituting of 𝑈 in (53), one derives 

              dAu
b

G md

A

*

0

)( 1

2





= dAu ou

A

*

0

)( 2

+ 



−  dAu ou

A

*

340

)( 3

.                                    (55) 

MatLab is used to perform the integration in (55). The fact that the strain energy release rate 

found by (55) is exact match of that calculated by (52) verifies the solution to the strain energy 

release rate at increase of crack, 𝐶1𝐶2.  

It should be noted that the strain energy release rate is derived also be retaining more than three 

members in the series of Maclaurin. The results obtained are very close to these found by retaining 

the first three members the series of Maclaurin (the difference is less than 1%).  

 

 

3. Numerical results 
 

In this section of the paper, results which illustrate the influence of the time, material 

inhomogeneity and the locations of the two longitudinal cracks in the thickness direction on the 

strain energy release rate in the arch structure are presented. It is assumed that 𝑏 = 0.010 m, ℎ =
0.014 m, 𝑞 = 0.3 and 𝑀 = 10 Nm.  

Solutions (50) and (52) are applied in order to investigate the evolution of the strain energy 

release rate with the time. For this purpose, calculations are carried-out for various values of the  
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Fig. 6 The strain energy release rate in non-dimensional form plotted against n  (curve 1 - at 

𝑀 = 6 Nm, curve 2 - at 𝑀 = 8 Nm and curve 3 - at 𝑀 = 10 Nm) 

 

 

time. The calculated strain energy release rate is expressed in non-dimensional form by using the 

formula 𝐺𝑁 = 𝐺/(𝐸𝐹𝑏). The evolution of the strain energy release rate with the time is illustrated 

in Fig. 3 where strain energy release rate in non-dimensional form is plotted against the non-

dimensional time. It should be noted that the time is expressed in non-dimensional form by using 

the formula 𝑡𝑁 = 𝑡𝐻. It is evident from Fig. 3 that the strain energy release rate increases with the 

time (this funding is attributed to the non-linear creep). One can observe also in Fig. 3 that the 

strain energy release rate obtained at increase of crack, 𝐵1𝐵2, is higher in comparison with that 

found at increase of crack, 𝐶1𝐶2.  

The influence of the location of crack, 𝐵1𝐵2, in the thickness direction on the strain energy 

release rate is analyzed. The location of crack, 𝐵1𝐵2, in the thickness direction is characterized by 

ℎ1/ℎ ratio. One can get an idea about the influence of the location of crack, 𝐵1𝐵2, in the thickness 

direction from Fig. 4 where the strain energy release rate in non-dimensional form is plotted 

against ℎ1/ℎ ratio by using solutions (50) and (52). The curves in Fig. 4 indicate that the strain 

energy release rate increases with increasing of ℎ1/ℎ ratio.   

The effect of the material inhomogeneity and the location of crack, 𝐶1𝐶2 , in the thickness 

direction on the strain energy release rate is studied too. The location of crack, 𝐶1𝐶2 , is 

characterized by ℎ2/ℎ ratio. The material inhomogeneity in the thickness direction is characterized 

by 𝑔. The variation of the strain energy release rate in non-dimensional form with 𝑔 at three ℎ2/ℎ 

ratios is depicted in Fig. 5 by applying the solution to the strain energy release rate derived at 

increase of crack, 𝐶1𝐶2. It can be observed in Fig. 5 that the strain energy release rate decreases 

with increasing of 𝑔. The increase of ℎ2/ℎ ratio leads to increase of the strain energy release rate 

(Fig. 5).  

The change of the strain energy release rate with increasing of 𝑛  is investigated. For this 

purpose, calculations of the strain energy release rate are performed at various values of 𝑛. The 

solution to the strain energy release rate derived at increase of the length of crack, 𝐵1𝐵2, is used. 

The results obtained are shown in Fig. 6 where the strain energy release rate in non-dimensional 

form is plotted against 𝑛 at three values of the bending moment, 𝑀. The curves in Fig. 6 show that  
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Fig. 7 The strain energy release rate in non-dimensional form plotted against ℎ/𝑏 ratio (curve 1 - 

at ℎ3/ℎ = 0.2, curve 2 - at ℎ3/ℎ = 0.3, curve 3 - at ℎ3/ℎ = 0.4) 

 

 

the strain energy release rate increases with increasing of 𝑛.       

The variation of the strain energy release rate with increasing of ℎ/𝑏 ratio at three ℎ3/ℎ ratios 

is depicted in Fig. 7. The solution obtained at increase of the length of crack, 𝐵1𝐵2, is applied. 

It is evident from Fig. 7 that the strain energy release rate decreases with increasing of ℎ/𝑔 

ratio. Concerning the influence of ℎ3/ℎ ratio, the curves in Fig. 7 indicate that the strain energy 

release rate increases with increasing of ℎ3/ℎ ratio.    

 

 

5. Conclusions 
 

The fracture of an inhomogeneous arch structure with two longitudinal cracks subjected to non-

linear creep is studied. For this purpose, time-dependent solutions to the strain energy release rate 

are derived by analyzing the balance of the energy. The mechanical behavior of the material is 

described by using a non-linear stress-strain-time relationship. The arch under consideration has a 

rectangular cross-section. The material exhibits continuous inhomogeneity along the thickness of 

the cross-section of the arch. The two longitudinal cracks are located symmetrically with respect to 

the mid-span. In the thickness direction, the arch is divided in inner, middle and outer parts by the 

two cracks. The arch is loaded by two bending moments applied at the end sections. For 

verification, the time-dependent strain energy release rate is derived also by considering the time-

dependent complementary strain energy. The evolution of the strain energy release rate with the 

time is studied. It is found that the strain energy release rate increases with time due to the non-

linear creep behavior of the material. The study indicates also that the strain energy release rate 

obtained at increase of the inner crack is higher than that found at increase of the outer crack. The 

analysis reveals that the strain energy release rate increases with increasing of ℎ1/ℎ, ℎ2/ℎ and 

ratios ℎ3/ℎ. The calculations indicate that the increase of 𝑔 leads to decrease of the strain energy 

release rate. It is found that the strain energy release rate increases with increasing of 𝑛. The 

increase of ℎ/𝑏 ratio causes decrease of the strain energy release rate.   
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