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Abstract.  To achieve appropriate stresses, two new rectangular elements are presented in this study. For reaching 
this aim, a complementary energy functional is used within an element for the analysis of plane problems. In this 
energy form, the Airy stress function will be used as a functional variable. Besides, some basic analytical solutions are 
found for the stress functions. These trial functions are matched with each element number of degrees of freedom, 
which leads to a number of equations with the anonymous constants. Subsequently, according to the principle of 
minimum complementary energy, the unknown constants can be expressed in terms of displacements. This system 
can be rewritten in terms of the nodal displacement. In this way, two new hybrid-rectangular triangular elements are 
formulated, which have 16 and 40 degrees of freedom. To validate the outcomes, extensive numerical studies are 
performed. All findings clearly demonstrate accuracies of structural displacements, as well as, stresses. 
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Notation 

AR8 

Accurate rectangular 

element with 16 degrees of 

freedom 

AR20 

Accurate rectangular 

element with 40 degrees 

of freedom 

𝑉𝐶
∗ 

Complementary energy 

along the element 

boundaries 

Π𝐶
∗  

Complementary energy 

within the element 
C Elastic flexibility matrix 𝜑 Airy stress function 

t Thickness of the element 𝜎 Elemental stress vector T 
Surface force vector on the 

element boundaries 

U 
Displacement vector along 

element boundaries 
𝑞𝑒  

Elemental nodal 

displacement vector 
𝐸 Young’s modulus 

𝜇 Poisson’s ratio EFEM 
Energy finite element 

method 
𝜎𝑇 Stress transposed vector 

𝑇𝑇 
Surface traction force 

transposed vector 
𝑇𝑥 

Surface traction force 

transposed vector is x-

direction 

𝑇𝑦 
Surface traction force 

transposed vector is y-

direction 

𝜎𝑥 
Normal stress in x-

direction 
𝜎𝑦 

Normal stress in y-

direction 
𝜏𝑥𝑦 Shear stress 

𝑙 and m 
direction cosines of the 

outer normal 
𝑢𝑖 

Nodal displacements in 

x-direction 
𝑣𝑖 

Nodal displacements in y-

direction 

n 
Number of analytical 

solution 
S and M Matrix expressions 𝑁𝑖

0(𝜉1. 𝜉2. 𝜉3) shape function 

𝛤𝑖𝑗 Element edges     
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1. Introduction 
 

A finite element method is an efficient tool for solving a great variety of structural bodies. 

Displacement techniques are the most common way to formulate a new element. The weakness of 

this scheme is giving inaccurate stresses. In the past decades, many types of research have 

improved the performance of elements. Fleck et al. indicated that the shear resistance was raised 

when the wire diameter decreases from 170 to 12 μm, in torsion behavior on the copper wires 

Fleck et al. (1994). Likewise, this occurred in the micro-indentation and micro-bend test (Wei et 

al. 2001 and Nix et al. 1998, Koiter 1964 and Toupin 1962). According to the obtained outcomes, 

the classical mechanical field was unsuitable for the micro-scale test. Therefore, it was concluded 

that these theories were better to be used for the micro-structures. On the other hand, the couple 

stress theory is one of the useful theories for studies of the couple stress/strain gradient 

phenomena. For example, Mindlin and Koiter (1964) and Toupin (1962) suggested new couple 

stress theory. In another study, Hutchinson and Fleck (1993) presented a new couple stress theory 

containing one material’s characteristics. Furthermore, Yang et al. (2002) recommended 

symmetrical stress function, including the material’s properties. In another study, Bell (1969) 

satisfied the continuousness conditions of displacements and the first derivatives concurrently. 

Nevertheless, nodal coordinates of the element usually required more than the first derivatives of 

the displacement.  

Zervos et al. (2001) examined the scale effect by using fourth-order accuracy 18 degrees of 

freedom triangular plate element. Each node had six degrees of freedom, in this article. In another 

research, Papanicolopulos and Zervos (2009) formulated third-order accuracy 3D hexahedral 

element function with 64 degrees of freedom. In this study, each node had 8 displacement degrees 

of freedom. According to the obtained outcomes, their method could be used directly to the couple 

stress/strain gradient theory by creating four-node plane elements. Nonetheless, such elements are 

not appropriate for use in engineering purposes, because, it is difficult to satisfy the boundary 

conditions due to higher-order derivatives of the node parameters. 

 Berry and Balazs (1979) found an Airy function method appropriate for the Schrödinger’s 

calculation for a free circumstance of the quantum mechanics. It should be mentioned that such an 

Airy function included infinite energy. Therefore, this could not be recognized experimentally. 

Siviloglou and Christodoulides (2007) proposed a model by using the analogy between the optical 

paraxial equation and the potential-free Schrödinger equation. For the first time, they presented the 

concept of finite-energy Airy beams (FEAB). In another research, these investigators performed 

the experiment test Cen et al. (2011a). Later, the FEAB was studied extensively (Cen et al. 2011b, 

Sergei et al. 2016 and Albocher et al. 2009).  These exclusive structures controlled the spatial 

FEAB to the particular applications, such as, the laser filamentation (Cen et al. 2011c and Zhou 

and Cen 2015). In addition to spatial Airy beam, the time-based Airy pulse propagated with its 

acceleration resulting from a varying group velocity was introduced (Madeo  et al. 2012 and 

Madeo et al. 2014). It should be added, FEM has various uses, including light bullets generation, 

super continuum generation, solution manipulation, solution self-frequency shift and etc. 

(Zienkiewicz et al. 2005, Lee et al. 1993, Taylor et al. 1976, Chen et al. 2010, Ooi et al. 2004, 

Long et al. 1999 Chen et al. 2004 and Rezaiee-Pajand and Karimipour 2019b).  

In the structural analysis area, the standard 8-node isoparametric element (Q8) is one of the 

most generally used finite element models. So far, its performance has been systematically 

measured by researchers. Stricklin et al. (1977) presented some consequences of a cantilever beam 

modeled using inaccurate elements. Furthermore, they presented that Q8 element stiffened and 
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performed very bad in some cases. Lee and Bathe studied the different effects of some Serendipity 

(Q8, Q12) and Lagrangian (Q9, Q16) elements by using different inaccurate meshes. They found 

that the Lagrangian type elements had better stability in most cases. Taylor (1989) stated the same 

conclusion. Rajendran and Liew (2003) used two diverse arrays of shape as the trial and test 

functions. They created an 8-node element, US-QUAD8, with unsymmetric element stiffness 

matrix. According to this study, this element showed excellent behavior in solving several 

benchmark problems.  

By using bivariate quadratic splines on triangulated quad angulations, Li and Wang (2006) 

recommended a new 8-node spline element. According to the reported obtained outcomes, very 

good results for some problems were achieved, which had a reasonably complex mathematical 

behavior. In 1999, Long et al. established a new natural coordinate system for constructions of the 

quadrilateral element. Later, three 8-node models, AQ8-I, AQ8-II and QACM8, were successfully 

developed by Soh et al. (2000) and Cen et al. (2007), respectively.  

In the elements with all four straight edges, the interpolation functions for the displacement 

responses possessed the second-order completeness, in both areas and the Cartesian coordinates. 

All of these elements showed excellent behavior under the flexural condition, and they were 

insensitive to the mesh unfairness. On the contrary, when an element edge is curved, the 

mentioned second-order completeness will no longer exist. In this and some other studies, the 

variational principles are frequently considered as the theoretical base of the finite element 

method. Among the others, Washizu (1982), Chien (1980) and Hu (1984) presented some useful 

discussions on this topic.  

Lin et al. (2019) presented an analytical solution for accurate estimation of stress and 

displacement fields. Their schemes were used in the analysis of the shallow tunnel. The mentioned 

method was based on the complex variable technique, and the discrete Fourier transform. 

Furthermore, a linear curve was proposed for calculating the external maximum loading and the 

maximum displacement of the member. stress and displacement were assumed to be continuous 

along the excavation line. According to the obtained outcomes, the accuracy of their scheme 

decreased as the spatial distance between the geomaterials and the excavation line increases. These 

investigators defined a 5% error zone for the solution. In another study, Gao and Zou (2017) 

proposed an analytical solution for two and three-dimensional nonlinear Burgers' equation. They 

defined these equations in both square and a cubic space domain. All the boundaries and initial 

conditions were considered. The analytical solution for the three-dimensional Burgers' equation 

was given by the quotient of two infinite series, which involved hypergeometric, exponential, 

trigonometric and power functions. According to the obtained results, the solutions could find 

shock wave occurrences for  the large Reynolds numbers (Re ≥ 100). This was a helpful tool for 

testing the numerical methods. 

