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Abstract.  The gear drive of a combat aircraft engine is responsible for power transmission to the different 

accessories necessary for the engine’s operation. Incorrect power transmission can occur due to the presence of 

failure modes in the gears like bending fatigue, pitting, adhesive wear, scuffing, abrasive wear and polished wear etc. 

Fault diagnosis of the gear drive is necessary to get an early indication of failure of the gears. The present research is 

to develop an algorithm using different vibration signal processing techniques on industrial vibration acquisition 

systems to establish gear fault diagnosis architecture. The signal processing techniques have been used to extract 

various feature vectors in the development of the fault diagnosis architecture. An open-source dataset of other gear 

fault conditions is used to validate the developed architecture. The results is a basis for development of artificial 

intelligence based expert systems for gear fault diagnosis of a combat aircraft engine. 
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1. Introduction 
 

In modern combat aircraft engines, the accessory units are driven by a gear drive system 

consisting of the internal gearbox, radial main shaft, direct drive/gear train drive, intermediate 

gearbox, external gearbox and auxiliary gearbox. Different types of gearbox designs are used for 

driving the accessory units. The most common type of aircraft engine gearbox is a planetary 

gearbox. The radial main shaft induces more thermal fatigue and flow disturbances in the turbine 

region. So, the internal gearbox is generally mounted within the compressor region. The spool of 

the high-pressure region is rotated to produce airflow in the engine. As a result, the internal 

gearbox, which is coupled to the compressor shaft of the high-pressure section, is subjected to 

rotary motion. Generally, bevel gears are used for meshing. The radial main shaft is used for power 

transmission from the internal gearbox to both the accessory unit and the external gearbox. It is 

placed within the compressor support structure and has a small diameter. The diameter should not 

be too small to stop the airflow disruption. Otherwise, it can lead to vibrations in the gearbox. 

Sometimes because of space constraints, an intermediate gearbox is used for power transmission 

from the radial main shaft to the external gearbox. Generally, bevel gears are used for meshing. 

The external gearbox is used for power transmission to the engine’s different accessory units and 

used as a mounting surface for each accessory unit (www.academia.edu). Sometimes a direct drive 
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or a gear train drive can be used to transmit power to accessory units located at a long distance 

from the external gearbox. Generally, spur and helical gears are used for meshing. However, 

helical gears can sometimes give rise to end thrust, so spur gears are used primarily. As all the 

accessory units cannot be mounted on the external gearbox, sometimes an auxiliary gearbox is 

used to transmit power to the additional accessory units. The auxiliary gearbox functions similarly 

to an external gearbox. 

The performance of the gear drive of an aircraft engine directly influences the efficiency of the 

engine’s other components. The presence of faults in the gears adversely affects the performance 

of the gear drive. Since an aircraft engine performs many functions during its operation, defects 

can occur in gears during any function and, if left undetected, can lead to significant engine 

failures. Hence there is a need for efficient fault diagnosis systems that can give indications about 

the possible failure of the gear drive (www.machinerylubrication.com). 
Gears are subjected to different failure modes (Prabhu R and Devaraju A, 2021), and one may 

need to identify the exact modes of failure such as fatigue (Čular et al. 2023, Chen et al. 2021), 
tooth wear (Huang fu et al. 2020), and vibrations (Luo et al. 2021, Sunder and Hemalatha 2021) 
etc. Gears subjected to repeated loading can undergo bending fatigue. In bending fatigue, 
microscopic cracks are developed in stress concentration regions of discontinuities. These cracks 
slowly progress to cause sudden fracture. The tooth root fillet is the primary point of occurrence of 
gear tooth failures. The broken tooth pieces caused by bending fatigue can cause damage to the 
other gearbox components, such as the shaft and bearings. Cyclic contact stresses can cause 
surface fatigue. The most common type of this fatigue phenomenon is pitting. Errors in tooth 
profile, surface irregularities and misalignment can contribute to the formation of localized pits. 
Sometimes these pits can cause progressive damage to the tooth surface. The dedendum region 
between the tooth root and the pitch line is the most common point of occurrence of pitting. The 
presence of different mechanical, chemical and electrical forces acting on the face of the gear tooth 
can lead to wear of the gear tooth surface. Wear can be classified into three major types-adhesion, 
abrasive and polished. Adhesion is mainly caused by the interaction of oxide layers of two gear 
teeth. Sometimes it can lead to excessive wear on the tooth surface. Scuffing is severe adhesion 
which causes metal transfer between two surfaces. Sometimes, plastic deformation and tooth tip 
displacement take place. Contaminants in lubricants can cause abrasion so that the tooth thickness 
is reduced significantly. Polishing causes fine scratches on the surface due to impurities present in 
the lubricants. The ends of the contact area and the dedendum are affected heavily due to severe 
polishing. 

