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Abstract.  This article presents an adaptive directional differential evolution (ADDE) algorithm and its 

application in solving discrete sizing truss optimization problems. The algorithm is featured by a new self-

adaptation approach and a simple directional strategy. In the adaptation approach, the mutation operator is 

adjusted in accordance with the change of population diversity, which can well balance between global 

exploration and local exploitation as well as locate the promising solutions. The directional strategy is based 

on the order relation between two difference solutions chosen for mutation and can bias the search direction 

for increasing the possibility of finding improved solutions. In addition, a new scaling factor is introduced as 

a vector of uniform random variables to maintain the diversity without crossover operation. Numerical 

results show that the optimal solutions of ADDE are as good as or better than those from some modern 

metaheuristics in the literature, while ADDE often uses fewer structural analyses. 
 

Keywords:  adaptive directional differential evolution; population diversity; truss sizing optimization; 

discrete variables 

 

 

1. Introduction 
 

The goal of structural optimization is to obtain appropriate form for a structure so that it is safe 

and economical. Structural optimization can be classified as sizing optimization (finding optimal 

size of structural members), shaping optimization (obtaining the optimal form for the structure) 

and topology optimization (optimal size and connectivity between structural members). These 

have been an extensive research area both in modeling and development of optimization methods. 

Optimal sizing design of truss structure is an important field within structural optimization. 

Truss sizing optimization is known as a difficult optimization problem because of non-linear 

constraints and non-convex feasible region, which requires appropriate optimization techniques. 

Moreover, the design variables (the cross-section areas) are usually discrete values which can be 

selected from a list of available values provided by manufacturers. These inherent characteristics 

of the problem do not favor conventional gradient-based techniques. Developing efficiently 

alternative methods for truss optimization with discrete design variables remains one of the 

interesting subjects for many researchers. 
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Nowadays, metaheuristic algorithms have become more and more popular for truss 
optimization with discrete design variables (Stolpe 2015). Methods in this field include genetic 
algorithms (GA) (Rajeev and Krishnamoorthy 1992, Hajela and Lin 1992), Tabu search (Bennage 
and Dhingra 1995a), simulated annealing (Bennage and Dhingra 1995b), ant colony optimization 
(ACO) (Bland 2001, Camp and Bichon 2004), harmony search (HS) algorithm (Lee et al. 2005), 
big bang-big crunch (Camp 2007), particle swarm optimization (PSO) (Li et al. 2009), differential 
evolution (Wang et al. 2009), and several modified or hybrid variants of them (see Stolpe 2015). 
Besides, new algorithms proposed for truss design with discrete design variables appear in the 
literature on a regular basis. Some of recent algorithms are mine blast algorithm (MBA) (Sadollah 
et al. 2012), refined big bang-big crunch algorithm (Hasançebi and Azad 2014), guided stochastic 
search (GSS) (Azad et al. 2014, Azad and Hasançebi 2015), teaching-learning-based optimization 
(TLBO) (Camp and Farshchin 2014), supervised charged system search (Kaveh and Ahmadi 
2014), colliding bodies optimization (CBO) (Kaveh and Mahdavi 2014), Enhanced colliding 
bodies optimization (ECBO) (Kaveh and Ghazaan 2014 and 2015), elitist self-adaptive step-size 
search (ESASS) (Azad and Hasançebi 2014), adaptive dimensional search (ADS) (Hasançebi and 
Azad 2015), improved mine blast algorithm (IMBA) and water cycle algorithm (WCA) (Sadollah 
et al. 2015). Although metaheuristics can find promising solutions, they often require a high 
number of function evaluations. As such, performance enhancement of metaheuristics to obtain 
sufficiently good result with reasonable computational cost is thus always the issue (Azad et al. 
2013, Bureerat and Pholdee 2015). 

Among various metaheuristics, differential evolution (DE) (Storn and Price 1997) is a simple 
one and has shown to be efficient for numerous optimization problems from diverse domains of 
science and technology (Das and Suganthan 2011). Relatively few applications of DE on 
optimization of truss structures with discrete variables have appeared in the literature. Wang et al. 
(2009) reported a very first study of DE for optimization of truss with continuous and discrete 
variables. Krempser et al. (2012) introduced the SMDE which is combination of surrogate models 
and DE for sizing optimization of truss. Recently, Ho-Huu et al. (2016) proposed a felicitous 
approach which adaptively employs multiple mutation operators in their adaptive elitist differential 
evolution algorithm, aeDE. Similar to other metaheuristics, exploration/exploitation balance is a 
key feature to control the performance of a DE algorithm (Das et al. 2009). Several DE variants 
have been proposed to deal with this issue and achieved better performance on various problems. 
However, simplicity of DE has been usually decreased in many of those modified DE versions.  