Luis and Muñoz (2017) proposed an analytical solution for calculating the displacements field 

resulted from the reservoir compaction, under arbitrary pressure changes. Two new elements were 

suggested in this research. The related formulations were established by using the complementary 

energy functional within an element for the analysis of plane problems. To obtain the accurate 

values, some elementary analytical solutions were allocated for the stress functions. In another 

research, Haitao et al. (2012) solved the Euler–Bernoulli beam under arbitrary dynamic loads by 

using finite element methods. They used the modal superposition method along with the finite 

element scheme. As a result, the natural frequencies and modal shape functions were achieved by 

daunting continuity at the contact between different components of the element. In another study, 

Zhaolin et al. (2018) analyzed the Euler–Bernoulli beams with axial force under high-frequency 
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vibration by using an energy finite element method (EFEM). For this aim, the energy density and 

energy intensity of the beam were presented. Furthermore, the relationship between the 

wavenumber and group velocity was determined.  The effects of axial force on the energy density 

response and the limitations of EFEM were also discussed. 

Hsu (2016) solved the Timoshenko beam under free vibration by using an enriched finite 

element method. For this purpose, Lobatto's functions were used in order to establish the presented 

method. This investigator concisely explored the shear locking in the static structural analysis. To 

show the power of the used function, the obtained results were compared with the other numerical 

schemes. In order to solve plane elasticity problems, Li et al. (2015) proposed a multi-scale finite 

element method. They suggested an approach for numerically finding the shape functions by using 

the corresponding homogeneous governing formulas. The linear, quadratic and cubic shape 

functions were finally achieved by recommending the suitable boundary conditions. The obtained 

outcomes indicated that the multi-scale finite element scheme had a projecting improvement in 

solving the classic problems. Recently, Rezaiee-Pajand and Karimipour (2019a) present three new 

triangular elements. In their investigation, a complementary energy functional is used within an 

element for the analysis of plane problems using the Airy stress function. To validate the results, 

extensive numerical studies are accomplished. The findings clearly demonstrate accuracies of 

structural displacements as well as stresses. 

Hou et al. (2016) used FEM in order to determine the behaviour of a system under shock load. 

They examined the dynamic response of anew designed ultrasonic system under half-sine shock 

impulses  to check the sensitivity of the motor to the shocks in different directions. FEM was 

conducted to gain the relative displacement of a key point of the system. Numerical results show 

that the maximum relative displacement is of system and the maximum stress is five orders 

smaller than the Young´s modulus of the piezo material. Narwariya et al. (2018) presented a new 

method for analyzing abstemiously thick symmetric cross-ply laminated composite plate using 

FEM. The eight noded shell 281 elements are used to analyze the orthotropic plates and 

consequences are gained so that the right choice can be made in applications such as aircrafts, 

rockets, missiles, etc. to decrease the vibration amplitudes. Initially the model response for 

orthotropic plate and harmonic response for isotropic plate is verified with the available literature. 

The results are in good agreement with the available literature. Numerical consequences for the 

natural frequency and harmonic response amplitude are presented. Effects of boundary conditions, 

thickness to width ratio and number of layers on natural frequency and harmonic response of the 

orthographic plates are also investigated. Vini and Daneshmand (2019) investigated the bonding 

properties fabricated by the asymmetric roll bonding techniques by using analytical solution. The 

asymmetric RB process was carried out with thickness reduction ratios of 10%, 20% and 30% and 

mismatch rolling speeds 1:1, 1:1.1 and 1:1.2, separately. For various experimental conditions, 

finite element simulation was used to model the deformation of bimetallic laminates. Specific 

attention was focused on the bonding strength and bonding quality of the interface between Al and 

Cu layers in the simulation and experiment. The optimization of mismatch rolling speed ratios was 

obtained for the improvement of the bond strength of bimetallic laminates during the asymmetric 

RB process. Ushio et al. (2019) used the elastoplastic FEM analysis for earthquake response for 

the field-bolt joints of a tower-crane mast. 

 It is essential to design for this possibility and to take the necessary measures on construction 

sites. So, they created a new hybrid-element model that not only expressed the detailed behavior of 

the site joints an earthquake but also suppressed any increase in the total calculation time and 

revealed its behavior through computer simulations.  
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This article presents two new rectangular elements for analyzing the plane problems. To 

establish the suggested formulation, a complementary energy functional is utilized within an 

element. In order to calculate more accurate stresses, the well-known Airy stress function is 

included in the new elements. To reach this aim, some basic analytical solutions are assigned for 

the stress functions. These trial answers have some unknown parameters, which can be calculated 

by the principle of minimum complementary energy. In this procedure, two novel hybrid-

rectangular triangular elements are formulated. Authors’ elements have 16 and 40 degrees of 

freedom. Several numerical examples are solved to verify elements’ performances. It is found that 

the suggested formulations can lead to accurate structural displacements and stresses.  

 

 

2. Energy functional for airy stress function 
 

In the finite element method, the corresponding energy functional is written in the following 

form:  

Π𝐶 = Π𝐶
∗ + 𝑉𝐶

∗ =
1

2
∫∫ 𝜎𝑇𝐶𝜎𝑡𝑑𝐴 −∫ 𝑇𝑇�̅�𝑡𝑑𝑠

1

𝛤

1

𝐴𝑒
 (1) 

 Different parts of this equation are given by: 

Π𝐶
∗ =

1

2
∫∫ 𝜎𝑇𝐶𝜎𝑡𝑑𝐴

1

𝐴𝑒
 (2) 

𝑉𝐶
∗ = −∫ 𝑇𝑇�̅�𝑡𝑑𝑠

1

𝛤

 (3) 

𝜎 = {

𝜎𝑥
𝜎𝑦
𝜏𝑥𝑦

} (4) 

𝐶 =
1

𝐸′
[

1 −𝜇′ 0

−𝜇′ 1 0
0 0 2(1 + 𝜇′)

] (5) 

𝑇 = {
𝑇𝑥
𝑇𝑦
} (6) 

�̅� = {
�̅�
�̅�
} (7) 

Where, Π𝐶
∗  and 𝑉𝐶

∗ are the corresponding energy within the element and along the element 

boundaries, respectively. Moreover, t, 𝜎, T, U, C and 𝜎𝑇are the thickness of the element, the 

stress vector, the surface traction force vector through the element boundaries, the displacement 

vector along element boundaries, the elastic flexibility matrix and the stress transposed vector, 

correspondingly. Also, 𝑇𝑇 is the surface traction force transposed vector, and  𝑇𝑥 and 𝑇𝑦 are 

the surface traction forces transposed vector is x and y direction, respectively. Furthermore, in the 
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plane stress problems, 𝐸′ = 𝐸, 𝜇′ = 𝜇 and for the plane strain cases, 𝐸′ = 𝐸/(1 − 𝜇2) and 

𝜇′ = 𝜇/(1 − 𝜇). It should be reminded that 𝐸 and 𝜇 are the Young’s modulus and Poisson’s 

ratio, respectively. For the plane problems, the Airy stress function, 𝜑, the stress vector, 𝜎 , can 

be defined as follows: 

𝜎 = {

𝜎𝑥
𝜎𝑦
𝜏𝑥𝑦

} =

{
  
 

  
 
𝜕2𝜑

𝜕𝑦2

𝜕2𝜑

𝜕𝑥2

−
𝜕2𝜑

𝜕𝑥𝜕𝑦}
  
 

  
 

= �̃�(𝜑) (8) 

Where, 𝜎𝑥, 𝜎𝑦 and 𝜏𝑥𝑦 are the normal stress in x-direction, normal stress in y-direction 

a(9)nd the shear stress, respectively. Applying the direction cosines, the surface traction force 

vector through the element boundaries has the next formulas: 

𝑇 = {
𝑇𝑥
𝑇𝑦
} = [

𝑙 0 𝑚
0 𝑚 𝑙

] {

𝜎𝑥
𝜎𝑦
𝜏𝑥𝑦

} = 𝐿�̃�(𝜑) (9) 

𝐿 = [
𝑙 0 𝑚
0 𝑚 𝑙

] 
(10) 

Where, 𝑙 and m are the direction cosines of the outer normal, n, in the element boundaries. By 

substituting equations (8) and (9) into equation (1), the corresponding energy functional can be 

found as: 

𝛱𝐶 = 𝛱𝐶
∗ + 𝑉𝐶

∗ =
1

2
∫∫ �̃�(𝜑)𝑇𝐶�̃�(𝜑)𝑡𝑑𝐴 − ∫ (𝐿�̃�(𝜑))𝑇�̅�𝑡𝑑𝑠

1

𝛤

1

𝐴𝑒
 (11) 

Different parts of the last relation have the following forms: 

𝛱𝐶
∗ = 𝛱𝐶

∗ =
1

2
∫∫ �̃�(𝜑)𝑇𝐶�̃�(𝜑)𝑑𝐴

1

𝐴𝑒
 (12) 

𝑉𝐶
∗ = −∫ (𝐿�̃�(𝜑))𝑇𝑡𝑑𝑠

1

𝛤

 (13) 

According to the basic equations of the finite element method, the element formulation is 

performed by using the energy functional containing the Airy stress function. 

