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Abstract.  Elliptical concrete-filled steel tubular (CFST) column is widely used in modern structures for both 
aesthetical appeal and structural performance benefits. The ultimate axial load is a critical factor for designing the 
elliptical CFST short columns. However, there are complications of geometric and material interactions, which make 
a difficulty in determining a simple model for predicting the ultimate axial load of elliptical CFST short columns. 
This study aims to propose an efficient adaptive neuro-fuzzy inference system (ANFIS) model for predicting the 
ultimate axial load of elliptical CFST short columns. In the proposed method, the ANFIS model is used to establish a 
relationship between the ultimate axial load and geometric and material properties of elliptical CFST short columns. 
Accordingly, a total of 188 experimental and simulation datasets of elliptical CFST short columns are used to develop 
the ANFIS models. The performance of the proposed ANFIS model is compared with that of existing design 
formulas. The results show that the proposed ANFIS model is more accurate than existing empirical and theoretical 
formulas. Finally, an explicit formula and a Graphical User Interface (GUI) tool are developed to apply the proposed 
ANFIS model for practical use. 

Keywords:  adaptive neuro-fuzzy inference system; elliptical concrete-filled steel tubular short column; 

explicit formula; graphical user interface; ultimate axial load 

 
 

1. Introduction 
 

Nowadays, the concrete-filled steel tubular (CFST) members have become increasingly used in 

engineering constructions because of their structural benefits (i.e., high strength, high ductility and 

energy absorption, and excellent fire and seismic resistance) (Espinos et al. 2011, Yang et al. 

2008). Besides, the external steel tubular of CFST columns is used as formwork during the 

construction phase, thus leading to speed up the construction process and reducing costs (Moon et 

al. 2012). Furthermore, through the interaction between the steel tubular and the concrete core, the 

local buckling of the steel tubular is delayed by the restraint of the concrete, and the concrete 

strength is increased by the confining effect of the steel tubular. 

Recently, elliptical CFST columns have been favored by architects and engineers worldwide as 

key structural elements for high-rise buildings, airport terminals, or bridges. An elliptical CFST 

column is known as a new composite column type of CFST family. It is made by filling concrete 

into elliptical hollow steel tubular, as shown in Fig. 1. In this figure, the symbols 𝑃, 𝐿, 𝐷, 𝐵, and 

𝑡 indicate the axial compression load, the length of the column, the major axis diameter, the minor 
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axis diameter, and the thickness of the steel tubular, respectively. Owing to its reasonable 

distribution of the major-minor axis, elliptical CFST columns also reveal a better architectural 

aesthetics appearance and a small fluid resistance coefficient (Chan et al. 2010). 
Currently, the existing design code for composite construction, such as AS5100 (2004), AISC 

(2016), ACI (2014), and Eurocode 4 (EC-4) (2011) do not provide a methodology for the design of 

elliptical CFST columns. Therefore, many researchers recommended using the rules established 

for circular or rectangular CFST columns for designing the elliptical CFST columns. Nevertheless, 

this alternative usage seems not very appropriate since the structural behaviors of rectangular and 

circular CFST columns are not the same as those of elliptical CFST columns. 

Obviously, the most reliable method to accurately evaluate the behavior of elliptical CFST 

short columns is the experimental study on actual structures. In the last two decades, a number of 

experimental studies and theoretical models have been developed to investigate the behaviors of 

elliptical CFST short columns. Notably, Zhao and Packer (2009) carried out a test with 13 

experimental specimens of elliptical CFST short columns. Both normal concrete and self-

consolidating concrete were used in this testing program. The load-carrying capacity of these 

elliptical CFST short columns was compared with that predicted by design codes. Based on the 

experimental data, the authors proposed a design formula to calculate the ultimate axial load of 

elliptical CFST short columns. The results obtained from this proposed formula were agreed with 

that from the test. Liu and Zha (2011) conducted a test with 6 elliptical CFST short columns under 

axial load and proposed a formula for predicting the ultimate axial load of elliptical CFST short 

columns. The comparative study showed that this formula can accurately calculate the ultimate 

axial load compared with the test results. Jamaluddin et al. (2013) reported the results of 26 

elliptical CFST short columns subjected to axial compressive load. Based on the EC4 provisions 

(2011), they suggested a new equation for predicting the capacities of elliptical CFST short 

columns. Generally, the predicted results were very close to those measured from the experiments. 

Because of being time-consuming and expensive, usually experiments are not always possible 

to perform. Therefore, finite element (FE) analysis, which takes into account the nonlinear 

behaviors of materials, is beneficial. Shen et al. (2015) developed a FE model of elliptical CFST 

short columns under axial compressive loading using ABAQUS software. This FE model was 

validated by comparing it against test results. Then, a simplified formula was proposed to estimate 

the ultimate axial load of elliptical CFST short columns. Dai and Lam (2010a) conducted a FE 

analysis to examine the performance of elliptical CFST short columns. The FE model was verified 

by using the experimental test results of Yang et al. (2008). Patel et al. (2016) performed 

numerical simulation using both FE and fiber element techniques to simulate the concrete 

confining pressure in short circular, elliptical and octagonal CFST columns. The results showed 

that both ultimate axial strengths and complete axial load-strain curves obtained from the FE 

model and fiber element model agreed reasonably well with experimental results. Liu et al. (2017) 

used the FE simulation to obtain the inelastic behaviors of elliptical CFST short columns. 

However, they did not consider the nonlinear strain hardening of the hot-rolled steel in their FE 

model. Furthermore, the FE models have been used to investigate the performance of elliptical 

CFST short columns by Sheehan et al. (2012), Hassanein et al. (2018), Ahmed et al. (2021). 

Evidently, the FE results could successfully capture the experimental observations. Therefore, it 

can be adopted to enlarge the database by conducting the parametric study. 

Nowadays, machine learning (ML) is known as a powerful approach that is capable of coping 

with complex input-output problems (Cai et al. 2020, Cook et al. 2019, Dauji, 2020, Luat et al. 

2020, Vahidi et al. 2017, Xue and Zhou 2018, Yaylacı et al. 2020). ML models are particularly  
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Fig. 1 Elliptical CFST column under axial compression load 

 

 

useful in engineering applications where classical approaches failed, or they are too complicated to 

be applied (Duan et al. 2021, Nguyen et al. 2022, Sadrmomtazi et al. 2013, Tran and Kim 2023a, 

b). For this reason, many research studies have been carried out to estimate the structural capacity 

of CFST columns using the ML approaches (Asteris et al. 2021, Ly et al. 2021, Sarir et al. 2021, 

Tran et al. 2023). Ahmadi et al. (2014, 2017) used an artificial neural network (ANN) to predict 

the axial capacity of short CFST columns. Moon et al. (2014) have successfully developed a fuzzy 

logic model for predicting the strength of circular CFST short columns. Guneyisi and Ipek (2016, 

2019) derived a gene expression programming model to predict the load-bearing capacity of 

circular CFST columns. Naderloo et al. (2012) developed an adaptive neurofuzzy inference system 

(ANFIS) model to predict crop yield based on different energy inputs. The results showed that the 

ANFIS model could predict the grain yield with good accuracy. Keshavarzi et al. (2017) compared 

the ANFIS-based subtractive clustering algorithm with different input combinations as well as 

sequential regression models for simulation of variations in soil cation exchange capacity. The 

obtained results showed that the ANFIS model had the ability to estimate soil CEC by computing 

easily measurable variables with a guarantee of authenticity, reliability, and reproducibility. Umrao 

et al. (2018) proposed a predictive ANFIS model for estimation of unconfined compressive 

strength (UCS) and modulus of elasticity (E) of sedimentary rocks. The high accuracy in 

predicting the UCS and E of sedimentary rocks indicated that the proposed ANFIS model can be 

confidently used in the field of geotechnical engineering. Ren et al. (2019) employed support 

vector machine and particle swarm optimization to determine the axial capacity of square CFST 

columns. Tran et al. (2019a, b) developed a neural network-based model to predict the axial 

compression capacity of circular and square CFST columns. In addition, the explicit formulas were 

derived based on the ANN models for practical application. Tran et al. (2020) compared three  
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Table 1 Existing formulas for ultimate axial load prediction of elliptical CFST short columns 

Author Formula (s) Eq. 