To enhance the performance of DE for solving discrete sizing truss optimization problems 
while maintaining the simplicity, three modifications are introduced in this article. The 
modifications include: 1) self-adaptive mutation operation based on the change in population 
diversity for balancing global exploration and local exploitation; 2) simple directional variation 
rule for increasing the possibility of finding an improved solution; and 3) random scaling factor to 
maintain the diversity without crossover operation. Combining with a simple rounding technique 
for treatment of discrete variable, a new algorithm called adaptive directional differential evolution 
(ADDE) is proposed. Four benchmark problems of discrete sizing truss optimization are used to 
investigate the performance of ADDE. The results are compared with those of some competitive 
modern metaheuristics, including three other existing adaptive DE variants. 

The rest of this article is organized as follows. In section 2, the formulation of the truss 
optimization problem and the constraint handling rules are presented. The basic DE is briefly 
introduced in section 3. Then, the ADDE algorithm is described in section 4. In section 5, the test 
problems and numerical results are shown and discussed. Conclusions are given in section 6. 

276



 
 
 
 
 
 

Discrete optimal sizing of truss using adaptive directional differential evolution 

2. Truss sizing optimization with discrete variables 
 

2.1 Problem formulation 
 
For the class of truss optimization problems considered in this study, the objective function is 

the total weight of a truss structure and the design variables are cross-section area of the truss 
elements. The design constraints are limits on stress in the structural members and/or the nodal 
displacement. The problem is typically formulated as Eq. (1) 

Minimize	ܹሺۯሻ ൌ ෍ܮ௘

ெ

௘ୀଵ

,௘ߩ௘ܣ ݁ ൌ 1, 2, …  ܯ,

subject	to	ߪ௠௜௡ ൑ ሻۯ௘ሺߪ ൑  ௠௔௫ߪ

௠௜௡ߜ ൑ ሻۯ௡ሺߜ ൑  ௠௔௫ߜ

ۯ ൌ ሼܣ௘ሽ ∈ ܁ ൌ ሼܣଵ, ,ଶܣ … ,  ௉ሽܣ

(1)

where ۯ is the vector of design variables, i.e., cross-section areas; ܁ is the list of ܲallowable 
discrete values of cross-section area; ܹሺۯሻ is the weight of the truss; ܮ௘, ,௘ܣ  ௘ are the length, theߩ
cross-section area and the material density of the e-th element, respectively; ܯ is the number of 
elements; ߪ௘ሺۯሻ and ߜ௡ሺۯሻ are the stress in the e-th element and the n-th nodal displacement, 
respectively. The subscript ‘min’ and ‘max’ denote the minimum and maximum limits. 
 

2.2 Constraint handling 
 

To solve the constrained optimization problem as given in Eq. (1), the following constraint 
handling rules (Deb 2000) are employed: 

1. A feasible solution is better than any infeasible one. 
2. Between two feasible solutions or two solutions with equal constraint violation, the one 

having smaller objective function value is better. 
3. Between two infeasible solutions, the one having smaller constraint violation is better. 
The constraint violation of a solution ۯ is determined by Eqs. (2) and (3) 

ሻۯሺܥ ൌ ෍maxሼ0, ܿ௜

ே೎

௜ୀଵ

ሺۯሻሽ (2)

ܿ௜ሺۯሻ ൌ
௜݃ሺۯሻ

݃଴,௜
െ 1 (3)

where ܥሺۯሻ  is the constraint violation; ௖ܰ  is the number of constraints of the optimization 
problem; ݃௜ሺۯሻ  is the i-th constraint function (stress or nodal displacement) and ݃଴,௜  is the 
permissible values of ݃௜ሺۯሻ. 
 
 
3. Basic differential evolution 
 

Differential evolution (DE) introduced by Storn and Price (Storn and Price 1997) is a 
population-based metaheuristics. DE has been shown to be one of the most efficient direct search 
methods and suitable for solving optimization problems in many fields (Das and Suganthan 2011). 
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As other population-based metaheuristics, DE uses a population of ܰܲ candidate vectors 
௞ሺ݇࢞ ൌ 1,2, … , ܰܲሻ  (called individuals) of the design variables. The population is then 
restructured by survival individuals evolutionally. First, an initial population is randomly sampled 
from the solution space as 

