Numerical study of CO₂ hydrate dissolution rates in the ocean: Effect of pressure, temperature, and salinity

Daeseung Kyung, Sukwon Ji and Woojin Lee *

Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Korea

(Received February 02, 2015, Revised February 15, 2014, Accepted February 25, 2015)

Abstract. In this study, we numerically investigated the effect of pressure (100-250 bar), temperature (274-288 K), and salinity (3.5% w/w electrolytes) on CO₂ hydrate dissolution rates in the ocean. Mass transfer equations and CO₂ solubility data were used to estimate the CO₂ hydrate dissolution rates. The higher pressure and lower temperature significantly reduced the CO₂ hydrate dissolution rates due to the increase of CO₂ particle density. In the high salinity condition, the rates of CO₂ hydrate dissolution were decreased compared to pure water control. This is due to decrease of CO₂ solubility in surrounding water, thus reducing the mass transfer of CO₂ from the hydrate particle to CO₂ under-saturated water. The results obtained from this study could provide fundamental knowledge to slow down or prevent the CO₂ hydrate dissolution for long-term stable CO₂ storage in the ocean as a form of CO₂ hydrate.

Keywords: CO₂ hydrate dissolution; mass transfer; ocean conditions; CO₂ storage

1. Introduction

The CO₂ concentration in atmosphere has been rapidly increased for decades by anthropogenic activities using fossil fuels (Lamorena and Lee 2008, 2009). Environmental disasters such as global warming and climate change were accompanied by increase of CO₂ concentration. To reduce huge amount of CO₂, sequestration of CO₂ in terrestrial (depleted oil and gas reservoirs, coal beds, and saline aquifers) and ocean (marine sediments) area has been highlighted as one of promising strategies (Kyung *et al.* 2014, 2015, Park *et al.* 2014). Among the several options for CO₂ sequestration, CO₂ storage in marine sediments have been received attention because it can guarantee massive CO₂ storage capacity as well as have advantages for application (Lamorena *et al.* 2011, Lee *et al.* 2013). Formation of CO₂ hydrate layer in the vicinity of the storage site could avoid the buoyant liquid CO₂ leakage without impermeable cap-rock structures in marine sediments (House *et al.* 2006).

 CO_2 hydrates are ice-like crystalline structures which enclose CO_2 as guest molecule inside the hydrogen-bonded water cages (Slaon 2003). The structure of CO_2 hydrate can be stably maintained at high pressure, low temperature, moderate salinities, and CO_2 saturated condition. CO_2 hydrate structure can be decomposed in either of two ways: one is dissociation and the other

http://www.techno-press.org/?journal=aer&subpage=7

^{*}Corresponding author, Professor, E-mail: woojin_lee@kaist.ac.kr

is dissolution (Rehder *et al.* 2004, Lapham *et al.* 2014). Dissociation process takes place when surrounding environment cannot meet the equilibrium pressure (P) and temperature (T) for stable hydrate. On the other hand, dissolution process occurs when the chemical potentials of CO_2 between the dissolved phase and the hydrate phase are not in equilibrium, although the equilibrium conditions (P and T) are satisfied for stable hydrate. During the dissociation process, CO_2 hydrate decomposes into gaseous CO_2 and liquid water. However, during the dissolution process, CO_2 hydrate dissolves into aqueous CO_2 and liquid water until either saturation conditions in the surroundings are equilibrated or all of the hydrate is disappeared (Lapham *et al.* 2014). Since CO_2 concentration dissolved in ocean (≈ 2 mM) is much smaller than its solubility at certain environmental condition, CO_2 hydrate can be easily decomposed by dissolution when it is exposed to CO_2 -undersaturated seawater.