Zhao and Packer (2009) 

𝑃𝑍ℎ𝑎𝑜 = 𝜂𝑠𝐴𝑠𝑓𝑦 + [1 + 𝜂𝑐(𝑡/𝐷𝑒)(𝑓𝑦/𝑓𝑐
′)]𝐴𝑐𝑓𝑐

′, 

𝐷𝑒 = 2𝑎{1 + [1 − 2.3(𝑡/2𝑎)
0.6](𝑎/𝑏) − 1}, 

𝜂𝑠 = 0.25(3 + 2𝜆), 
𝜂𝑐 = 4.9 − 18.5𝜆 + 17𝜆

2, 

𝜆 = √
𝐴𝑠𝑓𝑦 + 0.85𝐴𝑐𝑓𝑐

′

(𝜋2𝐸𝐼)/(𝜇𝐿)2
, 

𝐸𝐼 = 𝐸𝑠𝐼𝑠 + 𝐸𝑐𝐼𝑐 , 

(1) 

Liu and Zha (2011) 

𝑃𝐿𝑖𝑢 = 𝑓𝑠𝑐(𝐴𝑠 + 𝐴𝑐), 

𝑓𝑠𝑐 =
1 + 1.5(𝑏/𝑎)0.3𝜉

1 + 𝐴𝑠/𝐴𝑐
𝑓𝑐𝑘 , 

𝜉 = (𝐴𝑠𝑓𝑦)/(𝐴𝑐𝑓𝑐𝑘), 

𝑓𝑐𝑘 = 0.67𝑓𝑐𝑢, 

(2) 

Jamaluddin et al. (2013) 

𝑃𝐽𝑎𝑚𝑎𝑙𝑢𝑑𝑑𝑖𝑛 = 𝜂𝑠𝐴𝑠𝑓𝑦 + [1 + 𝜂𝑐(𝑡/𝐷𝑒)(𝑓𝑦/𝑓𝑐
′)]𝐴𝑐𝑓𝑐

′, 

𝐷𝑒 = 2𝑎
2/𝑏, 

𝜂𝑠 = 0.25(3 + 2𝜆), 
𝜂𝑐 = 4.9 − 18.5𝜆 + 17𝜆

2, 

𝜆 = √
𝐴𝑠𝑓𝑦 + 0.85𝐴𝑐𝑓𝑐

′

(𝜋2𝐸𝐼)/(𝜇𝐿)2
, 

𝐸𝐼 = 𝐸𝑠𝐼𝑠 + 0.6𝐸𝑐𝐼𝑐 , 

(3) 

Shen (2015) 

𝑃𝑆ℎ𝑒𝑛 = 𝑓𝑠𝑐(𝐴𝑠 + 𝐴𝑐), 
𝑓𝑠𝑐 = (𝐴 + 𝐵𝜉 + 𝐶𝜉

2 + 𝐷𝜉3)𝑓𝑐𝑘 , 
𝜉 = (𝐴𝑠𝑓𝑦)/(𝐴𝑐𝑓𝑐𝑘), 

𝑓𝑐𝑘 = 0.67𝑓𝑐𝑢, 
𝐴 = 1.3625 

𝐵 = 0.7080 

𝐶 = 0.0624 

𝐷 = 0.0075 

(4) 

Ahmed and Liang (2020) 

𝑃𝐴ℎ𝑚𝑒𝑑 = 𝐴𝑠𝑓𝑦 + 𝐴𝑐(𝛾𝑐𝑓𝑐
′ + 4.1𝑓𝑟𝑝,𝐴ℎ𝑚𝑒𝑑), 

(5) 
𝑓𝑟𝑝,𝐴ℎ𝑚𝑒𝑑 = {

1.065𝜉 + 3.449 𝑓𝑜𝑟 1.5 ≤ 𝑎/𝑏 < 2
1.019𝜉 + 0.304 𝑓𝑜𝑟 𝑎/𝑏 ≥ 2

 

𝜉 = (𝐴𝑠𝑓𝑦)/(𝐴𝑐𝛾𝑐𝑓𝑐
′), 

𝛾𝑐 = 1.85𝐷𝑐
−0.135       (0.85 ≪ 𝛾𝑐 ≪ 1) 

 

 

advanced data-driven models for predicting the axial compression capacity of CFDST columns. 

The comparative results showed that three data-driven models achieved more accuracy than 

existing equations. Generally, the performance of such ML-based models has been shown to be 

better than the existing formulas found in the literature. However, most ML-based studies so far 

have concentrated on the columns with a circular and rectangular cross-section. Therefore, more 

investigations are required to assess the potential applications of ML-based models for studying 

the axial behavior of elliptical CFST short columns. 

This study aims to develop an efficient ANFIS for predicting the ultimate axial load of elliptical 

CFST columns. ANFIS is a hybrid intelligent system that combines the learning power of ANN 
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Application of ANFIS to the design of elliptical CFST columns 

with the knowledge representation of fuzzy logic (Jang 1993). Therefore, ANFIS can handle the 

limitations of both ANN and fuzzy logic methods and offers an excellent opportunity to solve 

difficult and complex problems (Armaghani and Asteris 2021, Tran and Kim 2020). Although the 

datasets observed from the tests at the laboratory are valuable, it is not practical to collect such 

datasets for all potential scenarios. Therefore, numerical simulation of elliptical CFST short 

columns subjected to pure axial compression is performed using ABAQUS software in this study. 

The validity of the FE model was examined by comparing with test results in the literature. 

Consequently, 92 experimental datasets selected from the literature and 96 numerical FE datasets 

of elliptical CFST short columns are used to develop the ANFIS models. As a result, a total of 63 

ANFIS models are developed and the best one is chosen based on the performance indices. The 

accuracy of the proposed ANFIS model is compared with the results of the existing formulas. 

Finally, new explicit formulas and a Graphical User Interface (GUI) tool are developed to apply 

the proposed ANFIS model for practical use. 

 

 
2. Research significance  

 

In the design of elliptical CFST columns, the ultimate axial load is one of the most critical 

parameters. However, there are still challenges to developing a generalized analytical formula for 

accurately predicting the ultimate axial load of elliptical CFST columns. Design codes for 

composite construction, such as AS51006 (2004), AISC (2016), ACI (2014), and EC-4 (2011), do 

not provide a method for designing elliptical CFST columns. Moreover, conducting experiments is 

not always possible because of being time-consuming and expensive. Therefore, it is necessary to 

develop an efficient ML model and a practical tool for estimating the ultimate axial load of 

elliptical CFST columns. 

To fill these gaps, this study develops an efficient ANFIS model to improve the ultimate axial 

load prediction of elliptical CFST columns using the collected experimental data from the 

literature and numerical simulation results generated in this study. In addition, explicit formulas 

and a GUI tool developed in this study can rapidly predict the ultimate axial load with less effort. 

They can provide initial estimates of outcomes before performing extensive laboratory or 

fieldwork. 