௞,௜ݔ ൌ ௜ݔ
௟ ൅ ሾ0,1ሿ݀݊ܽݎ ൈ ൫ݔ௜

௨ െ ௜ݔ
௟൯, ݅ ൌ 1,2,… , (4) ܦ

where ݔ௜
௟ and ݔ௜

௨ are the lower and upper bounds of ݔ௞,௜, respectively; ܦ is the number of design 
variables of the optimization problem; ݀݊ܽݎሾ0,1ሿ is a uniformly distributed random real value in 
the range [0,1]. Then, each individual ࢞௞  (called the target vector) of the current population is 
compared with a newly generated vector (called the trial vector) and the better will be selected as 
member for the population of next generation. The evolution proceeds until a termination criterion 
is reached. The crucial idea behind DE is a scheme for producing trial vectors. Two operators, 
named as ‘mutation’ and ‘crossover’, are used for this purpose and they are described as follows. 

Mutation: For each target vector ࢞௞ , a mutant vector ࢟ is first generated. There are various 
mutation strategies which can be employed to create the mutant vector. Some popular ones are 

െ	DE/rand/1:			࢟ ൌ ௥భ࢞ ൅ ܨ ൈ ൫࢞௥మ െ ௥య൯ (5)࢞

െ	DE/best/1:			࢟ ൌ ௕௘௦௧࢞ ൅ ܨ ൈ ൫࢞௥మ െ ௥య൯ (6)࢞

െDE/current െ to െ rand/1:			࢟ ൌ ௞࢞ ൅ ܨ ൈ ሺ࢞௥భ െ ௞ሻ࢞ ൅ ܨ ൈ ൫࢞௥మ െ ௥య൯ (7)࢞

െDE/current െ to െ best/1:			࢟ ൌ ௞࢞ ൅ ܨ ൈ ሺ࢞௕௘௦௧ െ ௞ሻ࢞ ൅ ܨ ൈ ൫࢞௥మ െ ௥య൯ (8)࢞

where ࢞௥భ, ,௥మ࢞ ௥య࢞  are three mutually different individuals randomly selected from the current 
population, i.e., ݎଵ ് ଶݎ ് ଷݎ ്  is a scaling factor, a real ܨ ;௕௘௦௧ is the current best individual࢞ ;݇
and constant factor usually chosen in the interval [0,1] , which controls the amplification of the 
differential variations. 

Crossover: Crossover is introduced to exchange the information of the mutant vector with the 
target vector ࢞௞, creating a trial vector ࢠ with its elements determined by 

௜ݖ ൌ ൜
if			௜,ݕ ሺ݀݊ܽݎሾ0,1ሿ ൑ ሻݎܥ or ሺݎ ൌ ݅ሻ
௞,௜ݔ ,	 otherwise  (9)

where ݅ ൌ 1,2, … ,  is randomly ݎ ;ሾ0,1ሿ is a uniformly distributed random number in [0,1]݀݊ܽݎ ;ܦ
chosen integer in the interval ሾ1,  ሿ to ensure that the trial vector has at least one parameter valueܦ
from the mutant vector; ݎܥ is the crossover rate predefined in [0, 1], which control the fraction of 
parameter values copied from the mutant vector. 

It is well-known that mutation strategy plays a vital role in the DE search capability and 
convergence rate. For example, the ‘DE/rand/1’ strategy is able to maintain population diversity 
and global exploration ability. However, its local exploitation ability is regarded weak and its 
convergence velocity is often too low. By contrast, the ‘DE/best/1’ and ‘DE/current-to-best/1’ 
strategies for instance, which better take advantage of the guiding information of the best 
individual, have great local exploitation ability and fast convergence velocity. However, they can 
lose population diversity and suffers from the problem of premature convergence. In order to 
balance between global exploration and local exploitation, using multiple mutation operators is 
commonly suggested and still a research focus for improving DE’s performance (Mallipeddi et al. 
2011, Wang et al. 2011, Gong et al. 2011, Elsayed et al. 2011, Takahama and Sakai 2012, Wu et al. 
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2015, Xiang et al. 2015, Zamuda et al. 2013, Kushida et al. 2015). 
Moreover, the values of the scaling factor and crossover rate have great impact on the 

performance of DE. Numerous research works studied the effects of these control parameters and 
suggested parameter setting or proposed parameter adaptations (Qin and Suganthan 2005, Zhang 
and Sanderson 2009, Wang et al. 2011, Tanabe and Fukunaga 2013). Nevertheless, simplicity of 
DE has been usually reduced in those adaptive versions (Yang and Yao 2014). 
 