 

 

3. Analytical solutions of the stress function 
 

In the plane problems with nobody forces, the Airy stress function satisfies the following 

equation: 
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𝛻4𝜑 =
𝜕4𝜑

𝜕𝑦4
+ 2

𝜕4𝜑

𝜕𝑥2𝜕𝑦2
+
𝜕4𝜑

𝜕𝑥4
 (14) 

In order to choose appropriate trial functions for establishing a new element, the following 

principles should be taken into account: 

(1) The basic analytical solutions of the stress function should be selected to include the terms 

from the lowest-order to the higher-order. 

(2) The resulting stress fields should hold completeness in the Cartesian Coordinates. 

In this research, two new hybrid-rectangular elements are formulated. One of them is an eight-

node rectangular element, which is named AR8. As it is seen in Fig. 1, this element possesses eight 

nodes and sixteen degrees of freedom. The second recommended element, which is called AR20, 

has twenty nodes and forty degrees of freedom. According to Fig. 1, all the nodes are located in 

the element sides and corners. Furthermore, it should be mentioned that the edges of the elements 

are curved. These sorts of elements are recommended to study their convergence power to the 

exact solutions. According to the number of nodes and degrees of freedoms in the element, stress 

function can be obtained. Therefore, all stress function parameters are found and listed in Tables 1-

2. It should be mentioned that two types of coordinate systems, which are illustrated in Fig. 1, are 

used in this research. One of them is the Cartesian Coordinates, and the other is the Area 

Coordinates.  

 

 

 

 
 

Fig. 1. Two proposed rectangular elements, AR8 and AR20 
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Table 1 Basic analytical solutions of stress function and stresses for AR8 

AR8 

𝑖 1 2 3 4 5 6 7 8 

𝜑𝑖 𝑥 + 𝑦 𝑥𝑦 𝑦2 𝑥2 𝑥2 + 𝑦2 𝑦2𝑥2 𝑥2𝑦 + 𝑦2𝑥 𝑥3 

𝜎𝑥 0 0 2 0 2 2𝑥2 2x 0 

𝜎𝑦 0 0 0 2 2 2𝑦2 2y 6x 

𝜏𝑥𝑦 0 -1 0 0 -x-y -4xy -2x-2y 0 

𝑖 9 10 11 12 13 14 15 

𝜑𝑖 𝑦3 𝑥3 + 𝑥𝑦2 𝑦3 + 𝑦𝑥2 𝑦4 𝑥3𝑦 𝑦3𝑥 𝑦4 

𝜎𝑥 6y 2x 6y 12𝑦2 0 6xy 0 

𝜎𝑦 0 6x 2y 0 6xy 0 12𝑥2 

𝜏𝑥𝑦 0 -2y -2x 0 -3𝑥2 -3𝑦2 0 

 

 

4. Calculating the interpolation functions 
 

At this stage, the degrees of freedom for the new elements are defined. According to Fig. 1, the 

element nodal displacement vector, 𝑞𝑒 , for AR8 has the following shape: 

𝑞𝑒8 = [𝑢1   𝑣1   𝑢2   𝑣2   𝑢3   𝑣3   𝑢4   𝑣4   𝑢5   𝑣5   𝑢6   𝑣6  𝑢7   𝑣7  𝑢8   𝑣8] (15) 

Similarly, the next nodal displacement can be written for AR20: 

𝑞𝑒20 = [𝑢1  𝑣1  𝑢2  𝑣2  𝑢3  𝑣3  𝑢4  𝑣4  𝑢5  𝑣5  𝑢6  𝑣6 𝑢7 𝑣7  𝑢8  𝑣8   𝑢9   𝑣9   𝑢10   𝑣10    

𝑢11  𝑣11  𝑢12  𝑣12  𝑢13  𝑣13  𝑢14  𝑣14  𝑢15  𝑣15  𝑢16  𝑣16  𝑢17  𝑣17  𝑢18  𝑣18  𝑢19  𝑣19  𝑢20  𝑣20] 
(16) 

Where, 𝑢𝑖 and 𝑣𝑖 are the nodal displacements, belong to the x and y directions. Based on these 

degrees of freedom, there are different analytical solutions for the stress function. All of them are 

presented in Tables 1 and 2.  In the succeeding lines, the interpolation functions are established. 

For AR8, the next relationships are calculated and confirmed: 

𝑁8 =

{
 
 
 

 
 
 
𝑁1
𝑁2
𝑁3
𝑁4
𝑁5
𝑁6
𝑁7
𝑁8}
 
 
 

 
 
 

=

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 −

1

4
(1 + 𝜉1𝜉)(1 + 𝜂1𝜂)(1 − 𝜉1𝜉 − 𝜂1𝜂)

−
1

4
(1 + 𝜉2𝜉)(1 + 𝜂2𝜂)(1 − 𝜉2𝜉 − 𝜂2𝜂)

−
1

4
(1 + 𝜉3𝜉)(1 + 𝜂3𝜂)(1 − 𝜉3𝜉 − 𝜂3𝜂)

−
1

4
(1 + 𝜉4𝜉)(1 + 𝜂4𝜂)(1 − 𝜉4𝜉 − 𝜂4𝜂)

1

2
(1 − 𝜉2)(1 − 𝜂5𝜂)

1

2
(1 − 𝜂2)(1 − 𝜉6𝜉)

1

2
(1 − 𝜉2)(1 − 𝜂7𝜂)

1

2
(1 − 𝜂2)(1 − 𝜉8𝜉) }

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

  (17) 
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Table 2 Basic analytical solutions of stress function and stresses for AR20 