For online fault diagnosis of the gear drive of a combat aircraft engine, vibration data is 

acquired using the data acquisition systems for long flight durations and different flight stages. 

MATLAB based systems have limitations in dealing with complex vibration data using direct 

algorithms for gear fault diagnosis. The developed architecture is compatible with the data 

acquisition systems of a combat aircraft engine and hence can be used as a suitable alternative for 

gear fault diagnosis. The developed architecture applies advanced signal processing techniques on 

the raw vibration signals from the accelerometers to take into account the geometric nonlinearity. 

The developed architecture is tested with own code in MATLAB to determine the efficiency with 

which it can detect the presence of gear faults directly from the raw vibration signals without the 

need of any manual processing. The appropriate feature vector for each fault is then determined so 

that the resultant dataset can be used with machine learning algorithms to further develop expert-

based systems to identify the exact type of fault from the gear vibration signals. 

In Section 2, a literature review of different signal processing techniques is discussed. Section 3 

discusses the characteristics of gear vibration and the different types of vibration signals that will 
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be required to extract the different feature vectors. The mathematical expressions of the different 

feature vectors are also stated that will be used for development of the architecture. Section 4 

explains the detailed process for the development of the architecture and validation of the 

architecture using an open-source dataset. Section 5 compares the results from the developed 

architecture with the results obtained from own code in MATLAB. 

 

 
2. Fault diagnosis techniques used for combat aircraft gearbox 
 

Time-domain signal processing methods have been extensively adopted for fault diagnosis of 

gearboxes due to easy and direct approach compared to other methods. A technique has been 

presented to calculate the averages in the time domain for tooth meshing of planet gears and sun 

gear (McFadden 1991). The technique has been validated with vibration data from a planetary 

gearbox test rig with seeded damage (McFadden and Howard 1990). The effect on condition 

indicators such as root mean square and standard deviation has been studied to distinguish between 

a helicopter gearbox’s cracked and healthy carrier gear (Wu et al. 2005). The influence of external 

varying loading conditions on the vibration characteristics of a developed gearbox system has been 

studied (Bartelmus and Zimroz 2009), and a new diagnostic feature has been designed for 

monitoring gearbox failure in non-stationary conditions (Bartelmus and Zimroz 2009). An attempt 

has been made to collect vibration data by mounting transducers internally on the rotating gear and 

applying the synchronous averaging technique for fault diagnosis of planetary gearboxes (Smidt, 

2010). Health indicators have been extracted for fault diagnosis of gearboxes used in oil sands 

operations using the time-synchronous averaging technique to preprocess vibration data (Yip 

2011). Modifications have been done in several traditional diagnostic parameters, such as FM0 and 

FM4, for planetary gearbox applications (Keller and Grabill, 2003). From the analysis, only two 

parameters have been performed relatively well for lab test conditions, but none are adequate for 

on-aircraft conditions (Keller and Grabill 2003).  