Therefore, CO_2 hydrate dissolution should be fully understood in advance to suggest proper tactics for CO_2 storage in marine sediments. Several studies have reported that dissolution rates of CO_2 hydrate are mainly controlled by diffusion (mass transfer), not by strength of the hydrogen-bonded water cages (Teng *et al.* 1997, 1999, Rehder *et al.* 2004, Lapham *et al.* 2014). Interfacial mass transfer of CO_2 between the hydrate and seawater can be significantly varied by marine environmental factors (pressure, temperature, and salinity), thus changing the reaction mechanism of CO_2 hydrate dissolution. However, no adequate studies have been conducted to investigate the effect of such factors on CO_2 hydrate dissolution to date. In this study, the effect of pressure (100-250 bar), temperature (274-288 K), and salinity (3.5% w/w electrolytes) on CO_2 hydrate dissolution rates was investigated numerically using the mass transfer equations (liquid CO_2 droplet and CO_2 hydrate) and CO_2 solubility data. This study can provide basic knowledge to predict the CO_2 hydrate lifetime in marine sediments, which is directly related successful CO_2 storage in marine sediments.

2. Methodology

 CO_2 entrapped in the hydrate particle can be dissolved to the CO_2 -undersaturated seawater by mass transfer, due to non-equilibrium between the particle and the seawater. Decomposition of CO_2 hydrate by the dissolution process can be expressed as following equation

$$\operatorname{CO}_2 \cdot n\operatorname{H}_2\operatorname{O}(s) \to \operatorname{CO}_2 + n\operatorname{H}_2\operatorname{O}(l)$$
 (1)

Where, n indicates the hydration number (HN) of CO₂ hydrate and it can be calculated by using Eq. (2). Assuming that mole fraction of CO₂ in the hydrate $(x_{CO_2,cr}^H)$ is approximately 0.141, HN of 6.1 can be obtained. The total mass of CO₂ hydrate particle $(m_{CO_2}^H)$ can be calculated based on the volume and density of the particle (Eq. (3)).

$$n = \left(\frac{1 - x_{\text{CO}_2, cr}^{\text{H}}}{x_{\text{CO}_2, cr}^{\text{H}}}\right)$$
(2)

$$m_{\rm CO_2}^{\rm H} = \frac{4}{3} \pi r_p^3 \rho_{\rm CO_2}^{\rm H}$$
(3)

The rate of change in total mass of the particle over time by mass transfer can be

expressed by Eq. (4). Since the density of bulk CO₂ hydrate is hardly influenced by mass transfer on the hydrate surface, change in density over time can be neglected $(d\rho_{\text{CO}_2}^{\text{H}}/dt \rightarrow 0)$. Then, the particle-shrinkage rate $(dr_p/dt \rightarrow 0)$ can be represented by the overall mass-transfer coefficient (K_f), fugacity of CO₂ in the hydrate particle ($f_{\text{CO}_2}^{\text{H}}$) and CO₂-undersaturated water ($f_{\text{CO}_2}^{\text{W}}$), and density of bulk CO₂ hydrate (Eq. (6)).

$$\frac{dm_{\rm CO_2}^{\rm H}}{dt} = 4\pi r_p^2 \frac{dr_p}{dt} \rho_{\rm CO_2}^{\rm H} + \frac{4}{3}\pi r_p^3 \frac{d\rho_{\rm CO_2}^{\rm H}}{dt}$$
(4)

$$\frac{-dm_{\rm CO_2}^{\rm H}}{dt} = 4\pi r_p^2 K_f \left(f_{\rm CO_2}^{\rm H} - f_{\rm CO_2}^{\rm W} \right)$$
(5)

$$\left|\frac{dr_p}{dt}\right| = \frac{K_f \left(f_{\text{CO}_2}^{\text{H}} - f_{\text{CO}_2}^{\text{W}}\right)}{\rho_{\text{CO}_2}^{\text{H}}}$$
(6)