 

 

3. Existing formulas 

 

A brief review of existing formulas for calculating the ultimate axial load of elliptical CFST 

columns is presented in this section. Zhao and Packer (2009) conducted an experimental program 

to investigate the behavior of elliptical CFST columns. The tests included both normal concrete 

and self-consolidating concrete. Moreover, different loading methods, such as loading through 

steel alone, loading through concrete alone, and loading through the whole cross-section were 

investigated. Based on the experimental results, a formula was proposed to predict the load-

carrying capacity of elliptical CFST columns. According to Liu and Zha (2011), the plastic 

equilibrium theory was used to determine the distribution rule for the interaction force between the 

steel tube and the core concrete in elliptical CFST columns under axial load, and finite element 

simulation was used to determine the lateral stress of the core concrete. Then the effectively 

confined zone distribution of core concrete was assumed to account for the two results above. 
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Based on the idea of “unified theory” and the existing unified formulas for circular CFST stub 

columns, the author proposed a new unified equation for elliptical CFST columns. Jamaluddin et 

al. (2013) carried out twenty-six specimens of elliptical CFST columns to investigate the axial 

compressive behavior. In addition, the study developed a new equation based on the EC-4 

provision (2011) for predicting the ultimate axial load of elliptical CFST columns. Based on the 

data fitting of numerical simulation results and the idea of "unified theory" as Liu and Zha study 

(2011), Shen (2015) proposed another formula to calculate the ultimate axial load of elliptical 

CFST columns. Shen (2015) used the same formula to predict the ultimate uniaxial compressive 

strength of the elliptical CFST columns as that of Liu and Zha (2011), but it is different in 

calculating the unified strength (𝑓𝑠𝑐 ). Recently, Ahmed and Liang (2020), proposed a new 

confinement model for determining the lateral stresses on the filled concrete in the elliptical CFST 

columns. It was included in the computational fiber-based model for the nonlinear simulation of 

elliptical CFST short columns under axial load. The experimental results were used to validate the 

accuracy of the computer simulation method. It has been shown that the developed confinement 

model for elliptical CFST columns yields more accurate results than those which were modified 

for circular CFST columns. Moreover, the fiber-based model has been demonstrated to be a 

computationally efficient and accurate simulation technology for elliptical CFST columns. 

Besides, a design equation was given to determine the ultimate axial load of elliptical CFST short 

columns. The results showed that this equation outperformed design codes and previous studies. 

The detailed expressions of the formulas developed by Zhao and Packer (2009), Liu and Zha 

(2011), Jamaluddin et al. (2013), Shen (2015), and Ahmed and Liang (2020) are summarized in 

Table 1. 

 
 
4. Numerical modelling 
 

In this section, a FE model is developed to simulate the behavior of elliptical CFST short 

columns using ABAQUS software (2014). The FE model was validated against the experimental 

results (Jamaluddin et al. 2013, Yang et al. 2008) by comparing ultimate axial loads and axial 

load-axial strain behavior. 

 
4.1 Material models 
 
4.1.1 Model of elliptical steel tubular 
The idealized stress-strain model proposed by Liang (2009) is used to simulate the elastic-

plastic behavior of steel elliptical tubular, which is shown in Fig. 2. In this figure, 𝜀 represents the 

axial strain in steel elements, 𝜎 indicates the longitudinal stress at the strain 𝜀, 𝑓𝑦 indicates the 

strength of steel at the yield point, 𝜀𝑦 is the yield strain at the strength 𝑓𝑦, and 𝜀𝑡 is taken as 

0.005 for structural steel and 10𝜀𝑦 for high strength steel. The ultimate strain (𝜀𝑢) is taken as 0.1 

and 0.2 for structural and high strength steels, respectively. Young's modulus (𝐸𝑠) and Poisson's 

ratio (𝜈) of the steel were chosen as 200,000 𝑁/𝑚𝑚2and 0.3, respectively. 

In the FE model, the engineering stress-strain curve of steel was converted to true stress-true 

plastic strain curve by using Eqs. (6) and (7): 

𝜎𝑡𝑟𝑢𝑒 = 𝜎𝑛𝑜𝑟𝑚(1 + 𝜀𝑛𝑜𝑟𝑚) (6) 
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Fig. 2 Idealised stress-strain curves for steels 

 

 

𝜀𝑡𝑟𝑢𝑒 = 𝑙𝑛(1 + 𝜀𝑛𝑜𝑟𝑚) (7) 

where 𝜎𝑛𝑜𝑟𝑚 and 𝜀𝑛𝑜𝑟𝑚 are the nominal engineering stress and nominal engineering strain, 

respectively, 𝜎𝑡𝑟𝑢𝑒 and 𝜀𝑡𝑟𝑢𝑒 are the true stress and true strain, respectively. 

 

4.1.2 Model of confined concrete core 
The idealised model of the confined concrete core is illustrated in Fig. 3. In this model, the 

stress-strain response is characterised into three parts. The first part (i.e., OA) is expressed as 

follows (Mander et al. 1988, Patel et al. 2016): 

𝜎𝑐 =
𝑓𝑐𝑐
′ 𝜆 (

𝜀𝑐
𝜀𝑐𝑐
′ )

𝜆 − 1 + (
𝜀𝑐
𝜀𝑐𝑐
′ )

𝜆
 (8) 

The second and third parts can be expressed as (Patel et al. 2016): 

𝜎𝑐 =

{
 
 

 
 𝑓𝑐𝑐

′ +
(𝑓𝑒 − 𝑓𝑐𝑐

′ )(𝜀𝑐 − 𝜀𝑐𝑐
′ )

𝜀𝑒 − 𝜀𝑐𝑐
′

 𝑓𝑜𝑟 𝜀𝑐𝑐
′ < 𝜀𝑐 ≪ 𝜀𝑒

𝑓𝑒 +
(𝑓𝑐𝑢 − 𝑓𝑒)(𝜀𝑐 − 𝜀𝑒)

𝜀𝑐𝑢 − 𝜀𝑒
 𝑓𝑜𝑟 𝜀𝑒 < 𝜀𝑐 ≪ 𝜀𝑐𝑢

 (9) 

The related parameters of Eqs. (8) and (9) are calculated as follows (Mander et al. 1988, Patel 

et al. 2016): 

𝜆 =
𝐸𝑐

𝐸𝑐 − (
𝑓𝑐𝑐
′

𝜀𝑐𝑐
′ )

 
(10) 

𝐸𝑐 = 3320√𝑓𝑐𝑐
′ + 6900 (𝑀𝑃𝑎) (11) 
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𝜀𝑐
′ = {

0.002 𝑓𝑜𝑟 𝛾𝑐𝑓𝑐
′ ≪ 28 (𝑀𝑃𝑎)

0.002 +
𝛾𝑐𝑓𝑐

′ − 28

54000
 𝑓𝑜𝑟 28 < 𝛾𝑐𝑓𝑐

′ ≪ 82 (𝑀𝑃𝑎)

0.003 𝑓𝑜𝑟 𝛾𝑐𝑓𝑐
′ > 82 (𝑀𝑃𝑎)

 (12) 

𝑓𝑐𝑐
′ = 𝛾𝑐𝑓𝑐

′ + 𝑘1𝑓𝑟𝑝 (13) 

𝜀𝑐𝑐
′ = 𝜀𝑐

′ (1 + 𝑘2
𝑓𝑟𝑝

𝛾𝑐𝑓𝑐
′
) (14) 

𝛾𝑐 = 1.85𝐷𝑐
−0.135       (0.85 ≪ 𝛾𝑐 ≪ 1) (15) 

𝑘1 = 6.7 − 2.6(
𝑎

𝑏
) (16) 

𝑘2 = 20.5 (17) 

𝑓𝑟𝑝 = (0.037 − 0.00755
(𝑎 + 𝑏)

𝑡
) 𝑓𝑦   (17 ≪  

𝑎 + 𝑏

𝑡
 ≪ 29) (18) 

𝑓𝑒 = 𝛼𝑐𝑓𝑐𝑐
′  (19) 

𝑓𝑐𝑢 = 𝛽𝑐𝑓𝑐𝑐
′  (20) 

𝛼𝑐 = 0.889 − 0.004𝛾𝑐𝑓𝑐
′ (21) 

𝛽𝑐 = 0.841429 − 0.005714𝛾𝑐𝑓𝑐
′ (22) 

where 𝜎𝑐 illustrates the longitudinal stress in concrete element, 𝜀𝑐 indicates the concrete axial 

strain, 𝑓𝑐𝑐
′  denotes the ultimate strength of confined concrete, 𝜀𝑐𝑐

′  represents the axial strain at 

𝑓𝑐𝑐
′ , , 𝜀𝑐

′  is the axial strain at 𝑓𝑐
′, and 𝑓𝑐

′ is the ultimate strength of unconfined concrete, 𝐷𝑐 is 

the concrete core diameter along the major axis which is determined as 2(𝑎 − 𝑡), 𝑡 represents the 

steel tube thickness, 𝑎 is the major axis radius of elliptical section, 𝑏 denotes the minor axis 

radius, 𝑓𝑟𝑝 illustrates the confining pressure applied by steel tubular on the concrete core, 𝜀𝑒 =

10𝜀𝑐
′  and 𝜀𝑐𝑢 = 30𝜀𝑐

′  denote the concrete strains at points B and C, respectively. 