Researchers have applied frequency-domain signal processing methods to overcome the 

limitations of time-domain methods. A simple frequency-domain method has been suggested to 

eliminate the changes in vibration amplitudes due to the effects of transducers and structural path 

for the implementation of early fault detection of a planetary ring gear (Mark et al. 2010). The 

fault characteristic frequencies of each component of a planetary gearbox used in underground 

coal mining have been examined for the diagnosis of gear damage (Singleton 2006). Using Fast 

Fourier Transform, index vectors have been designed for distinguishing the healthy and faulty 

carrier gear of a helicopter planetary gearbox (Sparis and Vachtsevanos 2022). A lot of 

computational methods are available to diagnose gear damages. Recently, the damped vibration is 

performed (Heydari 2021) for the annular and rectangular graded beams in the presence of the 

attached lumped mass. A frequency-domain feature named energy ratio has been developed by 

applying time-synchronous averaging on a preprocessed signal to determine a crack in a planetary 

carrier (Hines et al. 2005). Fourier series has been applied to process vibration data captured from 

a helicopter planetary gearbox and a possible explanation for the asymmetry phenomena observed 

in the spectra has been deduced (McNames 2001).  

Researchers have applied time-frequency-domain signal processing methods to diagnose 

planetary gearboxes because of their better effectiveness. Wigner-Ville distribution has been used 

to analyze signals simulated with tooth pitting and crack for fault diagnosis of planetary gearboxes 

(Chaari et al. 2006). An adaptive filtering technique in conjunction with time-frequency methods 
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has been proposed for the health monitoring of a planetary gearbox (Schön 2005). Local mean 

decomposition has been used to diagnose a seeded crack fault in a wind turbine (Liu et al. 2012). A 

joint amplitude and frequency demodulation method has been proposed to diagnose sun gear 

damage of a gearbox test rig using ensemble empirical mode decomposition and energy separation 

algorithm (Feng et al. 2012). The use of complex Morlet wavelets for extraction of features for 

faulty and healthy carrier gear has been employed for a helicopter gearbox (Saxena et al. 2005). 

The auto covariance of maximal energy wavelet coefficients has been analyzed to study the 

advancement of faults in a gearbox used for oil sand operations (Yu 2011). A denoising method 

based on adaptive Morlet wavelets and singular value decomposition have been applied to extract 

impulse features of a wind turbine gearbox (Jiang et al. 2011).  
Although the traditional signal processing methods are useful for gear fault diagnosis, the 

determination of faults requires some degree of expertise. Thus, various intelligent diagnosis 
methods have been studied by researchers so that expert systems can be developed for gear fault 
diagnosis. The use of Neural Networks to detect gear tooth wear and tooth breakage has been 
investigated (Sanz and Huerta 2012, Ma et al. 2005, Chen and Wang 2002, Cirrincione et al. 
2020). Efforts have been made to develop model-based systems for diagnosing tooth crack (Wang 
and Makis 2009, Yang et al. 2019 and Liu et al. 2018). The use of a Support Vector Machine 
(SVM) to classify gear faults has been investigated (Bansal et al. 2013, Chen et al. 2016, 
Saravanan et al. 2010, Xing et al. 2017). For a more accurate diagnosis of fault and pitting in 
gears, self-organizing maps have also been used (Cheng et al. 2013, Jing et al. 2017, Qiang et al. 
2020, Li et al. 2012). 

Modern fault diagnosis systems using vibration signals are dependent on the extraction of 
suitable feature vectors. Different methods have been used for feature extraction from vibration 
signals using empirical wavelet transform (Li et al. 2021), reverse dispersion entropy and refined 
composite multi-scale dispersion entropy (Li et al. 2022). 

The present study primarily develops a gear fault diagnosis architecture to analyze raw 
vibration data captured from combat aircraft engine accelerometers using signal processing 
techniques. An open-source dataset of different gear faults is analyzed on combat aircraft engine 
customized data analysis systems to extract the required feature vectors that indicate the presence 
of faults in the gear data. The results of the feature vectors are validated with the results from 
obtained by using own code in MATLAB. The results provide a theoretical basis for developing 
artificial intelligence-based expert systems for gear fault diagnosis. 
 
