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Abstract.  A novel nonlocal model with one thermal relaxation time is presented to investigates the thermal 
damages and the temperature in biological tissues generated by laser irradiations. To obtain these models, we used the 
theory of the non-local continuum proposed by Eringen. The thermal damages to the tissues are assessed completely 
by the denatured protein ranges using the formulations of Arrhenius. Numerical results for temperature and the 
thermal damage are graphically presented. The effects nonlocal parameters and the relaxation time on the 
distributions of physical fields for biological tissues are shown graphically and discussed. 
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1. Introduction 

 
Cancer is a disease with high death rates and there is no definitive cure yet. Most types of 

cancer present as a solid tumor. Cancer cells can ultimately lead to cancer. There are already some 
common treatments such as chemotherapy, radiation therapy and the surgical removal of cancerous 
tumors, but all of them have many side effects and are not specific enough. In recent years, a new 
treatment called hyperthermia has been widely studied and several experiments show its high 
effectiveness while having fewer side effects. Hyperthermia is a heat treatment of cancer by 
raising the temperature of cancerous tumor cells in the human body considering that keeping the 
temperature above 42℃ could cause necrosis of living human cells. 

The nonlocal elastic theory was first advocated by Eringen (Eringen 1984a). After a period of 2 
years, the theory of non-local thermoelasticity was explored by Eringen (1974). He reviewed the 
constitutive relations, the governing equations, the laws of equilibrium in continuum mechanic and 
the displacement equations/temperature under nonlocal elastic theory. The nonlocal elastic theory 
states that in case of translational motion, strain is the applied stress of the continuous body at a 
point x which depends not only on the strain point but also influenced by the strains of the body at 
every other region near this point x. Wang and Dhaliwal (1993) explained the uniqueness of the 
theory of non-local thermoelasticity. Eringen (1991) studied non-local electromagnetic solids and 
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superconductivity under the theory of elasticity. 
In 1948, Pennes (1948) investigated the distributions of temperature in the forearm skin 

temperature, which meant that the equation could be analyzed by different models usually used to 
get the solution of the heat transfer model for an infinite heat propagation based on classical 
Fourier thermal conduction. The skin tissues contain several phenomenological mechanizations 
like radiation and the perfusion of blood, metabolic heating generation and thermal conduction. 
Charny (1992) has presented the mathematical model of bioheat transfers. Andreozzi et al. (2019) 
discussed the heat transfer modeling in tumors. Marin (2010) presented some estimates on 
thermoelastic vibrations of dipolar materials. Hassan et al. (2018) studied the exploration of 
convective thermal transfers and flow characteristics synthesis. Marin (1996) studied the 
generalized solutions in the elasticity of micropolar materials with voids. The authors (Kumar and 
Gupta 2008, Marin et al. 2015, Lata et al. 2016, Ezzat and El-Bary 2017, Anya and Khan 2019, 
Khan et al. 2019, Lata and Kaur 2019, Sarkar et al. 2019, Alzahrani and Abbas 2020, Ezzat 2020, 
Hobiny and Abbas 2020, Hosseini 2020, Lata and Singh 2020, Rachedi et al. 2020, Saeed et al. 
2020, Sarkar 2020, Sarkar et al. 2020a, b, Zhang et al. 2020, Hobiny and Abbas 2021a, Lata and 
Kaur 2021, Lata and Singh 2021) presented the solutions of several problems under generalized 
thermoelastic theories. Hobiny and Abbas (2021) have discussed the influences of fractional order 
bio-heat transfer model. Saeed and Abbas (2020) investigated the nonlinear dual phase lag bioheat 
transfer model in the spherical living tissue. 

In this work, the analytical solution of temperature and the thermal damages of tissues are 
discussed. The nonlocal bioheat model with thermal relaxation times are applied to studying the 
propagations of thermal wave in living tissue. The effects nonlocal parameters and the relaxation 
time on the distributions of wave propagation of physical fields for tissues are shown graphically 
and discussed. 