 
4. The ADDE algorithm 
 

In this section, an enhanced DE, namely ADDE, is proposed considering both efficiency and 
simplicity. Three modifications are introduced, which are: 1) adaptive ‘current-to-pbest/1’ 
mutation for balancing global exploration and local exploitation abilities; 2) simple directional 
variation rule for increasing the possibility of finding an improved new solution; and 3) random 
scaling factor for keeping diversity with no crossover operation. The details of these modifications 
are described in the followings.  

 
4.1 Adaptive ‘current-to-pbest’ mutation 

 
In truss optimization problem, the objective function (the weight of the structure in this study) 

is often a unimodal function. The challenge will be caused by a non-convex feasible region. 
Therefore, global exploration of the search space at the beginning can quickly get close to the 
region containing an optimum. Later, exploitation of the region nearby the optimum is more 
demanding than other regions. Under such considerations, in this study, an adaptive mutation 
scheme is proposed to enhance the performance of DE.  

For this purpose, the ‘pbest’ method ‘DE/current-to-pbest/1’ used in JADE (Zhang and 
Sanderson 2009) is employed. In ‘DE/current-to-pbest/1’, a mutant vector y is produced as 

࢟ ൌ ௞࢞ ൅ ܨ ൈ ሺ࢞௣௕௘௦௧ െ ௞ሻ࢞ ൅ ܨ ൈ ൫࢞௥మ െ ௥య൯ (10)࢞

with ࢞௣௕௘௦௧ 
is selected randomly from the top ݌ ൈ ܰܲ	ሺ݌ ∈ ሺ0,1ሿሻ individuals. Thus, several good 

individuals will be utilized to guide the search, making this method more reliable than the 
‘DE/current-to-best/1’ (Zhang and Sanderson 2009). 

As a matter of fact, the p value plays an important role in balancing the exploration ability and 
the exploitation ability of this method. It is desirable that good global exploration is maintained at 
the beginning of the evolution and fast convergence velocity is achieved at the end of the 
optimization process. So in this study, the value of p is adaptively adjusted during the search based 
on the change of population diversity as follows 

݌ ൌ
1
ܰܲ

൅ ൬1 െ
1
ܰܲ

൰ ൈ
௧ܫܦ
଴ܫܦ

 (11)

where ܫܦ௧ is a diversity index that measure of the diversity of population at the t-th generation; 
 ଴ is the diversity index of  the initial population. The diversity index is defined asܫܦ

௧ܫܦ ൌ
1
ܰܲ

෍ඩ෍ቆ
௞,௜ݔ െ ஼,௜ݔ
௜ݔ
௨ െ ௜ݔ

௟ ቇ
ଶ஽

௜ୀଵ

ே௉

௞ୀଵ

; ஼,௜ݔ ൌ
1
ܰܲ

෍ݔ௞,௜

ே௉

௞ୀଵ

 (12)
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where ݔ஼,௜  is the mean value of the i-th design variable of all solutions in the population. The 
concept of diversity index was introduced by Kaveh and Zolghadr (2012) to reflect the ratio of the 
portion of the search space covered by the individuals to the entire search space at each generation. 
Here, the diversity index is defined to represent the distribution of the individuals around the 
center of the current population. With this adjustment, in the sooner generations larger values of p 
are used to favor exploring the domain containing the global optimum, and in later generations 
smaller values of p are used to enhance exploitation for accelerating the convergence speed. In 
particular, when ܫܦ௧ ൌ ݌ ,.଴ (i.eܫܦ ൌ 1), the mutation operator ‘DE/current-to-rand/1’ is utilized; 
when ܫܦ௧ ൌ 0  (i.e., ݌ ൌ 1/ܰܲ ), the ‘DE/current-to-best/1’ is performed. This should result in 
ADDE being suitable for truss optimization problems. 
 

4.2 Directional variation rule 
 

In the mutation operator of Eq. (10), random variations are derived from the difference of two 
randomly selected different individuals. Consequently, they have no bias to any special search 
directions. In order to further take advantage of guiding information of the population, the scaled 
differential variation is multiplied by a ‘directed’ factor ݀, i.e. 

࢟ ൌ ௞࢞ ൅ ܨ ൈ ሺ࢞௣௕௘௦௧ െ ௞ሻ࢞ ൅ ݀ ൈ ܨ ൈ ൫࢞௥మ െ ௥య൯ (13)࢞

where d takes either value 1 or -1 depending on the order relation between the two difference 
vectors 	࢞௥మand ࢞௥య . Specifically, d is determined as 

݀ ൌ ൜
1, if ௥మbetter࢞ than ௥య࢞
െ1, otherwise

 (14)

This kind of directional mutation has the same concept of the well-known opposition based 
method presented for improving DE search performance in literatures (Rahnamayan et al. 2008, 
Pholdee et al. 2015). This rule guarantees that the scaled differential variation is oriented toward a 
better vector, thus increasing the possibility of finding an improved solution.  