 

3. Theoretical background  
 

3.1 Gear vibration characteristics 
 
It is impossible to manufacture perfect gears with desired tooth profiles, concentricity and 

meshing characteristics. Hence, it is very common for gear mesh vibration takes place in a gear 

assembly (www.cbmconnect.com). Gear mesh frequency is a characteristic of the frequency 

spectrum of a gear assembly and is given by the product of the number of gear teeth and the 

rotating speed of the gear (www.power-mi.com). For all gear conditions, gear mesh frequency 

corresponds to the maximum amplitude in the frequency spectrum of the gear. Gear mesh 

frequency sidebands are equidistant frequencies from the gear mesh frequency corresponding to 

the rotating frequency of the pinion and the gear (www.power-mi.com). If the vibration amplitude 

values become very high at the gear mesh frequency, it indicates a failure in the gears. Sometimes 
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due to wear on the gear surface, an increase in amplitude is noticed at the harmonics of the gear 

mesh frequency with very little change in amplitude at the fundamental gear mesh frequency. This 

is because tooth engagement can result in several impacts leading to excitation of the gear forces 

(www.cbmconnect.com). The position of the sidebands in the frequency spectrum also gives an 

idea about the location of defects in the gear assembly (www.cbmconnect.com). Suppose, for a 

two-gear assembly, if the defect is present on any one gear, the sidebands are spaced above and 

below the gear mesh frequency at a frequency equal to the rotating frequency of the defective gear. 

Again, if the defects are present on both the gears, then there are two families of sidebands in the 

frequency spectrum corresponding to each defective gear.  

 
3.2 Types of gear vibration signals 
 
The raw vibration signals acquired from accelerometers attached to the gearbox need to be 

processed to generate the required signals for vibration analysis using different algorithms. Time-
synchronous averaged, residual, differential and regular signals are used for fault diagnosis. These 
are derived by applying various signal processing techniques on the raw signals. 

Time synchronous averaging is a technique of averaging time-domain signals over uniform 
rotation angles or complete rotations such that noise and disturbances are gradually filtered out. 
This is done by using tachometer signals to determine the pulses per rotation. The time 
synchronous averaging technique helps filter out the disturbances and noise that is non-
synchronous with the tachometer signal. 

The residual signal is derived from the time-synchronous averaged signal by using band-stop 
filters to remove the harmonics of the shaft frequency and gear meshing frequency. The 
differential signal is derived from the residual signal by using band-stop filters to remove the first-
order sidebands of the harmonics of the gear meshing frequency. The periodic signal is derived 
from the time-synchronous averaged signal by using band-pass filters to extract the harmonics of 
the shaft frequency and gear meshing frequency. 

 
3.3 Description of the feature vectors 
 
Using the vibration analysis techniques, the feature vectors are computed, giving an idea about 

the faults’ appearance. These feature vectors are discussed in the following section: 

• R.M.S. - It gives an idea about the signal dataset’s vibration amplitude and energy content. 

This feature vector has been found to indicate general fault progression in gears (Decker 2002, 

Večeř et al. 2005, Bechhoefer et al. 2013, James and Wu et al. 2008). 

𝑆𝑅𝑀𝑆 = √
1

𝑁
∑ (𝑠𝑖)2

𝑁

1
 (1) 

where 𝑆𝑅𝑀𝑆 is the RMS value of the signal dataset s. 

• Kurtosis- It gives an idea about the presence of peaks in the signal dataset. If the value is 

close to 3, it indicates a Gaussian distributed noise signal. This feature vector has been found to 

indicate breakage and wear in gears (Decker 2002, Bechhoefer et al. 2013, Wu et al. 2008, Wang 

2001). 

𝑆𝐾𝑢 =
𝑁 × ∑ (𝑠𝑖 − ṡ)4𝑁

1

{√∑ (𝑠𝑖 − ṡ)2𝑁
1 }

4 (2) 
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where 𝑆𝐾𝑈 is the Kurtosis value of the signal dataset s. 