 
 

2. Mathematical model 
 
Following Eringen (1984b, 2012) and Lord and Shulman (Lord and Shulman 1967), the basic 

equations for nonlocal bioheat equation in living tissue is given by (Xu et al. 2008, Ahmadikia et 
al. 2012, Kumar and Rai 2020) 

 𝐾 𝜕ଶ𝑇𝜕𝑥ଶ = ቆ1 − 𝜁ଶ 𝜕ଶ𝜕𝑥ଶቇ ൬1 + 𝜏 𝜕𝜕𝑡൰ ൬𝜌𝑐 𝜕𝑇𝜕𝑡 − 𝑄 − 𝑄 − 𝑄௫௧൰, (1)

 
where 𝜏 is the thermal relaxation time, 𝜁 is the nonlocal parameter, 𝑐 is the heating specific of 
tissues, 𝑇 is the tissue temperature, 𝑘 is the tissues thermal conductivity, 𝑡 is the time, 𝜌 is the 
mass density of tissues, 𝑄 is the metabolic heating generations in skin tissues, 𝑄 is the blood 
perfusion heating sources, 𝑐 is the blood specific heating, 𝑄௫௧ point to the heat generated per 
unit volume of tissue and 𝜔 is the rate of blood perfusions. The laser heating sources are 
expressed by Gardner et al. (1996) by 

 𝑄௫௧ሺ𝑟, 𝑡ሻ = 𝐼𝜇ൣ𝑈ሺ𝑡ሻ − 𝑈൫𝑡 − 𝜏൯൧ 𝐶ଵ𝑒ିభఋ ௫ − 𝐶ଶ𝑒ିమఋ ௫൨, (2)
 

where 𝜇 is the coefficients of absorption, 𝐼 is the intensity of laser, 𝜏 is the laser exposure 
time, 𝛿 is the penetrations depth, 𝑈ሺ𝑡ሻ is the unit step functions, 𝑘ଵ, 𝑘ଶ, 𝐶ଵ and 𝐶ଶ are the 
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functions of diffuse reflectance 𝑅ௗ and they are mentioned as in Gardner et al. (1996) where the 
depth of penetration can be defied as 

 𝛿 = 1ට3𝜇൫𝜇 + 𝜇௦ሺ1 − 𝑔ሻ൯, (3)

 
where 𝜇௦ is the scattering coefficient and 𝑔 is the anisotropy factor. While 𝑄 refer to the 
heating source of blood perfusions which is expressed by 

 𝑄 = 𝜔𝜌𝑐ሺ𝑇 − 𝑇ሻ, (4)
 

where 𝑐  is the blood specific heat, 𝜌  is the blood mass density, 𝜔  is the rate of blood 
perfusion and 𝑇 is the blood temperature. We consider an unbounded domain of living tissues 
with a thickness 𝐿 and it’s both directions thermally isolated have been proposed. 

 
 

3. Application 
 
Now, the initial condition and boundary condition are given by follow 
 𝑇ሺ𝑥, 0ሻ = 𝑇 , 𝜕𝑇ሺ𝑥, 0ሻ𝜕𝑡 = 0. (5)
 
While the problem boundary conditions are given as 
 −𝐾 𝜕𝑇ሺ0, 𝑡ሻ𝜕𝑥 = 0, − 𝐾 𝜕𝑇ሺ𝐿, 𝑡ሻ𝜕𝑥 = 0. (6)
 
For conveniences, the dimensionaless parameters are defined as 
 Tᇱ = T − T𝑇 ,    ൫𝑡ᇱ, 𝜏ᇱ , 𝜏ᇱ ൯ = 𝑘𝜌𝑐𝐿ଶ ൫𝑡, 𝜏, 𝜏൯, 𝑓 = 𝐿ଶ𝐼𝜇𝑘𝑇 , 𝑓 = 𝐿ଶ𝑄𝑘𝑇 , 𝑥ᇱ = 𝑥𝐿 ,              ሺ𝑘ଵᇱ , 𝑘ଶᇱ ሻ = 𝐿𝛿 ሺ𝑘ଵ, 𝑘ଶሻ, 𝑓 = 𝜌𝜔𝑐𝐿ଶ𝑘  

(7)

 
In terms of these non-dimensional parameters in (7), the basic Eq. (3) with initial (5) and 

boundary (6) condition are written as (for its convenience, the dashes are neglected) 
 𝜕ଶ𝑇𝜕𝑥ଶ = ൬1 + 𝜏 𝜕𝜕𝑡൰ ቆ1 − 𝜁ଶ 𝜕ଶ𝜕𝑥ଶቇ ൭𝜕𝑇𝜕𝑡 − 𝑓ሺ𝑇 − 𝑇ሻ − 𝑓 − 𝑓𝜑ሺ𝑥, 𝑡ሻ൱, (8)