Due to large variations of particle-shrinkage rate ($1.5E-06\sim1.1E-05$ m/s), use of liquid CO₂ droplet data was considered to estimate CO₂ hydrate dissolution rates more correctly (Teng *et al.* 1999). Liquid CO₂ droplet injected into CO₂-undersaturated water can be surrounded by hydrate interphase. Therefore, mass transfer of CO₂ from the droplet to the water can be described as Eq. (7).

$$-\frac{d}{dt}\left(\frac{4}{3}\pi r_{drop}^{2}\rho_{0}\right) = 4\pi r_{drop}^{2}K_{f}\left(f_{CO_{2}}^{H} - f_{CO_{2}}^{W}\right)$$
(7)

Where, ρ_0 and r_{drop} is the initial density of liquid CO₂ and radius of the droplet, respectively. Because change in the molar density of liquid CO₂ is negligible during the dissolution process, Eq. (7) can be simplified to Eq. (8).

$$\left|\frac{dr_{drop}}{dt}\right| = \frac{K_f \left(f_{\rm CO_2}^{\rm H} - f_{\rm CO_2}^{\rm W}\right)}{\rho_0} \tag{8}$$

New equation (Eq. (9)) estimating the dissolution rate of CO_2 hydrate particle can be yielded by combining of Eqs. (6) and (8).

$$\left|\frac{dr_p}{dt}\right| = \left|\frac{dr_{drop}}{dt}\right| \frac{\rho_0}{\rho_{\rm CO_2}^{\rm H}}$$
(9)

3. Results and discussion

Shrinkage rates of CO₂ droplets previously reported by Warzinski *et al.* (2004) was used to investigate the effect of pressure (100-250 bar) and temperature (274-288 K) on CO₂ hydrate dissolution rates. Liquid CO₂ density at different pressure and temperature were obtained by using peace software to calculate thermodynamic state variables of CO₂ (Fig. 1). In this study, 1,100 kg/m³ of CO₂ hydrate particle density was assumed to calculate the dissolution rates of CO₂ hydrate. The unit of CO₂ hydrate dissolution rates was converted from μ mol/m²·s to cm/yr, using

following equations previously reported by Rehder et al. (2004).

DR (m/s) = 2 × DR (
$$\mu$$
mol/m² · s) × $\frac{M_{\rm CO_2}}{\rho_{\rm CO_2}^{\rm H}}$ × $\left(\frac{M_{\rm CO_2} + HN \cdot M_{\rm H_2O}}{M_{\rm CO_2}}\right)$ × 10⁻⁶ mol/ μ mol (10)

$$DR (cm/yr) = DR (m/s) \times 10^2 cm/m \times 3.1536 \times 10^7 s/yr$$
(11)

Where, DR stands for dissolution rate and $M_{\rm CO_2}$ (0.044 kg/mol) and $M_{\rm H_2O}$ (0.018 kg/mol) is molar weight of CO₂ and H₂O, respectively. CO₂ hydrate dissolution rates calculated at different pressure and temperature are summarized in Table 1 and illustrated in Fig. 2. CO₂ hydrate dissolution rates were decreased by pressure increase and temperature decrease. This indicates that desorption layer of CO₂ hydrate would be more stable at higher pressure and lower temperature conditions, due to stronger hydrogen bonds between water molecules consisting of the crystal structure (Kyung et al. 2015). Therefore, interface reaction breaking up the crystal lattice that liberates the enclosed CO_2 can be reduced, resulting in decrease of CO_2 hydrate dissolution rates. Decrease of water velocity required to stabilize the CO_2 hydrate particle could be another potential reason for reduced CO₂ hydrate dissolution rates. The density of CO₂ increases at higher pressure and lower temperature; thus, the rise velocity of CO₂ hydrate particle driven by buoyancy can be decreased at certain environments. Due to correlation between dissolution on the surface of CO_2 hydrate and the velocity of the water contacting with the hydrate (Bigalke et al. 2009), higher pressure and lower temperature can lead lower CO₂ hydrate dissolution rates. This indicates that dissolution rates of CO₂ hydrate are significantly influenced by thermodynamic and hydrodynamic conditions. CO₂ hydrates formed at depth 2,500 meters (i.e., 250 bar) initially rose and dissolved slowly; however, the further it rose, the faster it dissolved. This suggests that CO₂ storage in