• Crest Factor (CF) - It is used to detect faults in gears at an early stage. The CF of a sine wave 

is about 1.414. This feature vector has been found to indicate impulsive vibration due to tooth 

breaks in gears (Decker 2002, Bechhoefer et al. 2013). 

𝑆𝐶𝐹 =
𝑆𝑝𝑒𝑎𝑘

𝑆𝑅𝑀𝑆

, 𝑆𝑝𝑒𝑎𝑘 = max(𝑠1, 𝑠2, 𝑠3, … . , 𝑠𝑁) (3) 

where 𝑆𝑝𝑒𝑎𝑘 is the maximum value of the signal dataset s and 

𝑆𝐶𝐹 is the Crest Factor value of the signal dataset s. 

• Energy Ratio (ER) - It is the ratio of the energy content of the differential signal and the 

energy content of the regular meshing component of the signal. This feature vector has been found 

to indicate heavy wear, i.e., damage on more than one tooth of a gear (Zhang et al. 2013). 

𝑆𝐸𝑅 =
𝜎(𝑑)

𝜎(𝑟)
 (4) 

where 𝑆𝐸𝑅 is the Energy Ratio value of the signal dataset s,  

𝜎(𝑑) is the standard deviation of the differential signal and 𝜎(𝑟) is the standard deviation of 

the regular signal. 

• Fourth Order Figure of Merit (FM4) - It gives an idea about the presence of peaks in the 

differential signal of a gear. A value close to 3 indicates a signal of Gaussian distributed noise. This 

feature vector has been found to indicate wear/scuffing/pitting and tooth bending due to root 

cracks in gears (Decker 2002, James et al. 2000, Decker and Lewicki 2003 and Shen et al. 2011). 

𝑆𝐹𝑀4 =
𝑁 × ∑ (𝑑𝑖 − ḋ)4𝑁

1

{∑ (𝑑𝑖 − ḋ)2𝑁
1 }2

 (5) 

where 𝑆𝐹𝑀4 is the FM4 value of the signal dataset s or Kurtosis value of the differential signal d. 

• Sixth Order Differential Moment (M6A) and Eighth Order Differential Moment (M8A) - 

These are applied on a differential signal and are found to be more sensitive to peaks. These two 

feature vectors have been found to act as a surface damage indicator for gears (Decker 2002). 

𝑆𝑀6𝐴 =  
𝑁2 × ∑ (𝑑𝑖 − ḋ)6𝑁

1

{∑ (𝑑𝑖 − ḋ)2𝑁
1 }3

 (6) 

where 𝑆𝑀6𝐴 is the M6A value of the signal dataset s or M6 value of the differential signal d 

𝑆𝑀8𝐴 =  
𝑁2 × ∑ (𝑑𝑖 − ḋ)8𝑁

1

{∑ (𝑑𝑖 − ḋ)2𝑁
1 }4

 (7) 

where 𝑆𝑀8𝐴 is the M8A value of the signal dataset s or M8 value of the differential signal d. 

• NA4- It is applied on a residual signal and uses the run-time averaged variance of the residual 

signal for calculations. This feature vector is used to detect progressive damage in gears (James 

and Limmer 2000, Zakrajsek et al. 1993, Zakrajsek and Lewicki 1996 and Dempsey and Zakrajsek 

2001). 

𝑆𝑁𝐴4 =
𝑁 × ∑ (𝑟𝑖 − ṙ)4𝑁

1

{1 𝑀⁄ × ∑ ∑ (𝑟𝑖𝑗 − ṙ)2𝑁
1

𝑀
1 }

2 (8) 

where 𝑆𝑁𝐴4 is the NA4 value of the signal dataset s or the fourth-order run-time averaged 

moment of the residual signal ‘r’. 
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4. Methodology 
 