 𝑇ሺ𝑥, 0ሻ = 0, 𝜕𝑇ሺ𝑥, 0ሻ𝜕𝑡 = 0, (9)
 𝜕𝑇ሺ0, 𝑡ሻ𝜕𝑥 = 0, 𝜕𝑇ሺ𝐿, 𝑡ሻ𝜕𝑥 = 0 (10)
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4. Laplace transforms 
 
The Laplace transform for any functions 𝐹ሺ𝑥, 𝑡ሻ are defined by Debnath and Bhatta (2014) 
 𝐹തሺ𝑥, 𝑠ሻ = 𝐿ሾ𝐹ሺ𝑥, 𝑡ሻሿ = න 𝐹ሺ𝑥, 𝑡ሻ𝑒ି௦௧𝑑𝑡ஶ

 , (11)

 

where 𝑠 is the Laplace transforms parameter. Hence, by using the initial conditions (9) and the 
definition (11) in the Eq. (8) therefore the Eqs. (8) and (10) can be replaced as 

 𝑑ଶ𝑇ത𝑑𝑥ଶ = 𝑚ଵ𝑇ത − 𝑚ଶ − 𝑚ଷ𝑒ିభ௫ − 𝑚ସ𝑒ିమ௫, (12)

 𝑑𝑇തሺ0, 𝑝ሻ𝑑𝑥 = 0, 𝑑𝑇തሺ𝐿, 𝑝ሻ𝑑𝑥 = 0, (13)
 

where 𝑚ଵ = ௦భሺଵାమ௦భሻ , 𝑚ଶ = ௦మሺଵାమ௦భሻ , 𝑚ଷ = ௦య൫ଵାమభమ൯ሺଵାమ௦భሻ , 𝑚ସ = ௦ర൫ଵାమమమ൯ሺଵାమ௦భሻ , 𝑠ଵ = ሺ1 + 𝑠𝜏ሻሺ𝑓 +𝑠ሻ , 𝑠ଶ = ௦  ,𝑠ଷ = ೝభ௦ ሺ1 − 𝑒ି௦ఛሻ  and  𝑠ସ = − ೝమ௦ ሺ1 − 𝑒ି௦ఛሻ. 
The complementary solution 𝑇ത of the associated homogeneous Eq. (12) can be given by 
 𝑇തሺ𝑥, 𝑠ሻ = 𝐴ଵ𝑒√భ௫ + 𝐴ଶ𝑒ି√భ௫, (14)
 

where 𝐴ଵand 𝐴ଶ are constants. While, the particular solution 𝑇ത of the non-homogeneous Eq. 
(12) can be given as 𝑇തሺ𝑥, 𝑠ሻ = 𝑚ଶ𝑚ଵ + 𝑚ଷ𝑒ି௫భ𝑚ଵ − 𝑘ଵଶ + 𝑚ସ𝑒ି௫మ𝑚ଵ − 𝑘ଶଶ . (15)

 
Hence, the general solution 𝑇ത of the non-homogeneous Eq. (12) are the sum of the above two 

solutions as follow 
 𝑇തሺ𝑥, 𝑠ሻ = 𝐴ଵ𝑒√భ௫ + 𝐴ଶ𝑒ି√భ௫ + 𝑚ଶ𝑚ଵ + 𝑚ଷ𝑒ି௫భ𝑚ଵ − 𝑘ଵଶ + 𝑚ସ𝑒ି௫మ𝑚ଵ − 𝑘ଶଶ . (16)
 
For the final solution of temperature distribution, a numerical inversion scheme adopted the 

general solution of the temperature distributions, Stehfest (1970) numerical inversion scheme are 
taken. In this scheme, the Laplace transforms inverse for 𝐹തሺ𝑥, 𝑠ሻ can be approximated as 

 𝐹ሺ𝑥, 𝑡ሻ = 𝑙𝑛ሺ2ሻ𝑡  𝑉𝐹ത ቆ𝑥, 𝑛 𝑙𝑛ሺ2ሻ𝑡 ቇே
ୀଵ , (17)

 

where 
 

𝑉 = ሺ−1ሻቀேଶାଵቁ  ሺ2𝑝ሻ! 𝑝ቀேଶାଵቁ𝑝! ሺ𝑛 − 𝑝ሻ! ቀ𝑁2 − 𝑝ቁ ! ሺ2𝑛 − 1ሻ!
ቀ,ேଶቁ

ୀାଵଶ , (18)
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where 𝑁 is the term number. 
 