AR20 

𝑖 1 2 3 4 5 6 7 8 

𝜑𝑖 x y 𝑥2 xy 𝑦2 −𝑥2 − 𝑦2 𝑥3 
−𝑥2𝑦
− 𝑥𝑦2 

𝜎𝑥 0 0 0 0 2 −2 0 −2𝑥 

𝜎𝑦 0 0 2 0 0 −2 6𝑥 −2𝑦 

𝜏𝑥𝑦 0 0 0 1 0 2𝑥 + 2𝑦 0 2𝑥 + 2𝑦 

𝑖 9 10 11 12 13 14 15 16 

𝜑𝑖 𝑦3 𝑥4 𝑥2𝑦2 −𝑥3𝑦 − 𝑥𝑦3 𝑥4 𝑥5 𝑥4𝑦 𝑥𝑦4 

𝜎𝑥 6y 0 2𝑥2 −6𝑥𝑦 0 0 0 12𝑥𝑦2 

𝜎𝑦 0 12𝑥2 2𝑦2 −6𝑥𝑦 12𝑥2 20𝑥3 12𝑥2𝑦 0 

𝜏𝑥𝑦 0 0 −4𝑥𝑦 3𝑥2 + 3𝑦2 0 0 −4𝑥3 −4𝑥3 

𝑖 17 18 19 20 21 22 23 24 

𝜑𝑖 𝑦5 
−𝑥3𝑦2

− 𝑥2𝑦3 
𝑥6 𝑥5𝑦 𝑥4𝑦2 −𝑥3𝑦3 𝑥2𝑦4 𝑥𝑦5 

𝜎𝑥 20𝑦3 −2𝑦𝑥3 0 0 2𝑥4 −6𝑦𝑥3 12𝑥2𝑦2 20𝑥𝑦3 

𝜎𝑦 0 
−6𝑥𝑦2

− 2𝑦3 
30𝑥4 20𝑥3𝑦 12𝑥2𝑦2 −6𝑥𝑦3 2𝑦4 0 

𝜏𝑥𝑦 0 
6𝑥2𝑦
+ 6𝑥𝑦2 

0 5𝑥4 −8𝑥3𝑦 9𝑥2𝑦2 −8𝑥𝑦3 −5𝑦4 

𝑖 25 26 27 28 29 30 31 32 

𝜑𝑖 𝑦6 −𝑥7 𝑥6𝑦 𝑥5𝑦2 
−𝑥4𝑦3

− 𝑥3𝑦4 
𝑥2𝑦5 𝑥𝑦6 −𝑦7 

𝜎𝑥 30𝑦4 0 0 2𝑥5 
−6𝑥4𝑦
− 12𝑥3𝑦2 

20𝑥2𝑦3 30𝑥𝑦4 −42𝑦5 

𝜎𝑦 0 −42𝑥5 30𝑥4𝑦 20𝑥3𝑦2 
−12𝑥2𝑦3

− 6𝑥𝑦4 
2𝑦5 0 0 

𝜏𝑥𝑦 0 0 −6𝑥5 −10𝑥4𝑦 
12𝑥3𝑦2

+ 12𝑥2𝑦3 
−10𝑥𝑦4 −6𝑦5 0 

𝑖 33 34 35 36 37 38 39 

𝜑𝑖 
−𝑥4𝑦2

− 𝑥2𝑦4 

−𝑥5𝑦2

− 𝑥2𝑦5 

−𝑥4𝑦
− 𝑥𝑦4 

−𝑥4𝑦3

+ 𝑥3𝑦3

− 𝑥3𝑦4 

−𝑥3𝑦2

+ 𝑥2𝑦2

− 𝑥2𝑦3 

𝑥2𝑦 − 𝑥𝑦
+ 𝑥𝑦2 

𝑥5𝑦2 − 𝑥4𝑦2 − 𝑥2𝑦4

+ 𝑥2𝑦5 

𝜎𝑥 
−2𝑥4

− 12𝑥2𝑦2 

−2𝑥5

− 20𝑥2𝑦3 
−12𝑥𝑦2 

−6𝑦𝑥4

+ 6𝑥3𝑦
− 12𝑥3𝑦2 

−2𝑥3

+ 2𝑥2

− 6𝑥2𝑦 

2𝑥 
2𝑥5 − 2𝑥4 − 12𝑥2𝑦2

+ 20𝑥2𝑦3 

𝜎𝑦 
−12𝑥2𝑦2

− 2𝑦4 

−20𝑥3𝑦2

− 2𝑦5 
−12𝑥2𝑦 

−12𝑥2𝑦3

+ 6𝑥𝑦3

− 6𝑥𝑦4 

−6𝑥𝑦2

+ 2𝑦2

− 2𝑦3 

2𝑦 
20𝑥3𝑦2 − 12𝑥2𝑦2 

−2𝑦4 + 2𝑦5 

𝜏𝑥𝑦 
8𝑥3𝑦
+ 8𝑥𝑦3 

10𝑥4𝑦9
+ 10𝑥𝑦4 

4𝑥3 + 4𝑦3 

12𝑥3𝑦2

− 9𝑥2𝑦2

+ 12𝑥2𝑦3 

6𝑥2𝑦
− 4𝑥𝑦
+ 6𝑥𝑦2 

−2𝑥 − 2𝑦 
−10𝑥4𝑦 + 8𝑥3𝑦
+ 8𝑥𝑦3 − 10𝑥𝑦4 
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Similarly, the following interpolation functions are belonged to AR20: 

  𝑁20 =

{
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
𝑁1
𝑁2
𝑁3
𝑁4
𝑁5
𝑁6
𝑁7
𝑁8
𝑁9
𝑁10
𝑁11
𝑁12
𝑁13
𝑁14
𝑁15
𝑁16
𝑁17
𝑁18
𝑁19
𝑁20}

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

=

{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1

8
(1 + 𝜉1𝜉)(1 + 𝜂1𝜂)(1 + 𝜉1𝜂1)

1

8
(1 + 𝜉2𝜉)(1 + 𝜂2𝜂)(1 + 𝜉2𝜂2)

1

8
(1 + 𝜉3𝜉)(1 + 𝜂3𝜂)(1 + 𝜉3𝜂3)

1

8
(1 + 𝜉4𝜉)(1 + 𝜂4𝜂)(1 + 𝜉4𝜂4)

1

8
(1 + 𝜉5𝜉)(1 + 𝜂5𝜂)(1 + 𝜉5𝜂5)

1

8
(1 + 𝜉6𝜉)(1 + 𝜂6𝜂)(1 + 𝜉6𝜂6)

1

8
(1 + 𝜉7𝜉)(1 + 𝜂7𝜂)(1 + 𝜉7𝜂7)

1

8
(1 + 𝜉8𝜉)(1 + 𝜂8𝜂)(1 + 𝜉8𝜂8)

1

4
(1 − 𝜉2)(1 + 𝜂9𝜂)(1 + 𝜉9𝜂9)

1

4
(1 + 𝜉10𝜉)(1 − 𝜂

2)(1 + 𝜉10𝜂10)

1

4
(1 − 𝜉2)(1 + 𝜂11𝜂)(1 + 𝜉11𝜂11)

1

4
(1 + 𝜉12𝜉)(1 − 𝜂

2)(1 + 𝜉12𝜂12)

1

4
(1 − 𝜉2)(1 + 𝜂13𝜂)(1 + 𝜉13𝜂13)

1

4
(1 + 𝜉14𝜉)(1 − 𝜂

2)(1 + 𝜉14𝜂14)

1

4
(1 − 𝜉2)(1 + 𝜂15𝜂)(1 + 𝜉15𝜂15)

1

4
(1 + 𝜉16𝜉)(1 − 𝜂

2𝜉2)(1 + 𝜉16𝜂16)

1

4
(1 − 𝜉2)(1 + 𝜂17𝜂)(1 + 𝜉17𝜂17)

1

4
(1 + 𝜉18𝜉)(1 − 𝜂

2𝜉2)(1 + 𝜉18𝜂18)

1

4
(1 − 𝜉2)(1 + 𝜂19𝜂)(1 + 𝜉19𝜂19)

1

4
(1 + 𝜉20𝜉)(1 − 𝜂

2𝜉2)(1 + 𝜉20𝜂20)}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (18) 
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5. Establishing the new elements 
 

At the first step, the Airy stress function can be defined in terms of unknown parameters. A 

general form of this function is as follows: 

𝜑 =∑𝜑𝑖𝛽𝑖

𝑛

𝑖=1

 (19) 

Where, n is the number of analytical solution, and the other parts are given below: 

𝜑 = [𝜑1  𝜑2…… 𝜑𝑛]          𝑎𝑛𝑑         𝛽 = [𝛽1  𝛽2…… 𝛽𝑛] (20) 

Here, 𝜑𝑖 (i=1-n) are the number of analytical solutions for the stress function and  𝛽1 (i=1-n) 

(i ¼ 1-15) are the number of unknown constants. Upon substitution of Eq. (21) into Eq. (12), the 

subsequent equation will be achieved: 

Π𝐶
∗ =

1

2
𝛽𝑇𝑀𝛽 (21) 

𝑀 = ∫∫ 𝑆𝑇𝐶𝑆𝑡𝑑𝐴
1

𝐴𝑒
 (22) 

Where, S and M are the matrix expressions.  Having these matrices, the analysis will be 

achieved. After performing the required calculations, the next result for AR8 will be found: 

𝑆8 = [

0 0 2
0 0 0
0 −1 0

    
0 2 2𝑥2

2 2 2𝑦2

0 −𝑥 − 𝑦 −4xy
   

2x 0 6y
2y 6x 0

−2x − 2y 0 0
    

2x 6y
6x 2y
−2y −2x

   
12𝑦2 0
0 6xy

0 −3𝑥2 

] 