4.1 Development of gear fault diagnosis architecture 
 

Referring to Fig. 1, the flow chart of gear fault diagnosis architecture consisting of the time-

domain vibration signal dataset for each condition is stored in a .CSV file having the same number 

of columns as the number of runs for the condition. Each CSV file is imported in the form of a 2D 

plot with time as the independent variable by defining the sampling rate in samples/sec and 

replacing the missing data with zeroes. The vibration signal dataset is synchronized with the 

tachometer signal dataset stored in the CSV file and imported in the form of a 2D plot with time as 

the independent variable. The resultant signal is averaged to remove the noise and disturbances 

from the signal. Considering each signal dataset to be in time-synchronous averaged form, 

residual, differential and regular signals are derived by using Chebyshev Band Filter. A Chebyshev 

filter has a much steeper cut-off rate than the corresponding Butterworth Filter at the cost of some 

ripples in the pass band. For removing a range of frequencies from the signal, band-stop filtering is 

done, and band-pass filtering is done for extracting a range of frequencies. The signal is filtered by 

specifying the upper and lower cut-off range of frequency. Generally, the range of lower cut-off 

frequency varies from 0.0 to half the sampling rate, and the range of higher cut-off frequency 

varies from lower cut-off frequency to half the sampling rate.  

No filtering will occur if the lower limit of frequency is equal to 0.0 and the upper limit of 

frequency is equal to half the sampling rate. If phase less filtering is used, the data is passed 

through a filter of half the required cut-off rate twice, once forward and in reverse. The actual 

frequency response function differs slightly because two filters, each with (N/2) poles, are used 

rather than one N pole filter. After computing the residual signal, differential signal and regular 

signal for each input signal dataset, the output signal dataset is read to a. CSV file so that it can be 

used in the subsequent steps. For calculating the root mean square and the crest factor of the input 

signal, parameters such as integration length, output interval step, interval-style and center of first 

integration need to be defined. The interval style can be set either as a number of points or in terms 

of the independent variable. The integration length defines the section of the signal for which the 

values are to be calculated. If the center of the first integration is not specified, the base of the 

output signal will be set to (Base of the input signal + half the integration duration). If the center of 

the first integration is specified, the base of the output signal will be set to (Centre of first 

integration- half the integration duration). The input signal is normalized to zero mean to calculate 

even order moments of the time-synchronous averaged signal and differential signal. The 

normalized signal is raised to the power of the same value as the order of the moment. The mean is 

calculated for the normalized signal raised to the required power. The mean is divided by the 

standard deviation of the input signal raised to the power of the same value as the order of the 

moment. The resultant value gives the required even order moments. For calculating the energy 

ratio parameter, the standard deviation of the differential signal is divided by the standard 

deviation of the regular signal. For calculating the NA4 parameter, the run-time averaged variance 

of the residual signal is evaluated. The run-time averaged variance is determined by calculating the 

ensemble power average of the variance for all signals preceding the signal of interest in the run 

ensemble. The square of the run-time averaged variance is used to divide the mean of the 

normalized residual signal raised to the fourth power. The resultant value gives the required NA4 

parameter. 
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Fig. 1 Flow chart of gear fault diagnosis architecture 

 

 
Fig. 2 Time-domain vibration signals of gear in healthy and crack condition 

 

 
Fig. 3 Frequency-domain vibration signals of gear in healthy and crack condition 
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Fig. 4 RMS Feature Vector under varied conditions; (a) Healthy, (b) Missing teeth, (c) Crack, (d) Spall 

and (e) Chip 

 

 

4.2 Dataset for extraction of feature vectors 
 
An open-source dataset (Figshare Dataset et al. 2018) of gear vibration data for different fault 

conditions is used to extract feature vectors using the developed architecture. 11 samples are taken 

from the dataset for healthy, missing, crack, spall and chip conditions. Data such as frequency 

sampling rate, shaft frequency, number of gear teeth and gear mesh frequency are not available in 

the dataset. Assuming a sample rate, the frequency spectrum of the raw vibration is generated for 

each condition using the FFT algorithm. The range of sideband frequencies about the gear mesh 

frequency and its harmonics are determined from the FFT plot for healthy and crack conditions. 