The Drucker-Prager formulation was employed in the concrete material. The angle of friction, 

flow-stress ratio and dilation angle were chosen respectively as 20°, 0.8 and 0.001 based on the 

sensitivity study given by Patel et al. (2016). 

 

4.2 Element types, boundary conditions, and inteaction contact 
 

Although both solid and shell element type could be appropriate to simulate the deformation 

and local buckling features of the steel tubular. However, the large shell thickness could obviously 

influence the ability of the mesh in the steel tubular to follow the curved contact boundary. This 

will significantly affect the accuracy of FE model on the concrete confinement effect and 

interaction between the concrete core and the steel tubular. Using solid element not only made the 

steel tubular meshes follow the curved contacting boundary reasonably, but also expressed the  
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Fig. 3 Idealised stress-strain relation of confined concrete 

 

 
Fig. 4 Mesh of FE model 

 

 
Fig. 5 Boundary condition and interaction contact of FE model 

155



 

 

 

 

 

 

Ngoc-Long Tran et al. 

 

  

  

  

  

Fig. 6 Comparison of axial load-strain responses between FE results and experimental results (Yang et al. 

2008) 
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Fig. 7 Comparison of axial load-strain responses between FE results and experimental results (Jamaluddin 

et al. 2013) 
 

 

deformation along the thickness direction of the steel tubular. For this reason, both elliptical steel 

tubular and concrete core are modelled with 8-node solid element C3D8R in this study. According 

to Dai and Lam (2010b), the mesh sizes of steel tubular with 5-10 mm and concrete with 10-20 

mm should be used. In addition, the concrete element sizes should be about two times the element 

sizes of the steel tubular. Therefore, the element mesh size of 5 mm for the steel tubular and 10 

mm for the concrete core are used in the FE model in this study, as shown in Fig. 4. 

The ‘Surface-to-Surface’ option is used to define the contact action between the steel tubular 

and the concrete core. The penalty function with a friction coefficient of 0.3 is applied to define 

the tangential contact, which offered a better coincidence compared to the experiments (Dai and 

157



 

 

 

 

 

 

Ngoc-Long Tran et al. 

Table 2 Comparison of ultimate axial load between FE results and experimental results 

Specimen 
𝐿 𝐷 𝐵 𝑡 𝑓𝑦 𝑓𝑐

′ 𝑃𝑢,𝑒𝑥𝑝 𝑃𝑢,𝐹𝐸𝑀 
𝑃𝑢,𝐹𝐸𝑀
/𝑃𝑢,𝑒𝑥𝑝 

(mm) (mm) (mm) (mm) (MPa) (MPa) (kN) (kN)  

150x75x4-C30 300.00 150.40 75.60 4.18 376.50 26.93 839.00 835.09 0.995 

150x75x4-C60 300.00 150.57 75.52 4.19 376.50 47.30 974.00 983.86 1.010 

150x75x4-C100 300.00 150.39 75.67 4.18 376.50 84.57 1265.00 1206.98 0.954 

150x75x5-C30 300.00 150.12 75.65 5.12 369.00 26.93 981.00 942.58 0.961 

150x75x5-C60 300.00 150.23 75.74 5.08 369.00 47.30 1084.00 1063.35 0.981 

150x75x5-C100 300.00 150.28 75.67 5.09 369.00 84.57 1296.00 1295.99 1.000 

150x75x6.3-C30 300.00 148.78 75.45 6.32 400.50 26.93 1193.00 1168.77 0.980 

150x75x6.3-C100 300.00 149.53 75.35 6.25 400.50 84.57 1483.00 1530.80 1.032 

CI-150-C30 300.00 150.10 75.00 4.10 431.40 35.80 900.00 929.58 1.033 

CI-150-C60 301.00 150.20 75.10 4.00 431.40 49.43 1139.00 1173.60 1.030 

CI-150-C100 299.00 150.10 75.20 4.20 431.40 92.14 1239.00 1278.46 1.032 

CI-200-C30 398.00 197.80 100.10 5.10 347.90 36.87 1232.00 1246.29 1.012 

CI-200-C60 398.00 197.50 100.20 5.10 347.90 53.54 1737.00 1683.10 0.969 

CI-200-C100 398.00 197.40 100.10 5.10 347.90 102.26 2116.00 2120.39 1.002 

Mean         0.99 

StD         0.03 

CoV         0.03 

 
Table 3 Statistical properties of the database 

 
𝐿 𝐷 𝐵 𝑡 𝑓𝑦 𝑓𝑐

′ 𝑃𝑢 

(mm) (mm) (mm) (mm) (MPa) (MPa) (kN) 

Minimum 160.00 85.40 57.00 1.00 201.00 25.00 389.10 

Mean 344.27 173.85 89.41 4.98 378.21 67.03 1594.20 

Maximum 698.00 318.50 155.00 9.72 612.00 102.26 3334.09 

Standard deviation 101.04 37.44 18.51 2.04 62.67 25.51 745.63 

Coefficient of variation 0.29 0.22 0.21 0.41 0.17 0.38 0.47 

 

 

Lam 2010b). The normal contact is set as ‘Hard Contact’. For the columns, the top and bottom 

ends of the steel tubular and concrete core are fixed against all degrees of freedom except the axial 

displacement at the loaded end. Both the boundary and the load conditions are imposed to the 

reference point (RP) which is coupled to the lower and upper surface of the column. A specified 

axial displacement is applied to the reference node at the loading point. The general static analysis 

step is adopted. The boundary condition and interaction contact of the FE model is depicted in Fig. 

5. 

 
4.3 Analysis procedure 
 

To provide an initial imperfection mode shape, a linear eigenvalue analysis is firstly conducted  
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Fig. 8 Distribution of data information 

 

 

for each column model. The global buckling mode with the lowest eigenvalue is selected as the 

initial imperfect geometry. The initial geometrical imperfection is taken as the lowest buckling 

mode shape with an amplitude of 𝑡𝑠/100 (Chan and Gardner 2008), where 𝑡𝑠  is the wall 

thickness of the steel tubular. For the parametric study, this imperfection amplitude is used 

throughout. In the second step, the displacement-controlled static analysis is performed to simulate 

the nonlinear behavior of elliptical CFST short columns. Note that the residual stresses are not 

considered in the FE model. 
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4.4 Verification of the FE model 
 
The verification of the FE model is presented against the tests conducted by Yang et al. (2008) 

and Jamaluddin et al. (2013). Fig. 6 and 7 show the comparison of the axial load versus axial strain 

curves of the experimental and FE results. Additionally, the comparisons of ultimate axial load 

between the experimental and FE results are given in Table 2. The results show that the FE model 

developed in this study could provide a feasible and reliable prediction for the ultimate axial load 

of elliptical CFST short columns.  

 
 

5. Database 
 
In this study, 92 experimental datasets of elliptical CFST short columns are collected from the 

tests conducted by Yang et al. (2008), Zhao and Packer (2009), Dai and Lam (2010b), Lam et al. 