[

6xy 0

0 12𝑥2

−3𝑦2 0
] 

(23) 

AR20 has the following formula: 

𝑆20 = [
0 0 0
0 0 2
0 0 0

    
0 2 −2
0 0 −2
1 0 2𝑥 + 2𝑦

   

0 −2𝑥 6y
6𝑥 −2𝑦 0
0 2𝑥 + 2𝑦 0

   
0 2𝑥2

12𝑥2 2𝑦2

0 −4𝑥𝑦
      ] 

−6𝑥𝑦 0 0

−6𝑥𝑦 12𝑥2 20𝑥3

3𝑥2 + 3𝑦2 0 0

0 12𝑥𝑦2 20𝑦3

     12𝑥2𝑦 0 0

−4𝑥3 −4𝑥3 0

   

−2𝑦𝑥3 0 0

−6𝑥𝑦2 − 2𝑦3 30𝑥4 20𝑥3𝑦

6𝑥2𝑦 + 6𝑥𝑦2 0 5𝑥4
 

[   

2𝑥4 −6𝑦𝑥3 12𝑥2𝑦2

12𝑥2𝑦2 −6𝑥𝑦3 2𝑦4

−8𝑥3𝑦 9𝑥2𝑦2 −8𝑥𝑦3
    

20𝑥𝑦3 30𝑦4 0

0 0 −42𝑥5

−5𝑦4 0 0

   

0 2𝑥5 −6𝑥4𝑦 − 12𝑥3𝑦2

30𝑥4𝑦 20𝑥3𝑦2 −12𝑥2𝑦3 − 6𝑥𝑦4

−6𝑥5 −10𝑥4𝑦 12𝑥3𝑦2 + 12𝑥2𝑦3
] 

[

20𝑥2𝑦3 30𝑥𝑦4 −42𝑦5

2𝑦5 0 0

−10𝑥𝑦4 −6𝑦5 0

    

−𝑥4𝑦2 − 𝑥2𝑦4 −2𝑥5 − 20𝑥2𝑦3 −12𝑥𝑦2

−2𝑥4 − 12𝑥2𝑦2 −20𝑥3𝑦2 − 2𝑦5 −12𝑥2𝑦

8𝑥3𝑦 + 8𝑥𝑦3 10𝑥4𝑦9 + 10𝑥𝑦4 4𝑥3 + 4𝑦3
] 

(24) 
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[

−6𝑦𝑥4 + 6𝑥3𝑦 − 12𝑥3𝑦2 −2𝑥3 + 2𝑥2 − 6𝑥2𝑦 2𝑥

−12𝑥2𝑦3 + 6𝑥𝑦3 − 6𝑥𝑦4 −6𝑥𝑦2 + 2𝑦2 − 2𝑦3 2𝑦

12𝑥3𝑦2 − 9𝑥2𝑦2 + 12𝑥2𝑦3 6𝑥2𝑦 − 4𝑥𝑦 + 6𝑥𝑦2 −2𝑥 − 2𝑦

  

2𝑥5 − 2𝑥4 − 12𝑥2𝑦2 + 20𝑥2𝑦3

20𝑥3𝑦2 − 12𝑥2𝑦2 − 2𝑦4 + 2𝑦5

−10𝑥4𝑦 + 8𝑥3𝑦 + 8𝑥𝑦3 − 10𝑥𝑦4
  ] 

All authors’ elements are the hybrid type and curved sided. Based on this fact, the next formula 

can be recognized: 

𝑥 =∑𝑁𝑖
0(𝜉1. 𝜉2. 𝜉3)𝑥𝑖 .  𝑦 =∑𝑁𝑖

0(𝜉1. 𝜉2. 𝜉3)𝑦𝑖  .  

𝑛

𝑖=1

𝑛

𝑖=1

 (25) 

Here, (𝑥𝑖,𝑦𝑖) refer to the Cartesian coordinates of the node i and 𝑁𝑖
0(𝜉1. 𝜉2. 𝜉3) is its shape 

function. Therefore, the matrix M can be written as follows: 

𝑀 = ∫ ∫ ∫ 𝑆(𝜉1. 𝜉2. 𝜉3)
𝑇𝐶𝑆(𝜉1. 𝜉2. 𝜉3)𝑡|𝑗|𝑑𝜉1𝑑𝜉2𝑑𝜉3

1

−1

1

−1

1

−1

 (26) 

Where, |𝑗| is the Jacobian determinant. Substitution of Equation (21) into Equation (13) 

yields: 

𝑉𝐶
∗ = −𝛽𝑇𝐻𝑞𝑒 (27) 

𝐻 = ∫ 𝑆𝑇𝐿𝑇�̅�𝑡𝑑𝑆
1

𝛤

 (28) 

Matrices, �̅� and H can be obtained according to the below relationships: 

�̅�8 = [
𝑁1
0 0

0 𝑁1
0    
𝑁2
0 0

0 𝑁2
0    
𝑁3
0 0

0 𝑁3
0    
𝑁4
0 0

0 𝑁4
0    
𝑁5
0 0

0 𝑁5
0   
𝑁6
0 0

0 𝑁6
0    
𝑁7
0 0

0 𝑁7
0] 

[
𝑁8
0 0

0 𝑁8
0] 

(29) 

�̅�20 = [
𝑁1
0 0

0 𝑁1
0    
𝑁2
0 0

0 𝑁2
0    
𝑁3
0 0

0 𝑁3
0    
𝑁4
0 0

0 𝑁4
0    
𝑁5
0 0

0 𝑁5
0    
𝑁6
0 0

0 𝑁6
0   
𝑁7
0 0

0 𝑁7
0] 

[
𝑁8
0 0

0 𝑁8
0    
𝑁9
0 0

0 𝑁9
0    
𝑁10
0 0

0 𝑁10
0     

𝑁11
0 0

0 𝑁11
0     

𝑁12
0 0

0 𝑁12
0     

𝑁13
0 0

0 𝑁13
0    

𝑁14
0 0

0 𝑁14
0 ] 

[
𝑁15
0 0

0 𝑁15
0     

𝑁16
0 0

0 𝑁16
0     

𝑁17
0 0

0 𝑁17
0     

𝑁18
0 0

0 𝑁18
0     

𝑁19
0 0

0 𝑁19
0     

𝑁20
0 0

0 𝑁20
0 ] 

(30) 

H can be written in the next form: 

𝐻 = ∫ 𝑆𝑇𝐿𝑇�̅�𝑡𝑑𝑠
1

𝛤𝑖𝑗

+∫ 𝑆𝑇𝐿𝑇�̅�𝑡𝑑𝑠
1

𝛤𝑗𝑘

+∫ 𝑆𝑇𝐿𝑇�̅�𝑡𝑑𝑠
1

𝛤𝑘𝑙

 (31) 

Where,  𝛤𝑖𝑗, 𝛤𝑗𝑘 and 𝛤𝑘𝑙 denote the element edges. The direction cosines of the outer normal 

of each element edge, 𝑙 and 𝑚, can be expressed as follows: 
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𝑙 =
𝑑𝑦

𝑑𝑠
  .  𝑚 = −

𝑑𝑥

𝑑𝑠
 (32) 

By inserting Eq (21) and (28) into Eq (11), the consequent element complementary energy 

function can be found: 

Π𝐶
∗ =

1

2
𝛽𝑇𝑀𝛽 − 𝛽𝑇𝐻𝑞𝑒 (33) 

To establish elemental formulation, by using the principle of minimum complementary energy, 

Π𝐶 should be minimized:  

𝜕Π𝐶
𝜕𝛽

= 0 (34) 

After calculating the nodal displacement vector, 𝑞𝑒, the unknown constant vector, 𝛽 , can be 

achieved by the next relation:  

𝛽 = 𝑀−1𝐻𝑞𝑒 (35) 

Substitution of Eq. (39) into (37) yields:  

Π𝐶
∗ =

1

2
𝑞𝑒𝑇𝐾∗𝑞𝑒 (36) 

𝐾∗ = (𝑀−1𝐻)𝑇𝐻 (37) 

In the last equation, matrix K* can be considered as the equivalent stiffness matrix. This matrix 

can be used in the way as the conventional finite element technique. After finding the element 

nodal displacement vector, 𝑞𝑒, the element stresses can be written as: 

𝜎 = 𝑆𝑀−1𝐻𝑞𝑒 (38) 

Having the stress function for each element, stresses at all points will be in hand. In fact, the 

stress value at any point within the element can be determined by inserting the Cartesian 

coordinates of that point into Eq. (42).  