The frequency corresponding to the first peak in the spectrum (i.e., shaft frequency) is also 

determined and compared with the difference between the sideband and gear mesh frequencies of 

vibration signals in time-domain and frequency domain are illustrated in Figs. 2-3, respectively. 

An approximate assumption is made for the values of shaft frequency and gear mesh frequency by 

comparing the ranges for the samples. 

Approximate Assumptions: Frequency Sampling Rate= 18000 Hz, Shaft Frequency= 40 Hz, 

Number of Gear Teeth= 16, Gear Mesh Frequency= 640 Hz 
 
 

5. Results and discussions 
 

5.1 Feature vectors derived from the fault diagnosis architecture 
 

The feature vectors are determined by applying the gear fault diagnosis architecture on the 

vibration data for healthy, missing, crack, spall and chip conditions experimentally and, are 

compared with using own code in MATLAB which are named as standard results. The y-

coordinate is the magnitude of feature vector and the x-coordinate is the sample number. The line 

denotes the variation of feature vector with the sample points which are explained in all Figs. 4-10. 

Referring to Fig. 4, for the RMS feature vector, the value for all fault conditions is greater than the 

value for healthy condition. Due to faults, the amplitude and energy content of the vibration 
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Fig. 5 Kurtosis Feature Vector under varied conditions; (a) Healthy, (b) Missing teeth, (c) Crack, (d) Spall 

and (e) Chip 

  

 

 
Fig. 6 Crest Factor Feature Vector under varied conditions; (a) Healthy, (b) Missing teeth, (c) Crack, (d) 

Spall and (e) Chip 

 

 

increases and this is evident from the experimental and standard results. Spall (Progressive Wear) 

condition has the highest levels of vibration, so the RMS feature vector is maximum for the Spall 

condition. 

As shown in Fig. 5, the kurtosis feature vector, the value for all fault conditions is greater than 

the value for healthy condition. Due to faults, there is a higher presence of peaks in the vibration 

spectrum and these shows in the experimental and the standard results. Chip (Partially Broken 

Tooth) condition leads to the occurrence of greater number of peaks over a sampling rate, so the 

Kurtosis feature vector is maximum for the chip condition. 

For the Crest Factor feature vector as illustrated in Fig. 6, the value for missing, crack and chip 

conditions is greater than the value for healthy condition. For spall condition, the value is less than 

the value for healthy condition. Due to all faults except spall, the maximum vibration amplitude 

and the vibration RMS increase at nearly the same proportion compared to the values at Healthy  
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Fig. 7 FM4 Feature Vector under varied conditions; (a) Healthy, (b) Missing teeth, (c) Crack, (d) Spall 

and (e) Chip 

 

 

 
Fig. 8 M6A Feature Vector under varied conditions; (a) Healthy, (b) Missing teeth, (c) Crack, (d) Spall 

and (e) Chip 

 

 

condition. For Spall condition, the vibration RMS increases at a greater proportion than the 

maximum vibration amplitude compared to the values at Healthy condition. Chip condition gives 

rise to the highest proportional increase in the vibration amplitude compared to the vibration RMS, 

so the Crest Factor feature vector is maximum for chip condition. 

For the FM4, M6A and M8A feature vectors as shown in Figs. 7-9, the values for missing and 

crack conditions are greater than the values for healthy condition. For spall and chip conditions, 

the values are less than the values for Healthy condition. For Spall and Chip conditions, due to 

removal of the first order sidebands in the differential signals, the presence of peaks in the 

vibration spectrum is reduced compared to the healthy condition and this is evident in the 

experimental and the standard results. Crack condition leads to the occurrence of greater number 

of peaks over a sampling rate, so the FM4, M6A and M8A feature vectors are maximum for Crack 

condition. 