 

5. Evaluation of thermal injuries 
 
The accurate prognosis of thermal injuries to living tissues are valuable for thermotherapy. The 

evaluations of burn are one of the ultimate great attributes in sciences the bioengineering in 
biological tissue. To quantify thermal damages, the approach which modified by Moritz-Henriques 
(Henriques and Moritz 1947, Moritz and Henriques 1947) have employed. The non-dimensional 
measures of thermal damages index Ω can be defined by 

 Ω = න 𝐵𝑒ିாೌோ்௧
 𝑑𝑡, (19)

 
where 𝑅 is the universal gas constant, 𝐸 is the activation energy and B is the frequency factor. 

 
 

6. Conclusions 
 
For numerical example, the biological tissues were the selection for target of numerical 

estimations to test the performances of proposed bioheat transfers under nonlocal thermal 
conduction model. The values of constants for skin tissues-like material are given by Noroozi and 
Goodarzi (2017) 

 𝜌 = 1060ሺ𝑘𝑔ሻሺ𝑚ିଷሻ,     𝜔 = 1.87 × 10ିଷሺ𝑠ିଵሻ,     𝑐 = 4187 ሺ𝐽ሻሺ𝑘𝑔ିଵሻሺ𝑘ିଵሻ,  𝑇 = 35.7 ℃,                      𝜌 = 1000ሺ𝑘𝑔ሻሺ𝑚ିଷሻ,          𝑐 = 3860 ሺ𝐽ሻሺ𝑘𝑔ିଵሻሺ𝑘ିଵሻ, 𝑘 = 0.628 ሺ𝑊ሻሺ𝑚ିଵሻሺ𝑘ିଵሻ,          𝐿 = 0.03ሺ𝑚ሻ,          𝑄 = 1.19 × 10ଷሺ𝑊ሻሺ𝑚ିଷሻ, 𝐸 = 6.28 × 10ହ ሺJሻሺmolିଵሻ,        𝑇 = 36.5 ℃,           𝐵 = 3.1 × 10ଽ଼ሺ𝑠ିଵሻ, 𝑅 =  8.313 ሺJሻሺmolିଵሻሺ𝑘ିଵሻ. 
 
The calculations have been made by MATLAB(R2019) software and the results are graphically 

demonstrated as in Figs. 1-6. In these figures, the calculation was carried out when 𝑇 = 35.7°𝐶. 
Fig. 1 displays the variations of temperature with distance 𝑥 for four different values of nonlocal 
parameter (𝜁 = 0,0.001, 0.0015  0.002). Fig. 2 reveals the variations of temperature with the time 

 
 

Fig. 1 The variation of temperature along the distance for several values of the nonlocal parameter
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Fig. 2 The history of temperature at skin surface for several values of the nonlocal parameter 
 
 

Fig. 3 The variations of thermal damages for several values of the nonlocal parameter at skin surface 𝑥 = 0
 
 

Fig. 4 The variations of temperature along the distance for several values of the thermal relaxation time
 
 𝑡 for four different values of nonlocal parameter (𝜁 = 0,0.001,0.0015,0.002). It is clear from the 

plot that with an increase in value of nonlocal parameter, there is a decrease in the numerical 
values of temperature, which shows that nonlocal parameter 𝜁 have decreasing effects on the 
temperature. Fig. 3 shows the variations of surface thermal damages through the time 𝑡 for four 
different values of nonlocal parameter (𝜁 = 0,0.001,0.0015,0.002). It is observed that the thermal 
damages have high values under the local model and it decreases with the increasing nonlocal 
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Fig. 5 The history of temperature at skin surface for several values of the thermal relaxation time
 
 

Fig. 6 The variations of thermal damages at skin surface for several values of the thermal relaxation time
 
 

parameter. Figs. 4, 5 and 6 show the effects of thermal relaxation time on the temperature and the 
thermal damages under nonlocal model. It is noticed that the temperature and thermal damages 
decreases with the increasing of thermal relaxation time. As expected, the nonlocal parameter has 
great effects on the distributions of field quantities. 
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