(2010), Jamaluddin et al. (2013), Uenaka (2014), Chan et al. (2015), and Yang et al. (2017). In this 

database, only the elliptical section specimens under monotonic uniaxial compression are selected 

and six geometric and material properties were included, such as the length of the column (𝐿), the 

major axis diameter (𝐷), the minor axis diameter (𝐵), the thickness of the steel tubular (𝑡), the 

yield strength of the steel tubular (𝑓𝑦), and the compressive strength of concrete (𝑓𝑐
′). 

Additionally, based on the validated FE model developed in Section 3, extensive datasets of 
elliptical CFST short columns are generated. Herein, three elliptical steel tubular types are chosen 
to keep the (𝑎 + 𝑏)/𝑡 ratios within the limits of the 𝑓𝑟𝑝 stress in the range of 17 to 29 as 
suggested by Patel et al. (2016). Four concrete compressive strengths of 70, 80, 90, and 100 MPa 
were considered with two steel grades of 355 and 420 MPa. The column lengths were fixed to 
three times the greater width (𝐷) of the cross-section to avoid the overall instability effects as well 
as end conditions. As a result, 96 FE datasets are generated in this study. Finally, the database that 
combined the experimental and FE datasets are used to develop the ANFIS model. It can be seen 
that the database involves a wide variety of the yield strength of steel and compressive strength of 
concrete for both normal-strength and high-strength concrete in the range from 201.00 to 612.00 
MPa and 25.0 to 102.26 MPa, respectively. The column length is varied from 160.00 to 636.00 
mm. The major axis diameter is ranged between 85.40 mm and 318.50 mm. The minor axis 
diameter is varied from 57.00 to 155.00 mm. The thickness of the steel tubular is changed from 
1.00 to 8.00 mm. In this study, the concrete compression strength of the cylinder specimen is used. 
Nevertheless, it is found out that some experimental studies only showed the cube specimens for 
the compressive strength of the concrete. For this reason, the cube concrete compressive strength 
was approximately converted equally to the concrete cylinder compressive strength by means of 
the conversion factors suggested by Ding et al. (2011). In summary, the range and statistical 
properties of the database are shown in Table 3 and Fig. 8. 
 

 

6. Adaptive neuro-fuzzy inference system 
 

6.1 Basic structure 
 

The adaptive neuro-fuzzy inference system (ANFIS) is a hybrid intelligent system, which 

merges the recognition and adaptability capacity of ANN with the ability of the decision-making 

capacity of the fuzzy logic system. ANFIS has been introduced in detail by many studies (Kar et  

160



 

 

 

 

 

 

Application of ANFIS to the design of elliptical CFST columns 

 
Fig. 9 Basic structure of ANFIS model 

 
Table 4 ANFIS rules 

Number Rule 

Rule 1 
If 𝑋1 is 𝐶1𝑋1 and 𝑋2 is 𝐶1𝑋2 and 𝑋3 is 𝐶1𝑋3 and 𝑋4 is 𝐶1𝑋4  

and 𝑋5 is 𝐶1𝑋5 and 𝑋6 is 𝐶1𝑋6 the 𝑌 is 𝐶𝐿1, 

Rule 2 
If 𝑋1 is 𝐶2𝑋1 and 𝑋2 is 𝐶2𝑋2 and 𝑋3 is 𝐶2𝑋3 and 𝑋4 is 𝐶2𝑋4  

and 𝑋5 is 𝐶2𝑋5 and 𝑋6 is 𝐶2𝑋6 the 𝑌 is 𝐶𝐿2, 

Rule 3 
If 𝑋1 is 𝐶3𝑋1 and 𝑋2 is 𝐶3𝑋2 and 𝑋3 is 𝐶3𝑋3 and 𝑋4 is 𝐶3𝑋4  

and 𝑋5 is 𝐶3𝑋5 and 𝑋6 is 𝐶3𝑋6 the 𝑌 is 𝐶𝐿3, 

Rule 4 
If 𝑋1 is 𝐶4𝑋1 and 𝑋2 is 𝐶4𝑋2 and 𝑋3 is 𝐶4𝑋3 and 𝑋4 is 𝐶4𝑋4  

and 𝑋5 is 𝐶4𝑋5 and 𝑋6 is 𝐶4𝑋6 the 𝑌 is 𝐶𝐿4 

Rule 5 
If 𝑋1 is 𝐶5𝑋1 and 𝑋2 is 𝐶5𝑋2 and 𝑋3 is 𝐶5𝑋3 and 𝑋4 is 𝐶5𝑋4  

and 𝑋5 is 𝐶5𝑋5 and 𝑋6 is 𝐶5𝑋6 the 𝑌 is 𝐶𝐿5 

Rule 6 
If 𝑋1 is 𝐶6𝑋1 and 𝑋2 is 𝐶6𝑋2 and 𝑋3 is 𝐶6𝑋3 and 𝑋4 is 𝐶6𝑋4  

and 𝑋5 is 𝐶6𝑋5 and 𝑋6 is 𝐶6𝑋6 the 𝑌 is 𝐶𝐿6 

 

 

al. 2020, Kar and Biswal 2020, Shariati et al. 2020). The basic structure of ANFIS can be seen in 

Fig. 9. 

As shown in this figure, the first layer gets the inputs, normalizes, and converts them into fuzzy 

values. This layer has parameters that control the position of each fuzzy set. The outputs of the 

first layer are the prior values of the membership function (MF) in accordance with the input of the 

fuzzy system. In the second layer, the MFs normalize the MFs’ weights between 0 and 1. The third 

layer captures the rule base of the fuzzy inference system (FIS). The fourth layer then generates 

the outputs values of the MFs’ weights. Finally, the fifth layer obtains the output values of the 

whole model. In order to explain the architecture of the FIS, assuming the system has two inputs, 

𝑋1 and 𝑋2, and an output, 𝑓, two fuzzy 𝐼𝑓 − 𝑡ℎ𝑒𝑛 rules for the first-degree Sugeno fuzzy 

model, which are expressed in Eqs. (23) and (24). 
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Table 5 Gaussian membership function’s parameters 

MFs Parameters 
Inputs 

𝑋1
𝑁 𝑋2

𝑁 𝑋3
𝑁 𝑋4

𝑁 𝑋5
𝑁 𝑋6

𝑁 

C1 
𝜎 0.126 0.084 0.048 0.128 0.160 0.208 

𝑐 0.097 0.296 0.223 0.087 0.183 0.047 

C2 
𝜎 0.085 0.079 0.119 0.075 0.057 0.177 

𝑐 0.491 0.525 0.085 0.673 0.451 0.708 

C3 
𝜎 0.091 0.060 0.057 0.108 0.072 0.152 

𝑐 0.286 0.302 0.210 0.448 0.444 0.791 

C4 
𝜎 0.050 0.029 0.108 0.131 0.091 0.165 

𝑐 0.265 0.302 0.213 0.375 0.494 0.237 

C5  
𝜎 0.068 0.073 0.097 0.067 0.021 0.114 

𝑐 0.363 0.385 0.322 0.529 0.447 0.637 

C6 
𝜎 0.094 0.082 0.084 0.071 0.076 0.182 

𝑐 0.503 0.551 0.516 0.663 0.499 0.803 

 
Table 6 Weights of the rules 

Number Weight’s relationship 

𝑊𝑅𝑢𝑙𝑒1 (𝐶1𝑋1)× (𝐶1𝑋2)× (𝐶1𝑋3)× (𝐶1𝑋4)× (𝐶1𝑋5)× (𝐶1𝑋6) 

𝑊𝑅𝑢𝑙𝑒2 (𝐶2𝑋1)× (𝐶2𝑋2)× (𝐶2𝑋3)× (𝐶2𝑋4)× (𝐶2𝑋5)× (𝐶2𝑋6) 

𝑊𝑅𝑢𝑙𝑒3 (𝐶3𝑋1)× (𝐶3𝑋2)× (𝐶3𝑋3)× (𝐶3𝑋4)× (𝐶3𝑋5)× (𝐶3𝑋6) 