 

6. Steps of analysis 
 

In order to determine the responses of a structure by using presented elements, the following 

steps should be employed: 

1. The external boundary conations (supports and loads) should be determined.  

2. The pattern of mesh (number of elements and nodes point) should be given. 

3. The matrix of S should be calculated based on the presented values of function for different 

points (𝜑𝑖) 
4. The value of H, which is based on the shape functionn(𝑁𝑖),  and the value of S, should be 

determined. It should be mentioned that the value of H is formed for the whole structure.   

5. By using Eq. 38, the stress function, which is the function of the value of x and y, is 

determined. The boundary condition should be applied on the obtained function. 

6. By inserting the value of different points, the value of stresses in each coordinate should be 

calculated.  
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7. The strain values should be calculated by using the stiffness matrix and the stress matrix. 

8. By using the integration of the strain matrix, the matrix of displacement for the structure 

should be calculated.  

 

 

7. Numerical examples 
 

Ten different problems are considered to assess the performance of the two new elements. To 

perform a widespread study, the presented formulations are used in authors’ program. The obtained 

outcomes by this program are compared with the well-known available reference Fu et al. (2010). 

Based on the numerical achieved values, required brief discussion will be given on the validity and 

efficiency of the suggested elements. 

 

7.1 Example 1 
 

A cantilever beam divided by two different elements, as shown in Fig. 2. In this example, the 

Poisson’s ratio, modulus of elasticity and thickness are 0.25, 1 × 106 and 0.001, respectively. 

Furthermore, both pure bending, under moment, M, and the linear bending under transverse force, 

P, are considered, as an external loading. It should be mentioned that the loads are applied on the 

free end of the beam.  

 
Fig. 2 Example 1 with different elements 
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In this example, the displacement outcomes corresponding to the constant strain case are 

calculated by the following equation: 

𝑢 = 10−3 (
𝑥 + 𝑦

2
) , 𝑢 = 10−3 (

𝑦 + 𝑥

2
)  (39) 

For this example, the exact stress response is given by: 

𝜎𝑥 = 𝜎𝑦 = 1333.3333    ,   𝜏𝑥𝑦 = 400.0 (40) 

Displacement outcomes and the coordinate of nodes are represented in Table 3. It should be 

mentioned that these displacements belong to the boundary conditions. Additionally, the exact 

displacement results are shown in Table 2. These obtained answers demonstrate that the new 

elements have a suitable performance. In addition, all the outcomes exhibit that more accurate 

answers can be found by increasing the number of degrees of freedom.  
 

 

Table 3 The coordinates and displacements of control nodes in the patch test 

Coordinates 

Elements Nodes 
Displacements × 10−3 

𝑢𝑖 𝑣𝑖 
𝑢𝑖 𝑣𝑖 

0.04 0.02 

8-nodes element  

(Fu et al. 2010) 

1 0.05 0.04 

0.18 0.03 2 0.195 0.12 

0.16 0.08 3 0.20 0.16 

0.08 0.08 4 0.12 0.12 

0.00 0.00 5 0.00 0.00 

0.24 0.00 6 0.24 0.12 

0.24 0.12 7 0.30 0.24 

0.00 0.12 8 0.06 0.12 

0.04 0.02 

AR8 

4 0.04 0.04 

0.18 0.03 3 0.19 0.11 

0.16 0.08 14 0.20 0.14 

0.08 0.08 9 0.11 0.11 

0.00 0.00 1 0.00 0.00 

0.24 0.00 2 0.22 0.10 

0.24 0.12 15 0.295 0.29 

0.00 0.12 10 0.05 0.11 

0.04 0.02 

AR20 

4 0.05 0.04 

0.18 0.03 3 0.195 0.12 

0.16 0.08 35 0.20 0.16 

0.08 0.08 21 0.12 0.12 

0.00 0.00 1 0.00 0.00 

0.24 0.00 2 0.24 0.12 

0.24 0.12 36 0.30 0.24 

0.00 0.12 22 0.06 0.12 
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7.2 Example 2 
  

As it is shown in Fig. 2, a cantilever wedge is under a uniformly distributed load q. Due to its 

triangular shape, the wedge is not easy to be divided by undistorted quadrilateral elements. The 

theoretical solutions for this problem are given by the following formula Cen et al. (2012): 

{
 
 

 
 𝜎𝑟 =

𝑞

𝑡𝑎𝑛𝛼 − 𝛼
(𝛼 − 𝜃 − 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 − 𝑠𝑖𝑛2𝜃𝑡𝑎𝑛𝛼)

𝜎𝜃 =
𝑞

𝑡𝑎𝑛𝛼 − 𝛼
(𝛼 − 𝜃 + 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 − 𝑐𝑜𝑠2𝜃𝑡𝑎𝑛𝛼)

𝜏𝑟𝜃 =
𝑞

2(𝑡𝑎𝑛𝛼 − 𝛼)
(1 + 𝑠𝑖𝑛2𝜃 − 𝑐𝑜𝑠2𝜃 − 2𝑡𝑎𝑛𝛼𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃)

 (41) 

In this example, the obtained outcomes with the different number of mesh are considered. 

Then, the analytical trial function method for developing an 8-node and 20-plane element 

suggested by Cen et al. (2012) is applied for the comparison purpose. The typical meshes are 

shown in Fig. 8. In this example, the Poisson’s ratio, modulus of elasticity and thickness are 0.25, 

1 × 107 and 0.1, respectively. It should be mentioned that P=1 for thin curved bar; and 100 for 

thick curved bar are distributed as 𝜏𝑥𝑦 = −
𝑃

𝑁
[𝑦 +

𝑎2𝑏2

𝑦3
−
1

𝑦
(𝑎2 + 𝑏2)].   In this formula, 𝑁 =

𝑎2 − 𝑏2 + (𝑎2 + 𝑏2)𝑙𝑜𝑔
𝑏

𝑎
. The obtained results are presented in Table 4. 

 

 

 

 
Meshes for thick curved bar: 1×2, 2×4 and 4×8 

Fig. 3 Bending of a curved bar 
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Two rectangular elements based on analytical functions 

Table 4 Normalized tip deflection at point A  

Elements 
Meshes 

1 × 2 2 × 4 4 × 8 

Q8 Cen et al. (2012) 0.6502 0.9587 0.9950 

HSF-Q8 Cen et al. (2012) 0.9028 0.9834 0.9949 

US-QUAD8 Cen et al. (2012) 0.7190 0.9615 0.9955 

AR8 0.6724 0.9736 0.9999 

AR20 0.914 0.9301 0.9358 

Exact 0.936 

 

 

 
Fig. 4 Cantilever beam with different elements a) under pure bending b) under transverse load 

 

 

7.3 Example 3 
 

A cantilever beam is meshed with the different elements, as it is presented in Fig. 4. For this 

problem, two loading types are applied. The first one is pure bending, and the other type is 

bending under transverse force. In this figure, the numbers of nodes are not shown, but they are the 

same for all meshes. 

In Fig. 4, a pure moment of 𝑀 = 2000 is distributed as 𝑓𝑥 = −120𝑦 + 120 . Linear loading 

of 𝑃 = 300 is distributed by 𝑓𝑦 = 75𝑦 − 37.5𝑦
2  . Moreover, a moment of 𝑀𝑃 = 3000 is 

distributed as 𝑓𝑥 = −180𝑦 + 180. It should be added that the Young’s modulus, Poisson’s ratio 

and thickness of the structure are 1500, 0.25 and 10, respectively. The outcomes of the vertical 

deflection at the point A, (𝑣𝐴), and the stress at the point B, (𝜎𝑥𝐵), are given in Table 5. As it is 

seen in Table 5, both AR8 and AR20 have more accurate stress and displacement responses than 

the others.  