 
4.3 Modification of scaling factor 

 
In classical DE, the scaling factor ܨ is a constant value often chosen in the interval [0, 1]. In 

this article, instead of keeping ܨ constant during the search process, for  each target vector a set of 
 values are randomly sampled from uniform distribution in [0, 1] and applied for each component ܨ
of the mutant vector so as to perturb the base vector by different weights. These random scaling 
factors attempt to maintain both exploitation (with small ܨ values) and exploration (with large ܨ 
values) abilities throughout the entire evolution process. Particularly, when a value of F is closed 
to zero, the corresponding component of the mutant vector is basically identical to the one from 
the target vector. This case is similar to the crossover operation in DE. Thus, by introducing ܨ as a 
vector of uniform random variables in [0, 1], one can skip the crossover step. 

 
4.4 Discrete variable handling 

 
To adapt the algorithm for problems with discrete variables, the simple rounding technique 

(Lampinen and Zenlinka 1999) is applied, i.e., each continuous design variable is rounded to the 
nearest value in the discrete value set ܁. This technique was also used in aeDE (Ho-Huu et al. 
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2016) for handling discrete variables in optimization of truss structures. 
 
4.5 Algorithm description 

 
Unlike most other strategy adaptation mechanisms which often use several mutation operators 

to perform, ADDE adapts itself with only one mutation operator and provides a gradual transition 
from explorative to exploitative operation during the evolution. This adaptation is based on the 
change of the population diversity, which is dependent on the problem characteristics. In the next 
section, it is shown that ADDE can suit different truss optimization problems considered. 

The determination of diversity index in ADDE requires additionally computational cost of NP 
calculations for normalized Euclidean distance at each generation. Nevertheless, this additional 
cost is normally negligible compared with the overall computational cost taken to solve the 
optimization problem. This is because in structural optimization that the computational cost for 
function evaluation (involving structural analysis) is so large, and the size of the population is so 
small, that the time taken for calculating the diversity index will be comparatively small.  

The ADDE algorithm is simple and requires only the common control parameters like 
population size and number of generations for its working and does not require crossover 
operation. The procedure of ADDE is summarized in Algorithm 1. 
 
Algorithm 1: The pseudo-code of ADDE 

 

Define ܰܲ, ௠ܶ௔௫, fitness function, constraints, and allowable discrete values; 
Generate initial population and evaluate fitness and constraints for each individual; 
Calculate the diversity index of the initial population, ܫܦ଴; 
ݐ ൌ 1;  
while ݐ ൏ ௠ܶ௔௫ do 

Calculate diversity index DIt and update p value;

 for ݇ ൌ 1 to ܰܲ do 
Select ࢞௣௕௘௦௧ randomly from top 100݌% individuals in the population; 
Select randomly two different vectors in the population,

 
 ;௥య࢞ ௥మand࢞

if ࢞௥మis better than ࢞௥య then 
 ݀ ൌ 1; 
else 
 ݀ ൌ െ1; 
end if 
for ݅ ൌ 1 to ܦ do 

ܨ ൌ  ;ሾ0,1ሿ݀݊ܽݎ
௡௘௪,௜ݔ ൌ ௞,௜ݔ ൅ ܨ ൈ ሺݔ௣௕௘௦௧,௜ െ ௞,௜ሻݔ ൅ ݀ ൈ ܨ ൈ ൫ݔ௥మ,௜ െ  ;௥య,௜൯ݔ
Round-off the generated values to the closest discrete value; 

end for 
if ࢞௡௘௪ is better than ࢞௞ then 

௞࢞ ൌ  ;௡௘௪࢞
end if 

 end for 
ݐ  ൌ ݐ ൅ 1; 
end while 
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Table 1 Design conditions of the test problems 

 10-bar truss 52-bar truss 72-bar truss 200-bar truss 

Design variables Ai, i=1,2,…,10 Gi, i=1,2,…,12 Gi, i=1,2,...,16 Gi, i=1,2,...,29 

Stress constraints 
െ25 ൑ ௘ߪ ൑ 25 

ksi 
െ180 ൑ ௘ߪ ൑ 180 MPa

െ25 ൑ ௘ߪ ൑ 25 
ksi 

െ10 ൑ ௘ߪ ൑ 10 
ksi 

Displacement 
constraints 

െ2 ൑ ௡ߜ ൑ 2 
in 

- െ0.25 ൑ ௡ߜ ൑ 0.25 in - 

Material density 0.1 lb/in3 7860 kg/m3 0.1 lb/in3 0.283 lb/in3 

Modulus of 
elasticity 

104 ksi 207 GPa 104 ksi 30000 ksi 

 
 