𝑊𝑅𝑢𝑙𝑒4 (𝐶4𝑋1)× (𝐶4𝑋2)× (𝐶4𝑋3)× (𝐶4𝑋4)× (𝐶4𝑋5)× (𝐶4𝑋6) 

𝑊𝑅𝑢𝑙𝑒5 (𝐶5𝑋1)× (𝐶5𝑋2)× (𝐶5𝑋3)× (𝐶5𝑋4)× (𝐶5𝑋5)× (𝐶5𝑋6) 

𝑊𝑅𝑢𝑙𝑒6 (𝐶6𝑋1)× (𝐶6𝑋2)× (𝐶6𝑋3)× (𝐶6𝑋4)× (𝐶6𝑋5)× (𝐶6𝑋6) 

 

 

Rule 1: If 𝑋1 is 𝐴1 and 𝑋2 is 𝐵1, then 𝑓1 = 𝑚1𝑋1 + 𝑛1𝑋2 + 𝑞1, (23) 

Rule 2: If 𝑋1 is 𝐴2 and 𝑋2 is 𝐵2, then 𝑓2 = 𝑚2𝑋1 + 𝑛2𝑋2 + 𝑞2, (24) 

where 𝐴1, 𝐴2, 𝐵1, and 𝐵2 are the MFs for inputs 𝑋1 and 𝑋2, respectively, and 𝑚1, 𝑛1, 𝑞1, 

𝑚2, 𝑛2, and 𝑞2 are the parameters of the output function. 

 

6.2 Sub-clustering approach 
 

Clustering is a task of assigning the datasets into groups called clusters to discover structures 

and patterns in the datasets. The radius of a cluster is the maximum distance between all the points 

and the centroid. Sub-clustering is based on classifying each point of the dataset just to one cluster. 

This method assumes that each data point is a potential cluster center and calculates the potential 

for each data point based on the density of surrounding data points (Mirrashid 2014). The data 

points with the highest remaining potential as the next cluster center and the potential of data 

points near the new cluster center are destroyed. It is notable that the influential radius of the 

cluster is critical for determining the number of clusters and data points outside this radius. Also, a 
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smaller radius leads to many smaller clusters in the data space, which results in more rules (Chiu, 

1994). Mamdani (1975) and Sugeno (1985) are two main types of the FIS. Because the Sugeno 

system is more compact and efficient than a Mamdani system, it was used in this study. For more 

detailed descriptions, the reader can also refer to the work in Refs. (Kar et al. 2020, Sun et al. 

2020, Vakhshouri and Nejadi 2018). 

 
 
7. Performance indices 

 

To evaluate the performances of predicted models, three statistical indices, including the 

coefficient of determination (𝑅2), the root mean squared error (𝑅𝑀𝑆𝐸) and 𝑎20 − 𝑖𝑛𝑑𝑒𝑥, are 

used, which are expressed as follows 

𝑅2 = 1 − (
∑ (𝑡𝑖 − 𝑜𝑖)

2𝑛
𝑖=1

∑ 𝑜𝑖
2𝑛

𝑖=1

), (25) 

𝑅𝑀𝑆𝐸 = √(
1

𝑛
)∑(𝑡𝑖 − 𝑜𝑖)

2

𝑛

𝑖=1

, (26) 

𝑎20 − 𝑖𝑛𝑑𝑒𝑥 =
𝑚20

𝑀
, (27) 

where 𝑡𝑖 and 𝑜𝑖 are the target and predicted value of 𝑖th sample, respectively, 𝑛 is the number 

of samples, and 𝑚20 is the sumation of samples with the ratio of the predicted value to a target 

value falling between 0.80 and 1.20 (Armaghani et al. 2019, Asteris and Mokos 2020). 

 

 

8. ANFIS model for ultimate axial load of elliptical CFST short columns 
 

8.1 Input and output variables 
 

In order to develop the ANFIS model, the length of the column (𝐿), the major axis diameter 

(𝐷), the minor axis diameter (𝐵), the thickness of the steel tubular (𝑡), the yield strength of the 

steel tubular (𝑓𝑦), and the compressive strength of concrete (𝑓𝑐
′) were considered as input variables. 

The output variable was the ultimate axial load of the elliptical CFST short column (𝑃𝑢). In order 

to enhance the accuracy of the ANFIS model and to avoid unexpected errors during the training 

process, the database were normalized within the range of 0 and 1. Accordingly, normalization was 

implemented by dividing each value of  input and output variables by the corresponding 

minimum and maximum, which are expressed as follows 

𝑋𝑖
𝑁 =

(𝑋 − 𝑋𝑚𝑖𝑛)

(𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛)
, (28) 

where 𝑋  is the data sample, 𝑋𝑖
𝑁  is the normalized data sample, 𝑋𝑚𝑖𝑛  and 𝑋𝑚𝑎𝑥  are the 

minimum and maximum values of considered parameters, respectively. 
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Fig. 10 𝑅2 value of diferent ANFIS models 

 

  
Fig. 11 𝑅𝑀𝑆𝐸 value in kN of diferent ANFIS models 

 

  
Fig. 12 Ranking of 𝑅2 
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Fig. 13 Ranking of 𝑅𝑀𝑆𝐸 

 

 

8.2 Membership function 
 

Membership function (MF) has an inevitable effect on the established neuro-fuzzy model to 

predict the comparable values with the implemented outputs. It defines how each point in the input 

space is mapped to a membership value between 0 and 1. In this study, Gaussian MF was found as 

a proper one for the proposed ANFIS model. It has the advantage of being smooth and non-zero at 

all points, which is expressed in Eq. (29). 

𝜇(𝑥, 𝜎, 𝑐) = 𝑒
−(𝑥−𝑐)2

2𝜎2 , (29) 

where 𝜎 is the variance and 𝑐 is the mean of 𝑥. 

 

8.3 Number of clusters 
 
The clusters in the ANFIS model are expressed as the linear functions, which are given in Eq. 

(30). 

𝐶𝐿𝑖 = 𝑎𝑖1𝑋1
𝑁 + 𝑎𝑖2𝑋2

𝑁 + 𝑎𝑖3𝑋3
𝑁 + 𝑎𝑖4𝑋4

𝑁 + 𝑎𝑖5𝑋5
𝑁 + 𝑎𝑖6𝑋6

𝑁 + 𝐶𝑖 , 𝑖 = 1, . . . , 𝑛. (30) 

where the parameters 𝑎𝑖1 to 𝑎𝑖6 and 𝐶𝑖 are coefficients of 𝑋1
𝑁 to 𝑋6

𝑁, corresponding to cluster 

𝑖th. 

To determine the number of clusters for ANFIS model, the database was randomly split and 

shuffled into 7 groups of training and testing ratio and the number cluster varied from 2 to 10. 

Each model was trained first by using the training datasets and then testing datasets were applied 

to evaluate the performance of each model. A total of 63 ANFIS models are developed in this 

study. 

The performance of these models based on the 𝑅2 and 𝑅𝑀𝑆𝐸 indices are shown in Figs. 10-

14. Generally, all 63 ANFIS models perform well on the current database. To determine the best 

ANFIS model, the ranking method proposed by Zorlu et al. (2008) was applied using two 

performance indices (i.e., 𝑅2 and 𝑅𝑀𝑆𝐸), as shown in Figs. 10-11. Accordingly, the developed 

models (63 models) were sorted from 1 to 63 based on their performances. Herein, the value of 1 

denotes the lowest performance, and 63 means the highest performance of the model. In this way,  
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Fig. 14 Total model ranking 

 

 
Fig. 15 Proposed ANFIS structure 

 

 

each performance index was ranked separately and merged as a total ranking for model evaluation, 

as shown in Figs. 12 and 13. Fig. 14 shows that the ANFIS model with 0.7 of training ratio 

combined with 2 clusters provides the worst performance, meanwhile, the ANFIS model with 0.65 

of trainingg ratio combined with 6 clusters obtains the best performance in predicting the ultimate 

axial load of elliptical CFST short columns with 0.9887 and 0.9781 of 𝑅2 and 81.43 kN and 

98.72 of 𝑅𝑀𝑆𝐸 for traning and testing datasets, respectively. 
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Fig. 16 Membership functions for input variables 

 

 

The structure of the best ANFIS model is shown in Fig. 15. It is noted that the colored circle 

indicates a fixed node and the white circle implies an adaptive node. In this model, six Gaussian 

MFs and six linear MFs are used for input and output variables, respectively, and six fuzzy rules 

have been constructed during the training process. The ANFIS rules, Gaussian MFs parameters 

and the weights of the rules are presented in Tables 4-6. Additionally, MFs of all the inputs of the 

proposed ANFIS model are plotted in Fig. 16. 