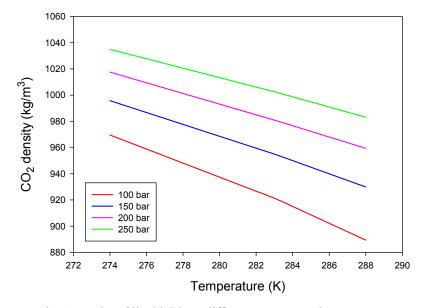


Fig. 1 Density of liquid CO₂ at different pressure and temperature

		2		1		1				
				Pressure	(100 bar)					
274 K		275 K		276 K		277 K		278 K		
2.648	2.336	2.804	2.473	2.958	2.608	3.110	2.742	3.259	2.874	
		280 K		281 K		282 K		283 K		
3.407	3.005	3.554	3.134	3.698	3.261	3.840	3.386	3.981	3.510	
284 K		285 K		286 K		287 K		288 K		
4.115	3.629	4.247	3.745	4.376	3.859	4.503	3.971	4.628	4.081	
				Pressure	(150 bar)					
274 K		275 K		276 K		277 K		278 K		
2.172	1.916	2.352	2.074	2.529	2.230	2.705	2.385	2.879	2.539	
27			280 K		281 K		282 K		283 K	
3.051	2.691	3.222	2.841			3.558	3.138	3.723	3.284	
284 K		285 K		286 K		287 K		288 K		
3.885	3.426	4.045	3.567	4.203	3.706	4.359	3.844	4.513	3.980	
				Pressure	. ,					
27	274 K		275 K		276 K		277 K		278 K	
	1.387									
279 K		280 K		281 K		282 K		283 K		
2.485	2.192	2.663	2.348	2.839	2.504	3.014	2.658	3.187	2.811	
284 K				286 K						
3.358	2.961	3.527	3.111	3.695	3.258	3.861	3.405	4.025	3.550	
				Pressure	(250 bar)					
274 K		275 K		276 K		277 K		278 K		
0.451	0.398	0.686	0.605	0.920	0.812	1.153	1.016	1.383	1.220	
		280 K		281 K			282 K		283 K	
1.612	1.422	1.839	1.622	2.065	1.821	2.289	2.019	2.511	2.215	
284 K		285 K		286 K		28			288 K	
2.731	2.409	2.950	2.601	3.166	2.792	3.380	2.981	3.593	3.168	

Table 1 Dissolution rates of CO₂ hydrate at different pressure and temperature

* unit of left column: μ mol/m²·s and right column: cm/yr

marine sediments should be implemented at depth more than 2,500 m to prevent or minimize the environmental risks caused by CO_2 hydrate dissolution.

 CO_2 hydrate dissolution rates were simulated in pure water and seawater at 150 bar and 274-288 K conditions (Fig. 3 and Table 2). CO_2 hydrate dissolution rates in seawater were lower than those in pure water, indicating that salinity condition could help prevent the CO_2 hydrate dissolution. This is due to different CO_2 solubility in pure water and seawater. It has been known that less amount of CO_2 can be dissolved in seawater (or synthetic seawater) compared with pure water (Stewart and Munjal 1970) due to the high concentration of electrolytes (3.5% w/w). Since the dissolution of CO_2 hydrate occurs until surrounding conditions are reestablished by CO_2