5. Numerical examples 
 

Four benchmark examples of truss structures with 10, 52, 72, and 200 bars are employed in this 
article to investigate the performance of ADDE. The 10-bar, 52-bar and 200-bar trusses are planar 
structures, whereas the 72-bar truss is a space structure. The main input data of the problems are 
given in Table 1. The ADDE is used to solve each problem with 20 independent runs. In all cases, 
the population size is set to NP=25, which appears reasonable. The maximum iterations 
performed, Tmax, are 100 for the 10-bar truss, 150 for the 52-bar and 72-bar trusses, and 300 for the 
200-bar truss. Thus, the number of function evaluations is 2500 for the 10-bar truss, 3750 for the 
52-bar and 72-bar trusses and 7500 for the 200-bar truss. The results obtained by the proposed 
algorithm are compared with those of some other modern metaheuristics, like MBA, TLBO, CBO, 
ECBO, WCA, IMBA, ESASS and ADS, reported recently in the literature. These methods are 
chosen among various metaheuristics for comparison considering their high quality of optimal 
solution and computational efficiency. In addition, ADDE is also compared with three other 
adaptive DE variants, which are aeDE, SHADE (Tanabe and Fukunaga 2013) and JADE. The 
results of aeDE are taken from Ref. (Ho-Huu et al. 2016), whereas the results of SHADE and 
JADE are obtained by solving each problem with 20 random runs. The control parameters adopted 
for JADE are population size NP=40, ratio of top-rank solution p=0.2 and learning rate c=0.1, 
while those for SHADE are population size NP=25, ratio of top-rank solution p=0.1 and memory 
size H=10.  

Furthermore, to better understand the performance of ADDE, the influence of each 
modification introduced in ADDE algorithm is investigated. However, these investigations are 
presented only for the first example of the 10 bar-truss problem due to space limitation. The results 
and discussions are explained in the followings. 

 
5.1 The 10-bar planar truss 
 
The truss layout is depicted in Fig. 1(a). The structure is subjected to downward vertical loads 

of 100 kips at node 2 and node 4. The design variables are the bar element cross-section areas, 
which can be chosen from the list: 1.62, 1.80, 1.99, 2.13, 2.38, 2.62, 2.63, 2.88, 2.93, 3.09, 3.13, 
3.38, 3.47, 3.55, 3.63, 3.84, 3.87, 3.88, 4.18, 4.22, 4.49, 4.59, 4.80, 4.97, 5.12, 5.74, 7.22, 7.97, 
11.5, 13.5, 13.9, 14.2, 15.5, 16.0, 16.9, 18.8, 19.9, 22.0, 22.9, 26.5, 30.0, 33.5 (in2). The material 
properties and constraints are given in Table 1. Fig. 1(b) shows the relative virtual effect of 
element cross-sectional areas of the optimum truss structure obtained by ADDE. 
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(a) Layout of the 10-bar truss (b) The optimized geometry by ADDE 

Fig. 1 The 10-bar truss structure 
 

First, the effectiveness of random scaling factor is examined in this example. For this purpose, 
the conventional DE with scaling factor of 0.8 and crossover rate of 0.9 and the DE with random 
scaling factor (DE-rand) are used. The mutation operator ‘DE/current-to-rand/1’ (Eq. (7)) is 
adopted as the base algorithm. The problem is solved by each algorithm 20 times with the same 
number of iteration Tmax=200. The average convergence histories of minimum weight for the two 
algorithms are plotted in Fig. 2(a). It is observed that two curves are almost similar, which 
indicates the effectiveness of the random scaling factor. Thus, the random scaling factor is utilized 
in further investigation of the other modification.  

Second, the influences of the adaptive ‘current-to-pbest’ mutation and the directional variation 
rule on the performance of DE are investigated. Four different algorithms, including the DE with 
random scaling factor, the DE with random scaling factor and the adaptive mutation (DE-rand-
pbest), DE with random scaling factor and the directional rule (DE-rand-dir) and DE with all three 
proposed strategies, i.e., ADDE, are used to perform this problem. Fig. 2(b) shows the average 
convergence histories of the algorithms. Clearly, DE-rand-pbest and DE-rand-dir converge faster 
than DE-rand, and ADDE gives the best convergence velocity. It is also seen that, DE-rand-dir is  

 
 