 

8.4 Performance of the proposed ANFIS model 
 

Fig. 17 shows the prediction performance in a regression form for the training, testing and all 

datasets of the proposed ANFIS model. As shown in this figure, the 𝑅𝑀𝑆𝐸 of the training, 
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Fig. 17 Performance of the proposed ANFIS model 

 

 

testing, and all datasets are 81.427, 98.724, and 87.888, respectively. Evidently, the 𝑅𝑀𝑆𝐸 value 

is quite low compared to the ultimate axial load range of 389.10 to 3334.09 kN. Additionally, the 

values of 𝑅2 for training, testing and all datasets are found to be 0.989, 0.978, and 0.986, 

respectively. The overall response with 𝑅2 close to 1 verifies that the proposed ANFIS model has 

acceptable performance for estimating the ultimate axial load of elliptical CFST short columns. 
 
 

9. Comparison of the proposed ANFIS model with existing formulas 
 

In order to compare the results of the proposed ANFIS model with existing formulas, three 

performance indices of 𝑅2, 𝑅𝑀𝑆𝐸 and 𝑎20 − 𝑖𝑛𝑑𝑒𝑥 were used. The comparative results are  
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Fig. 18 Comparison between the proposed ANFIS model and the existing formulas 

 

 

depicted in Fig. 18. Generally, the models proposed by Zhao and Packer (2009) and Jamaluddin et 

al. (2013) underestimate the ultimate axial load of elliptical CFST short columns. In contrast, 

models proposed by Liu and Cha (2011) and and Shen (2015)  overestimate the ultimate axial 

load of elliptical CFST short columns. The model proposed by Ahmed and Liang (2020) provides 

fair-minded reasonable results compared with the experimental data. However, the proposed 

ANFIS model has superior performance in predicting the ultimate axial load of elliptical CFST 

short columns compared to other existing formulas. Fig. 18 shows that the 𝑅2 values for all 

datasets predicted by Zhao’s formula, Liu’s formula, Jamaluddin’s formula, Shen’s formula, and 

Ahmed’s formula are equal to 0.856, 0.966, 0.865, 0.919, and 0.953, respectively. They are much  
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Table 7 Statistical results of diferent models 

𝑷𝒖,𝒆𝒙𝒑 / 𝑷𝒖,𝒑𝒓𝒆 

  Zhao and Packer 

(2009) 
 Liu and Zha (2011) 

 Jamaluddin et al. 

(2013) 
 Shen (2015) 

Ahmed and Liang 

(2020) 

 Mean 1.992 0.886 2.145 0.742 1.052 

 𝑆𝑡𝐷 0.850 0.127 0.868 0.126 0.144 

 𝐶𝑜𝑉 0.427 0.143 0.405 0.170 0.137 

 

 
Fig. 19 Interactive GUI tool 

 

 

lower than that of the proposed ANFIS model (0.986). The 𝑅𝑀𝑆𝐸 values predicted by Zhao’s 

formula, Liu’s formula, Jamaluddin’s formula, Shen’s formula, and Ahmed’s formula are 793.60 

kN, 325.258 kN, 865.357 kN, 792.169 kN, and 174.116 kN, respectively. These values show a 

high error compared to the proposed ANFIS model with 𝑅𝑀𝑆𝐸 value of 87.888 kN. The a20-

index value of the proposed ANFIS model is 0.95 that is the best one compared to others. Table 7 

reveals that the proposed ANFIS model achieves smallest values of the standard deviation (𝑆𝑡𝐷) 

and coefficient of variation (𝐶𝑜𝑉) compared to existing formulas. The mean, 𝑆𝑡𝐷, and 𝐶𝑜𝑉 of 

test-to-prediction ultimate loads computed by Zhao’s formula, Liu’s formula, Jamaluddin’s 

formula, Shen’s formula, and Ahmed’s formula are (1.992, 0.85, 0.427), (0.886, 0.127, 0.143), 

(2.145, 0.868, 0.405), (0.742, 0.126, 0.17), (1.052, 0.144, 0.137), and (1.001, 0.12, 0.102), 

respectively. It means that the accuracy of the proposed ANFIS model in this study is outstanding. 

However,  it is worth noting that the confinement model proposed by Patel et al. (2016) yields 

negative lateral pressures for columns with a larger (𝑎 + 𝑏) 𝑡⁄  ratio, which may cause negative 

ultimate strengths. Therefore, FEM and ANFIS models in this study are only valid with the range 

of (𝑎 + 𝑏) 𝑡⁄  as shown in Eq. (18). 

 

 
10. ANFIS-based formula and GUI tool 

 

As indicated in the previous section, the ANFIS model can excellently predict the ultimate axial 

load of elliptical CFST short columns based on the current database. However, the application of 

the proposed ANFIS model in engineering design is not a convenient method. Thus, the proposed 

ANFIS model is exploited to derive an explicit formula and a GUI tool to apply for practical use. 

It should be noted that both explicit formula and GUI tool are derived based on the proposed 

ANFIS model, therefore, they provide the same results as those provided by the proposed ANFIS 

model. However, they are only applicable to elliptical CFST short columns with geometric and 

material properties within the ranges specified in Table 3. The detail of the explicit formula based 

170



 

 

 

 

 

 

Application of ANFIS to the design of elliptical CFST columns 

on the proposed ANFIS model and an illustrated example using this formula are described in the 

Appendix for practical use. Fig. 19 shows the main GUI tool, which is simple and extremely easy 

to use to replace the complex procedure of the explicit formula. As shown in Fig. 19, users can 

enter numeric values for the input parameters, then, the ultimate axial load of elliptical CFST short 

columns is displayed directly by clicking the Start Predict button. Obviously, the GUI tool is 

functional, effective and flexible. The GUI tool is provided freely at Link (Tran 2023). 

 

 
11. Conclusions 

 

In this study, an efficient ANFIS model is developed for predicting the ultimate axial load of 

elliptical CFST short columns. The proposed ANFIS model was trained and tested using 188 

datasets and the ANFIS model with six Gaussian membership functions for each input variable and 

six fuzzy rules has high accuracy for determining the ultimate axial load of elliptical CFST short 

columns. The predictive accuracy of the proposed ANFIS model is compared with existing 

formulas using three performance indices (𝑅2 , 𝑅𝑀𝑆𝐸  and 𝑎20 − 𝑖𝑛𝑑𝑒𝑥). The comparative 

results show that the proposed ANFIS model provides superior accuracy (𝑅2=0.986, 𝑅𝑀𝑆𝐸 

=87.888, and 𝑎20 − 𝑖𝑛𝑑𝑒𝑥 =0.952) compared to the existing formulas. In addition, an explicit 

formula and a GUI tool are developed to apply the proposed ANFIS model for practical use. It is 

clear that both explicit formula and GUI tool can be considered as the desirable and reliable 

methods for determining the ultimate axial load of elliptical CFST short columns. Hence, it is 

idealistic to have some initial estimations of the ultimate axial load of elliptical CFST short 

columns before performing any extensive experiment at laboratory. 
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CC 
 

 