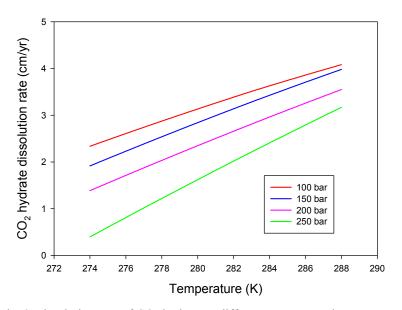


Fig. 2 Dissolution rate of CO₂ hydrate at different pressure and temperature

saturation (Lapham *et al.* 2014), seawater which have lower CO_2 solubility than pure water can meet the conditions more easily. Additionally, highly dissolved ions in seawater can interrupt CO_2 mass transfer from the CO_2 hydrate surface to surrounding seawater. The difference of CO_2 hydrate dissolution rates between pure water and seawater was larger at higher temperature than at lower temperature. This indicates that the CO_2 hydrate dissolution rates are less sensitive in seawater than pure water with respect to temperature fluctuation.

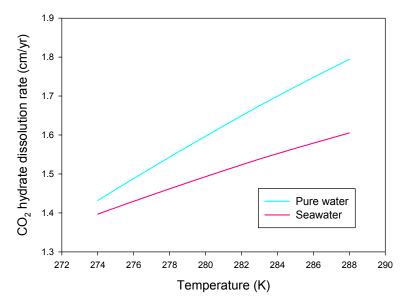


Fig. 3 Dissolution rates of CO₂ hydrate in pure water and seawater at 150 bar

CO ₂ hydrate dissolution rate at 150 bar (cm/yr)											
274	274 K		275 K		276 K		277 K		278 K		
PW*	SW*	PW	SW	PW	SW	PW	SW	PW	SW		
1.432	1.397	1.460	1.414	1.488	1.430	1.516	1.446	1.543	1.462		
279	279 K		280 K		281 K		282 K		283 K		
PW	SW	PW	SW	PW	SW	PW	SW	PW	SW		
1.570	1.478	1.597	1.493	1.623	1.508	1.649	1.523	1.675	1.538		
284	284 K		285 K		286 K		287 K		288 K		
PW	SW	PW	SW	PW	SW	PW	SW	PW	SW		
1.700	1.552	1.724	1.566	1.748	1.579	1.771	1.592	1.794	1.605		

Table 2 Dissolution rates of CO₂ hydrate in pure water and seawater at 150 bar

* PW: pure water; SW: seawater

4. Conclusions

In this study, effect of various environmental factors on the change of CO_2 hydrate dissolution rates was investigated. Numerical analysis was carried out to evaluate the effect of pressure, temperature, and salinity on CO_2 hydrate dissolution rates using the data of liquid CO_2 droplet dissolution rates in seawater. CO_2 hydrate dissolution in marine environment has been emerged as an important issue on CO_2 storage in marine sediments. Nevertheless, only few studies have dealt with CO_2 hydrate dissolution in the ocean. Therefore, CO_2 hydrate dissolution in the ocean should be properly understood with the pivotal environmental factors to select proper sites for CO_2 storage and to predict the behavior and fate of sequestered CO_2 under the marine sediment environments.

 CO_2 hydrate dissolution rates can be significantly reduced at higher pressure and lower temperature conditions. Seawater containing high concentration of electrolytes considerably slowed down the dissolution rates of CO_2 hydrate. Dissolution of CO_2 hydrate in the ocean is inevitable phenomena due to different chemical potential between CO_2 hydrate and CO_2 undersaturated seawater. However, based on the results obtained from the study, we could suggest proper tactics for the CO_2 storage in the marine sediments without serious environmental risks. Prevention of direct CO_2 hydrate exposure to seawater with hydrocarbon films, surfactants, microbial or sediment layers might significantly reduce the dissolution rates of CO_2 hydrate. CO_2 injection in some CO_2 -rich fluid area such as Okinawa trough could be another effective way to minimize CO_2 hydrate dissolution.

Acknowledgments

This work was financially supported by research grants from the Korean Ministry of Environment, GAIA project (173-111-036), other GAIA project (RE201402059), and the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2012-C1AAA001-M1A2A2026588).