(a) Convergence of DE and DE-rand (b) Convergence of different strategies 

Fig. 2 Optimization history for 10-bar truss by different algorithms 
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Table 2 Optimization results by different strategies for the 10-bar truss 

Algorithm Best weight (lb) Average weight (lb) Worst weight (lb) 
Standard deviation 

(lb) 
DE-rand 5490.738 5504.521 5549.214 19.052 

DE-rand-pbest 5490.738 5497.037 5569.510 19.933 

DE-rand-dir 5490.738 5495.867 5531.036 11.267 

ADDE 5490.738 5491.872 5513.423 5.073 

 

(a) Diversity index recorded in 20 runs (b) Convergence of minimum weight 

Fig. 3 Optimization history for 10-bar truss by ADDE 
 
 

faster than DE-rand-pbest at sooner generation (about early 40 generations in this example). This 
is due to the fact that at sooner generations, the p value is large and the mutation ‘current-to-pbest’ 
performs similar to ‘current-to-rand’. 

Table 2 presents the statistical results obtained by these algorithms after 200 generations (i.e., 
5000 function evaluations. It is seen that all algorithms provide the same optimal weight of 
5490.738 lb, while ADDE give the best results with respects to average weight, worst weight and 
standard deviation of weight.  

Next, the optimization results obtained by this work are compared with those acquired by other 
algorithms recently reported in the literature, including MBA (Sadollah et al. 2012), TLBO (Camp 
and Farshchin 2014), ADS (Hasançebi and Azad 2015) and aeDE (Ho-Huu et al. 2016). Table 3 
lists the statistical results, including the best optimal solution, the best weight and its required 
function evaluations (FE), the average weight, the worst weight, and the standard deviation. It is 
seen that the best weight of 5490.738 lb obtained by ADDE, SHADE and JADE is the same as that 
of TLBO, ADS and aeDE and lighter than that of MBA. The average weight from ADDE is 
5495.187 lb, which is better than the results from other methods, while the deviation produced by 
ADDE is smaller than that of TLBO, ADS and aeDE. Furthermore, ADDE is also computationally 
efficient. In the best run, ADDE obtains the optimal design after 1247 function calls, while the 
number of function evaluations for MBA, TLBO and aeDE are 3600, 5183 and 2380, respectively. 
The ADS uses fewest analyses (1000). However, as can be seen from Table 3, ADS gives the most 
unstable results with highest average weight and deviation. Comparing with JADE, ADDE is 
slightly better with respects to average weight and worst weight. It is noted that on average, ADDE  
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Discrete optimal sizing of truss using adaptive directional differential evolution 

Table 3 Comparison on optimal designs of 10-bar truss 

Size of 
members (in2) 

MBA TLBO ADS aeDE 
This study 

SHADE JADE ADDE 

1 30.00 33.5 33.5 33.5 33.5 33.500 33.500 

2 1.62 1.62 1.62 1.62 1.62 1.620 1.620 

3 22.90 22.9 22.9 22.9 22.9 22.900 22.900 

4 16.90 14.2 14.2 14.2 14.2 14.200 14.200 

5 1.62 1.62 1.62 1.62 1.62 1.620 1.620 

6 1.62 1.62 1.62 1.62 1.62 1.620 1.620 

7 7.97 7.97 7.97 7.97 7.97 7.970 7.970 

8 22.90 22.9 22.9 22.9 22.9 22.900 22.900 

9 22.90 22 22 22 22 22.000 22.000 

10 1.62 1.62 1.62 1.62 1.62 1.620 1.620 

Best weight (lb) 5507.758 5490.74 5490.74 5490.738 5490.738 5490.738 5490.738

FE 3600 5183 1000 2380 2069 1973 1247 

Average weight (lb) 5527.296 5503.21 5539.97 5502.623 5499.003 5495.504 5495.187

Worst weight (lb) 5536.965 - 5591.43 5549.204 5518.098 5543.319 5534.742

Standard deviation 11.38 20.33 35.86 20.780 9.985 12.008 12.452 

 
 
obtained these results with 2500 function evaluations, while JADE used 4000 function evaluations. 
ADDE is also better than SHADE in terms of average weight and computational efficiency, 
however, SHADE gives smallest worst weight and smallest standard deviation of weight. 

The convergence of the minimum weight by ADDE is shown in Fig. 3(b), while the histories of 
the diversity index recorded in 20 runs are plotted in Fig. 3(a). Fig. 3(b) shows that the best run 
converges rather fast comparing with the average convergence of all runs. From Fig. 3(a) it is seen 
that high values of diversity index are provided in the early stages of the optimization process, 
which allow the algorithm to explore the search space adequately. As the evolution continues, the 
individuals confine to more promising regions of the search space in order to perform local search 
and diversity index values gradually decrease. At the end of optimization process, a certain amount 
of diversity is still maintained in most runs, which shows that the optimization is still in progress. 
 