Nomenclature 
 

CFST Concrete-filled steel tubular 𝜂𝑐 
Effect of confinement in the concrete 

strength 

ANFIS Adaptive neuro-fuzzy inference system 𝐸𝐼 
Flexural rigidity of the elliptical cross-

section 

GUI Graphical user interface 𝜆 Slenderness ratio 

𝑃 Axial compression load 𝐸𝑠 Elastic modulus of the steel tubular 

𝐿 Length of the column 𝐼𝑠 Inertia moment of the steel tubular 

𝐷 Major axis diameter 𝐸𝑐 Elastic modulus of the core concrete 

𝐵 Minor axis diameter 𝐼𝑐 Inertia moment of the core concrete 

𝑡 Thickness of the steel tubular 𝜇 Effective length factor 

FE Finite element 𝑓𝑠𝑐 Unified strength 

ML Machine learning 𝑓𝑐𝑘 
Axial compressive strength of unconfined 

concrete 

ANN Artificial neural network 𝜉 Factor of confinement effect 
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𝐴𝑠 Cross-sectional area of steel tubular 𝑓𝑐𝑢 
Compressive strength of cubic specimen 

concrete core 

𝐴𝑐 Cross-sectional area of concrete MF Membership function 

𝑓𝑦 Yield strength of the steel tubular FIS Fuzzy inference system 

𝑓𝑐
′ Compressive strength of the concrete core 𝑆𝑡𝐷 Standard deviation 

𝐷𝑒  Equivalent diameter of elliptical section 𝐶𝑜𝑉 Coefficient of variation 

𝑎 A half of the major axis diameter 𝑅2 Coefficient of determination 

𝑏 A half of the minor axis diameter 𝑅𝑀𝑆𝐸 Root mean squared error 

𝜂𝑠 
A factor to reduce the steel tubular strength 

to account for hoop stress 

𝑎20
− 𝑖𝑛𝑑𝑒𝑥 

Ratio of the predicted value to a target value 

falling between 0.80 and 1.20 

 
 

Appendix. Explicit formula based on the proposed ANFIS 
 

The ultimate axial load of elliptical CFST short columns in kN is expressed as 

𝑃𝑢 = 2944.99𝑃𝑢𝑁 + 389.1, kN (31) 

where 𝑃𝑢𝑁 and 𝑃𝑢 are the normalized and actual predicted value of the ultimate axial load, 

respectively. 

The normalized value of the ultimate axial load can be determined by 

𝑃𝑢𝑁 =
∑ 𝑊𝑖𝐶𝐿𝑖
6
𝑖=1

∑ 𝑊𝑖
6
𝑖=1

 (32) 

where 𝑊𝑖 are the rule’s weights for each rule, 𝐶𝐿𝑖 are clusters. 

The clusters are expressed as 

𝐶𝐿1 = −0.205𝑋1
𝑁 + 0.635𝑋2

𝑁 + 0.156𝑋3
𝑁 + 0.598𝑋4

𝑁 + 0.113𝑋5
𝑁 + 0.224𝑋6

𝑁 − 0.199 

(33) 

𝐶𝐿2 = −0.338𝑋1
𝑁 + 0.727𝑋2

𝑁 + 0.361𝑋3
𝑁 + 0.547𝑋4

𝑁 + 0.163𝑋5
𝑁 + 0.169𝑋6

𝑁 − 0.345 

𝐶𝐿3 = −0.201𝑋1
𝑁 + 0.743𝑋2

𝑁 + 0.409𝑋3
𝑁 + 0.446𝑋4

𝑁 + 0.209𝑋5
𝑁 + 0.159𝑋6

𝑁 − 0.329 

𝐶𝐿4 = −0.296𝑋1
𝑁 + 0.741𝑋2

𝑁 + 0.368𝑋3
𝑁 + 0.493𝑋4

𝑁 + 0.199𝑋5
𝑁 + 0.188𝑋6

𝑁 − 0.322 

𝐶𝐿5 = −0.359𝑋1
𝑁 + 0.662𝑋2

𝑁 + 0.275𝑋3
𝑁 + 0.602𝑋4

𝑁 + 0.124𝑋5
𝑁 + 0.175𝑋6

𝑁 − 0.437 

𝐶𝐿6 = −0.277𝑋1
𝑁 + 0.669𝑋2

𝑁 + 0.298𝑋3
𝑁 + 0.715𝑋4

𝑁 + 0.207𝑋5
𝑁 + 0.238𝑋6

𝑁 − 0.298 

where 𝑋𝑖
𝑁 , 𝑖 = 1 − 6 are the normalized values of input variables, which are expressed in Eq. 

(28). 
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Application of ANFIS to the design of elliptical CFST columns 

From MFs presented in Table 5, the rule’s weight parameters, 𝑊𝑖 (𝑖 = 1, . . . ,6) are calculated 

as 

𝑊1

= (𝑒
−(𝑋1

𝑁−0.097)2

0.032 )(𝑒
−(𝑋2

𝑁−0.296)2

0.014 ) (𝑒
−(𝑋3

𝑁−0.223)2

0.005 )(𝑒
−(𝑋4

𝑁−0.087)2

0.033 )(𝑒
−(𝑋5

𝑁−0.183)2

0.051 ) (𝑒
−(𝑋6

𝑁−0.047)2

0.086 ) 

(34) 

𝑊2

= (𝑒
−(𝑋1

𝑁−0.491)2

0.015 ) (𝑒
−(𝑋2

𝑁−0.525)2

0.013 )(𝑒
−(𝑋3

𝑁−0.085)2

0.028 )(𝑒
−(𝑋4

𝑁−0.673)2

0.011 ) (𝑒
−(𝑋5

𝑁−0.451)2

0.006 ) (𝑒
−(𝑋6

𝑁−0.708)2

0.063 ) 

𝑊3

= (𝑒
−(𝑋1

𝑁−0.286)2

0.016 )(𝑒
−(𝑋2

𝑁−0.302)2

0.007 ) (𝑒
−(𝑋3

𝑁−0.210)2

0.006 ) (𝑒
−(𝑋4

𝑁−0.448)2

0.023 ) (𝑒
−(𝑋5

𝑁−0.444)2

0.010 )(𝑒
−(𝑋6

𝑁−0.791)2

0.046 ) 

𝑊4

= (𝑒
−(𝑋1

𝑁−0.265)2

0.005 )(𝑒
−(𝑋2

𝑁−0.302)2

0.002 ) (𝑒
−(𝑋3

𝑁−0.213)2

0.023 ) (𝑒
−(𝑋4

𝑁−0.375)2

0.034 ) (𝑒
−(𝑋5

𝑁−0.494)2

0.016 ) (𝑒
−(𝑋6

𝑁−0.237)2

0.054 ) 

𝑊5

= (𝑒
−(𝑋1

𝑁−0.363)2

0.009 )(𝑒
−(𝑋2

𝑁−0.385)2

0.011 ) (𝑒
−(𝑋3

𝑁−0.322)2

0.019 ) (𝑒
−(𝑋4

𝑁−0.529)2

0.009 ) (𝑒
−(𝑋5

𝑁−0.447)2

0.001 ) (𝑒
−(𝑋6

𝑁−0.637)2

0.026 ) 

𝑊6

= (𝑒
−(𝑋1

𝑁−0.503)2

0.018 ) (𝑒
−(𝑋2

𝑁−0.551)2

0.013 ) (𝑒
−(𝑋3

𝑁−0.516)2

0.014 ) (𝑒
−(𝑋4

𝑁−0.663)2

0.010 )(𝑒
−(𝑋5

𝑁−0.499)2

0.012 ) (𝑒
−(𝑋6

𝑁−0.803)2

0.066 ) 

where 𝑋1
𝑁, 𝑋2

𝑁, 𝑋3
𝑁, 𝑋4

𝑁, 𝑋5
𝑁 and 𝑋6

𝑁 are the normalized values of the input variables. 
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