References

- Bigalke, N.K., Rehder, G. and Gust, G. (2009), "Methane hydrate dissolution rates in undersaturated seawater under controlled hydrodynamic forcing", *Mar. Chem.*, **115**(3-4), 226-234.
- House, K.Z., Schrag, D.P., Harvey, C.F. and Lackner, K.S. (2006), "Permanent carbon dioxide storage in deep-sea sediments", *Proceedings of the National Academic Science of the USA*, **103**(33), 12291-12295.
- Kyung, D., Lee, K., Kim, H. and Lee, W. (2014), "Effect of marine environmental factors on the phase equilibrium of CO₂ hydrate", *Int. J. Greenh. Gas Con.*, **20**, 285-292.
- Kyung, D., Lim, H.-K., Kim, H. and Lee, W. (2015), "CO₂ hydrate nucleation kinetics enhanced by an organo-mineral complex formed at the montmorillonite-water interface", *Environ. Sci. Technol.*, **49**(2), 1197-1205.
- Lamorena, R.B. and Lee, W. (2008), "Formation of carbon dioxide hydrate in soil and soil mineral suspensions with electrolytes", *Environ. Sci. Technol.*, 42(8), 2753-2759.
- Lamorena, R.B. and Lee, W. (2009), "Effect of pH on carbon dioxide hydrate formation in mixed soil mineral suspension", *Environ. Sci. Technol.*, 43(15), 5908-5914.
- Lamorena, R.B., Kyung, D. and Lee, W. (2011), "Effect of organic matters on CO₂ hydrate formation in Ulleung Basin sediment suspensions", *Environ. Sci. Technol.*, 45(14), 6196-6203.
- Lapham, L.L., Wilson, R.M., MacDonald, I.R. and Chanton, J.P. (2014) "Gas hydrate dissolution rates quantified with laboratory and seefloor experiments", *Geochim. Cosmochim. Acta*, 125, 492-503.
- Lee, K., Lee, S.H. and Lee, W. (2013), "Stochastic nature of carbon dioxide hydrate induction times in Na-montmorillonite and marine sediment suspensions", *Int. J. Greenhouse Gas Control.*, 14, 15-24.
- Park, T., Kyung, D. and Lee, W. (2014), "Effect of organic matter on CO₂ hydrate phase equilibrium in phyllosilicate suspensions", *Environ. Sci. Technol.*, 48(12), 6597-6603.
- Rehder, G., Kirby, S.H., Durhan, W.B., Stern, L.A., Peltzer, E.T., Pinkston, J. and Brewer, P.G. (2004), "Dissolution rates of pure methane hydrate and carbon-dioxide hydrate in undersaturate seawater at 1000-m depth", *Geochim. Cosmochim. Acta*, 68(2), 285-292.
- Sloan, E.D. (2003), "Fundamental principles and applications of natural gas hydrates", *Nature*, **426**, 353-363.
- Stewart, P.B. and Munjal, P. (1970), "Solubility of carbon dioxide in pure water, synthetic sea water, and synthetic sea water concentrates at -5° to 25°C. and 10- to 45-atm. pressure", *J. Chem. Eng. Data*, **15**(1), 67-71.
- Teng, H., Yamasaki, A., Chun, M.-K. and Lee, H. (1997), "Why does CO₂ hydrate disposed of in the ocean in the hydrate-formation region dissolve in seawater?", *Energy*, 22(12), 1111-1117.
- Teng, H., Yamasaki, A. and Shindo, Y. (1999), "The fate of CO₂ hydrate released in the ocean", Int. J. Energ. Res., 23(4), 295-302.
- Warzinski, R.P., Lynn, R.J., Haljasmaa, I., Zhang, Y. and Holder, G.D. (2004), "Dissolution of CO₂ drops and CO₂ hydrate stability under simulated deep ocean conditions in a high-pressure water tunnel", *Proceedings of the 3rd Annual Conference on Carbon Sequestration*, Alexandria, VA, USA, May.

WL