For the energy ratio feature vector, the value for spall and chip conditions is greater than the 

value for healthy condition. For missing and crack conditions, the value is less than the value for  
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Fig. 9 M8A feature vectors under varied conditions; (a) Healthy, (b) Missing teeth, (c) Crack, (d) Spall 

and (e) Chip 

 

 

 
Fig. 10 Energy ratio feature vector under varied conditions; (a) Healthy, (b) Missing teeth, (c) Crack, (d) 

Spall and (e) Chip 

 

 

 
Fig. 11 NA4 feature vectors under varied conditions; (a) Healthy, (b) Missing teeth, (c) Crack, (d) Spall 

and (e) Chip 
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healthy condition. For missing and crack conditions, the increase in energy content of the regular 

meshing components is comparatively higher than the increase in the energy content of the 

differential signal and this is evident in the experimental and the standard results. Spall condition 

leads to the occurrence of high energy content of the differential signal compared to the regular 

meshing components, so the Energy Ratio feature vector is maximum for Spall condition. 

For the NA4 feature vector as shown in Fig. 11, the value for all fault conditions except chip is 

greater than the value for healthy condition. For chip condition, the value is less than the value for 

healthy condition. Due to all faults except chip, the energy content of the residual signal gradually 

decreases along the run ensemble and this decrease in the energy content is not balanced by the 

presence of peaks in the vibration spectrum. Crack condition has the highest gradual decrease in 

the energy content of the residual signal along the run ensemble, so the NA4 feature vector is 

maximum for Crack condition.  

 

5.2 Observations in characteristics of feature vectors 
 
For performance evaluation of the gear fault diagnosis architecture, the experimental results are 

compared with the standard results. From the plots as shown in Figs. 4-11, of the feature vectors it 

is observed that: 

• The experimental results are almost similar to the standard results for RMS feature vector for 

the given fault conditions, the deviation being maximum for chip condition. 

• The experimental results are almost similar to the standard results for Kurtosis feature vector 

for the given fault conditions. 

• The experimental results are almost similar to the standard results for Crest Factor feature 

vector for the given fault conditions, the deviation being maximum for spall condition. 

• The experimental results are almost similar to the standard results for FM4 feature vector for 

the given fault conditions, the deviation being maximum for spall condition. 

• The experimental results are almost similar to the standard results for M6A feature vector for 

the given fault conditions. 

• The experimental results are almost similar to the standard results for M8A feature vector for 

the given fault conditions. 

• The experimental results are almost similar to the standard results for energy ratio feature 

vector for the given fault conditions, the deviation being maximum for missing and crack 

conditions. 

• The experimental results are almost similar to the standard results for NA4 feature vector for 

the given fault conditions. 

For each type of gear fault (Missing teeth, Crack, Spall, Chip), the feature vector with the 

maximum value for a fault condition is chosen as the appropriate feature vector to be studied for 

Table 1 Feature vectors for different gear faults 

Fault condition Appropriate feature vectors 

Missing teeth  

Crack FM4, M6A, M8A, NA4 

Spall RMS, Energy ratio 

Chip Kurtosis, Crest factor 
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identifying that particular gear fault from acquired raw vibration signals. The appropriate feature 

vectors for each fault are given in the Table 1. 

 
 

6. Conclusions 
 

The developed gear fault diagnosis architecture gives results that are comparable with results 

obtained from MATLAB. The pattern of the feature vectors is found to be similar for both cases 

for the given fault conditions and the physical significance of pattern of each feature vector is 

deduced. The appropriate feature vectors to be studied for Crack, Spall and Chip condition are 

determined.  

The result dataset can be divided into training dataset and testing dataset in the ratio 80:20 

which would be used for developing artificial intelligence based expert systems for gear fault 

diagnosis. 

The feature vectors extracted using the developed algorithm can be further processed using data 

analysis techniques to determine the most suitable feature vector for each fault condition of the 

gear. This will help in the development of an advanced gear fault diagnosis system.  

The developed gear fault diagnosis system can be further developed into an expert artificial 

intelligence system using algorithms like Support Vector Machine (SVM), Bayesian networks, and 

Artificial Neural Networks (ANN). The expert system can predict failure in the gear drive of the 

combat aircraft engines and deduce the type of failure.  
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