 

(a) 

(b) 
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Table 5 The displacement and stresses at selected at point A and B in Fig. 4 

Element 
Moment M Load P 

𝑣𝐴 𝜎𝑥𝐵 𝑣𝐴 𝜎𝑥𝐵 

Q8 Fu et al. (2010) 99.7 -2984 101.5 -4422 

QACM8 Fu et al. (2010) 101.3 -2920 102.8 -4320 

ATF-Q8 Fu et al. (2010) 100.0 -3000 102.6 -4442 

AR8 99.7 -2983 101.4 -4422 

AR20 99.9 -2998 102.6 -4501 

Exact 100.0 -3000 102.6 -4500 

 

 
Fig. 5. Mesh for the cantilever beam 

 
Table 6 The deflections at selected locations for bending problem of a cantilever beam 

Element 
Displacement 

Point A Pint B Point C Average 

Q8 Fu et al. (2010) 0.3481 0.3474 0.3481 0.3479 

QACM8 Fu et al. (2010) 0.3524 0.3517 0.3519 0.3520 

ATF-Q8 Fu et al. (2010) 0.3567 0.3561 0.3558 0.3562 

AR8 0.3479 0.3472 0.3481 0.3477 

AR20 0.3557 0.3555 0.3559 0.3557 

Exact 0.3558 

 
 
7.4 Example 4 
 

In this part, a cantilever beam meshes as shown in Fig. 5. The displacement at points A, B and 

C are found and presented in Table 6. According to the obtained outcomes, new rectangular 

element, AR20, with 40 degrees of freedom gives the accurate values. In this example, E, 𝜇 and t 

are considered as 300000, 0.25 and 1.0, respectively. Furthermore, P is equal to 40 and is 

distributed by 𝑓𝑦 =
5𝑦

3
−
5𝑦2

36
.  

 

7.5 Example 5 
 
 According to Fig. 7, a cantilever wedge is subjected to a uniformly distributed load q. 

Numerical results and the percentage errors of the radial stresses at the selected points are listed in 

164



 

 

 

 

 

 

Two rectangular elements based on analytical functions 

Table 5. Again, the presented element, AR20, performs very well for such a complex bending 

problem. In this example, E, 𝜇 and t are considered as 10000, 0.333 and 1.0, respectively. The 

theoretical solutions for this problem are available Fu et al. (2010): 

{
 
 

 
 𝜎𝑟 =

𝑞

𝑡𝑎𝑛𝛼 − 𝛼
(𝛼 − 𝜃 − 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 − 𝑠𝑖𝑛2𝜃𝑡𝑎𝑛𝛼)

𝜎𝜃 =
𝑞

𝑡𝑎𝑛𝛼 − 𝛼
(𝛼 − 𝜃 + 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 − 𝑐𝑜𝑠2𝜃𝑡𝑎𝑛𝛼)

𝜏𝑟𝜃 =
𝑞

2(𝑡𝑎𝑛𝛼 − 𝛼)
(1 + 𝑠𝑖𝑛2𝜃 − 𝑐𝑜𝑠2𝜃 − 2𝑡𝑎𝑛𝛼𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃)

 (42) 

 

 
Fig. 6. A wedge subjected to a uniformly distributed load 

 

Table 5 Results of radial stress at selected points for a wedge subjected to a uniformly distributed 

load 

Mesh 
σr at point A (0,5) 

Cen et al.(2012) AR8 AR20 Exact 

1 × 6 7.6835 (1.38%) 7.6820 (1.35%) 7.5934 (0.19%) 

7.5792 2 × 12 7.5894 (0.13%) 7.5835 (0.05%) 7.5812 (0.02%) 

4 × 24 7.5806(0.02%) 7.5805 (0.02%) 7.5794 (0.00%) 

 σr at point B (1,5) 

1 × 6 -7.7920 (1.47%) -7.7512 (0.93%) -7.7243 (0.58%) 

-7.6792 2 × 12 -7.7088 (0.39%) -7.7021 (0.29%) -7.7014 (0.28%) 

4 × 24 -7.6832 (0.05) -7.6805 (0.02%) -7.6797 (0.00%) 
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Fig. 7. Non-prismatic cantilever beam in reference Fu et al. (2010) 

 
Table 6 Results of a non-prismatic cantilever beam   

Element 𝑣𝐶 𝜎𝐴.𝑚𝑎𝑥 𝜎𝐵.𝑚𝑖𝑛 

Fu et al. (2010) 

Q8(2 × 2) 22.72 0.2479 -0.2275 

Q8 (4 × 4) 23.71 0.2421 -0.2007 

Q8 (8 × 8) 23.88 0.2390 -0.2041 

Q9 (2 × 2) 23.29 - - 

Q9 (4 × 4) 23.84 - - 

Q9 (8 × 8) 23.94 - - 

Q8𝛼 (2 × 2) 22.98 - - 

Q8𝛼 (4 × 4) 23.74 - - 

Q8𝛼 (8 × 8) 23.89 - - 

AQ8-I/II (2 × 2) 22.98 0.2523 -0.2144 

AQ8-I/II (4 × 4) 23.74 0.2415 -0.2024 

AQ8-I/II (8 × 8) 23.89 0.2389 -0.2041 

QACM8 (2 × 2) 22.98 0.1959 -0.2142 

QACM8 (4 × 4) 23.74 0.2414 -0.2024 

QACM8 (8 × 8) 23.89 0.2389 -0.2041 

ATFQ8 (2 × 2) 23.80 0.2434 -0.1771 

ATFQ8 (4 × 4) 23.96 0.2404 -0.2049 

ATFQ8 (8 × 8) 23.96 0.2373 -0.2037 

This study 
AR8 22.20 0.2298 -0.2312 

AR20 23.96 0.2360 -0.2025 

Exact 23.96 0.2362 -0.2023 
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7.6 Example 6 

 

Fig. 7 demonstrates a non-prismatic cantilever beam, which is solved in this part. The shear 

load on the structural free edge is applied, according to Fig. 7 Fu et al. (2010). After performing 

numerical analyses, the obtained outcomes of vertical displacement at point C, maximum stress at 

point A and the minimum stress at point B are shown in Table 6. These responses are compared 

with the other available ones. The authors' element, AR20, gives very good answers against a 

variety of elements. In this example, E, μ and t are considered as 1.0, 0.333 and 1.0, respectively. 

 

7.7 Example 7 
 

A thin cantilever beam is used in this example, as it is shown in Fig. 8. In order to test the 

recommended elements for the sensitivity to the mesh shapes, three different mesh shapes are 

adopted, like a rectangular, parallelogram and trapezoidal Fu et al. (2010). In this example, pure 

bending and transverse linear load are applied. Beam’s material has the following values. Young’s 

modulus, Poisson’s ratio and thickness are 107, 0.3 and 0.1, respectively. The obtained outcomes 

for this structure are given in Table 7. To illustrate the performance of the recommended elements, 

all findings are compared to each other. According to Table 7, it can be seen that the existing 

elements possess high accuracy for the rectangular element with 40 degrees of freedoms. Once 

more, the answers exhibit that the projected elements are capable of furnishing the exact solutions 

for the pure bending problem. 

 

7.8. Example 8 
 

Fig. 9 shows the bending of a thick curved beam with different meshes. This cantilever beam is 

subjected to a transverse force Fu et al. (2010). After analyzing this structure, the outcomes of the 

vertical displacements, at point A, are given in Table 8. Good performances are achieved from this 

study. In this example, the Poisson’s ratio, modulus of elasticity and thickness are 0.0, 1000and 

1.0, respectively.  

 

 

 
Fig. 8. A thin cantilever beam with different meshes 
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Table 7 Normalized displacement results for cantilever beam with different meshes 

Element Load P Moment M 

Fu et al. (2010) 

Q8 (mesh a) 0.951 1.000 

Q8 (mesh b) 0.919 0.994 

Q8 (mesh c) 0.854 0.939 

QACM8 (mesh a) 0.951 1.000 

QACM8 (mesh b) 0.903 1.000 

QACM8 (mesh c) 0.895 1.000 

ATF-Q8 (mesh a) 0.978 1.000 

ATF-Q8 (mesh b) 0.968 1.000 

ATF-Q8 (mesh c) 0.996 1.000 

This study 
AR8 0.952 1.000 

AR20 0.998 1.000 

Exact 1.000 1.000 

 

 
Fig. 9 Bending of a thick curved beam with different meshes according to Cen et al. (2012) 

 

Table 8 The tip displacement of a thick curving beam with different meshes 

Element Displacement 

Cen et al. (2012) 

Q8 (1 × 1) 30.2 

Q8 (1 × 2) 77.4 

Q8 (1 × 4) 88.6 

QACM8 (1 × 1) 42.7 

QACM8 (1 × 2) 75.5 

QACM8 (1 × 4) 84.1 

ATF-Q8 (1 × 1) 56.5 

ATF-Q8 (1 × 2) 90.5 

ATF-Q8 (1 × 4) 90.4 

This study 
AR8 88.9 

AR20 90.2 

Exact 90.1 
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Two rectangular elements based on analytical functions 

 
Fig. 10 Cantilever beam divided into different elements 

 

 

As it is seen in Table 8, the presented elements can result in more accurate displacement 

outcomes for the curve members than previous elements proposed by the other researchers. Based 

on the obtained responses, the accuracy was raised by increasing the node numbers.  

 

7.9 Example 9 
 
 In this example, a cantilever beam is meshed by different elements, as it is seen in Fig. 10. 

This problem is commonly used as a benchmark for testing the sensitivity to the mesh shapes Cen 

et al. (2012). To demonstrate the behavior of the new formulation, this structure is analyzed under 

the pure bending of M=2000, and the linear bending of P=150. It should be mentioned that the 

pure bending M is distributed as 𝑓𝑥 = −120𝑦 + 120 and the linear bending P is distributed as 

𝑓𝑦 = 75𝑦 − 37.5𝑦
2. Additionally, for 𝑀𝑃 = 3000 , which is distributed as 𝑓𝑥 = −180𝑦 + 180. 

In this example, Poisson’s ratio, modulus of elasticity and thickness are 0.25, 1500 and 1.0, 

respectively.  

The obtained outcomes of the deflection at point A, and the stress 𝜎𝑥 at point B, are given in 

Tables 9 and 10. These results are compared with the deflection and the stress at the selected points 

of a cantilever beam using the distortion mode I and II according to reference Cen et al. (2012). 

Numerical outcomes in Table 10 indicate that AR20 with 40 degrees of freedom can reach the 

exact solutions for the pure bending case. 

According to Table 9 and 10, the stress can be projected with high accuracy by sing AR20. It 

should be mentioned that the performance of the proposed elements in order to predict stress fields 

is better than the other achieved responses.  
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Table 9 Normalized results for cantilever beam Cen et al. (2012).  

subjected to a pure 

bending M: distortion 

mode I 

e 0 0.5 1 2 3 4 4.9 

Deflection at point A, exact 𝑣𝐴 = 100.0 

Q8 1.000 0.9996 0.9936 0.8939 0.5971 0.3201 0.1975 

QACM8 1.000 1.000 1.002 1.007 1.019 1.037 1.069 

ATF-Q8 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

Stress at point B, exact 𝜎𝑥𝐵=-3.000 

Q8 1.000 1.011 1.040 1.079 1.235 1.235 6.416 

QACM8 1.000 0.9890 0.9677 0.8655 0.8281 0.8281 0.7793 

ATF-Q8 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

subjected to a pure 

bending M: distortion 

mode II 

Deflection at point A, exact 𝑣𝐴 = 100.0 

Q8 1.000 0.7448 0.4735 0.2486 0.1783 0.1457 0.1269 

QACM8 1.000 0.9819 0.9667 0.9450 0.9346 0.9364 0.9498 

ATF-Q8 1.000 0.9943 0.9786 0.9411 0.9163 0.9058 0.8991 

Stress at point B, exact 𝜎𝑥𝐵=-3.000 

Q8 1.000 0.7000 0.4646 0.3402 0.3167 0.2998 0.2833 

QACM8 1.000 0.9624 0.9276 0.8653 0.8111 0.7635 0.7254 

ATF-Q8 1.000 0.8797 0.7750 0.6838 0.7008 0.7512 0.7957 

subjected to a linear 

bending P: distortion 

mode I 

Deflection at point A, exact 𝑣𝐴 = 102.6 

Q8 0.9765 0.9630 0.9298 0.7992 0.5478 0.3255 0.2222 

QACM8 0.9765 0.9698 0.9483 0.8830 0.8489 0.8421 0.8470 

ATF-Q8 0.9959 0.9919 0.9839 0.9697 0.9547 0.8946 0.6916 

Stress at point B, exact 𝜎𝑥𝐵=-4.500 

Q8 0.9152 0.9251 0.9257 0.9221 0.9486 1.216 7.188 

QACM8 0.9152 0.9021 0.8585 0.7122 0.6120 0.5356 0.4681 

ATF-Q8 0.9468 0.9506 0.9521 0.9761 0.9860 0.9643 0.9321 

subjected to a linear 

bending P: distortion 

mode II 

Deflection at point A, exact 𝑣𝐴 = 102.6 

Q8 0.9765 0.7677 0.5199 0.3064 0.2379 0.2040 0.1832 

QACM8 0.9765 0.9493 0.9250 0.8850 0.8558 0.8382 0.8353 

ATF-Q8 0.9959 0.9953 0.9882 0.9696 0.9602 0.9596 0.9623 

Stress at point B, exact 𝜎𝑥𝐵=-4.500 

Q8 0.9152 0.6994 0.5088 0.3830 0.3417 0.3110 0.2854 

QACM8 0.9152 0.8790 0.8456 0.7860 0.7344 0.6895 0.6537 

ATF-Q8 0.9468 0.9079 0.8758 0.8592 0.8848 0.9167 0.9404 
 

Table 10 Normalized obtained results for cantilever beam in this study 

subjected to a pure bending M: d

istortion mode III 

Element 
Deflection at point A,  

exact 𝑣𝐴 = 100.0 

Stress at point B,  

exact 𝜎𝑥𝐵=-3.000 

AR8 0.936 0.984 

AR20 1.000 1.000 

subjected to a linear bending P: d

istortion mode II 

Element 
Deflection at point A,  

exact 𝑣𝐴 = 102.6 

Stress at point B,  

exact 𝜎𝑥𝐵=-4.500 

AR8 0.927 0.958 

AR20 1.000 1.000 
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Fig. 11 Cantilever beam under linear bending with different meshes 

 

 

7.10 Example 10 
 

According to Fig. 11, a cantilever beam is displayed under linear bending. After analyzing this 

structure, the obtained outcomes of the deflection at the selected point are demonstrated in Table 

11. The attained results show that AR20 has better performance than ATF-Q8 element. In this 

example, Poisson’s ratio, modulus of elasticity and thickness are 0.30, 107 and 1.0, respectively.  

As it is seen in Table 11, the consequences of displacement can be predicted by AR20 

appropriately. These obtained answers are better than the previous methods.  
 

 

8. Conclusion 
 

In this study, a novel formulation for developing two stress based elements are proposed.  All 

the suggested elements have rectangular shapes. According to comprehensive numerical studies, 

authors’ formulas can solve the plane problem precisely. In fact, new elements give accurate 

responses for both displacement and stress. As it is demonstrated in the manuscript, the entire 

element construction procedure is different from those of the traditional models. Based on this 

study, the following results are achieved.  

1. High-accuracy outcomes of the stress and displacement of complex curve members can be 

achieved by AR20. 

2. Performances of AR20 in various meshes are better than those ones presented previously.  

3. AR20 has high convergence speed in solving plane problems, since it uses fewer elements in 

the analyses process. 

4. The accuracies of AR20 for finding the displacement values are higher than those obtained 

by using AR8. 

5. The performances of AR8 for calculating the stress values are more precise than the obtained 

displacements. 

6. Both proposed elements can analyze efficiently the problems having different load 

conditions.  
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Table 11 Responses of cantilever beam under linear bending  

 Mesh Elements coordinate displacement Exact 

(Cen et al. 2012) 

1 

Q8 

𝑣(100.0) 

3.85 

4.03 

2 0.74 

3 2.00 

4 3.65 

1 

Q9 

3.86 

2 3.18 

3 3.34 

4 3.98 

1 

Q8∝ 

3.85 

2 3.16 

3 3.32 

4 3.967 

1 

L8 

3.80 

2 3.18 

3 3.58 

4 3.92 

1 

AQ8-I/II 

3.85 

2 3.15 

3 3.30 

4 3.99 

1 

ATF-Q8 

3.89 

2 3.45 

3 3.94 

4 4.00 

This study 

5 

AR8 

3.82 

6 3.85 

7 3.90 

8 3.97 

5 

AR20 

3.89 

6 3.92 

7 4.00 

8 4.04 
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