5.2 The 52-bar planar truss 
 
The second example is a 52-bar planar truss structure illustrated in Fig. 4(a). The cross-section 

area of the truss elements are categorized in 12 groups as shown in Fig. 4(a), and their values are 
chosen from discrete values listed in Table 4. The material properties and constraints are given in 
Table 1. The loading condition includes vertical loads of 200 kN and horizontal loads of 100 kN 
applied at nodes 17, 18, 19 and 20.  

This problem has been studied by many authors using different optimization techniques. Table 
5 lists the results from ADDE, SHADE and JADE together with those given by some other 
methods, including CBO (Kaveh and Mandavi 2014), WCA and IMBA (Sadollah et al. 2015), and 
aeDE (Ho-Huu et al. 2016). The statistical results highlight the best optimal solution, the best 
weight and its required function evaluations, the average weight, the worst weight and the standard 
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Table 4 Available cross-section areas of the AISC code 

No. in2 mm2 No. in2 mm2 No. in2 mm2 No. in2 mm2 

1 0.111 71.613 17 1.563 1008.385 33 3.840 2477.414 49 11.500 7419.340 

2 0.141 90.968 18 1.620 1045.159 34 3.870 2496.769 50 13.500 8709.660 

3 0.196 126.451 19 1.80 1161.288 35 3.880 2503.221 51 13.900 8967.724 

4 0.25 161.29 20 1.990 1283.868 36 4.180 2696.769 52 14.200 9161.272 

5 0.307 198.064 21 2.130 1374.191 37 4.220 2722.575 53 15.500 9999.980 

6 0.391 252.258 22 2.380 1535.481 38 4.490 2896.768 54 16.000 10322.560

7 0.442 285.161 23 2.620 1690.319 39 4.590 2961.284 55 16.900 10903.204

8 0.563 363.225 24 2.630 1696.771 40 4.800 3096.768 56 18.800 12129.008

9 0.602 388.386 25 2.880 1858.061 41 4.970 3206.445 57 19.900 12838.684

10 0.766 494.193 26 2.930 1890.319 42 5.120 3303.219 58 22.000 14193.520

11 0.785 506.451 27 3.090 1993.544 43 5.740 3703.218 59 22.900 14774.164

12 0.994 641.289 28 3.130 729.031 44 7.220 4658.055 60 24.500 15806.420

13 1.000 645.16 29 3.380 2180.641 45 7.970 5141.925 61 26.500 17096.740

14 1.228 792.256 30 3.470 2238.705 46 8.530 5503.215 62 28.000 18064.480

15 1.266 816.773 31 3.550 2290.318 47 9.300 5999.988 63 30.000 19354.800

16 1.457 939.998 32 3.630 2341.931 48 10.850 6999.986 64 33.500 21612.860

 

 
(a) Layout of the 52-bar truss (b) The optimized geometry by ADDE 

Fig. 4 The 52-bar truss structure 
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Discrete optimal sizing of truss using adaptive directional differential evolution 

deviation. It is found that ADDE, SHADE and JADE obtain the same optimum weight of 
1902.605 kg as that given by WBA, IMBA and aeDE. Although the best weight given by CBO is 
1899.35 kg, its best solution results in a maximum stress of 180.0873 MPa, which violates the 
constraint. With respects to the average weight and standard deviation, IMBA ranks first, ADDE 
stands second and SHADE stands third. The average weight and deviation obtained by ADDE are 
1903.407 kg and 1.952 kg, which are much closed to the results of IMBA. However, ADDE is 
more efficient than IMBA in terms of computational cost. In the best run ADDE needs only 2819 
function evaluations to reach the optimal solution while this number for IMBA is 4750. On the  

 
 

Table 5 Comparison on optimal designs of 52-bar truss 

Size of grouped 
members (mm2) 

CBO WCA IMBA aeDE 
This study 

SHADE JADE ADDE 

1 4658.055 4658.055 4658.055 4658.055 4658.055 4658.055 4658.055

2 1161.288 1161.288 1161.288 1161.288 1161.288 1161.288 1161.288

3 388.386 494.193 494.193 494.193 494.193 494.193 494.193

4 3303.219 3303.219 3303.219 3303.219 3303.219 3303.219 3303.219

5 939.998 940.000 940.000 939.998 939.998 939.998 939.998

6 506.451 494.193 494.193 494.193 494.193 494.193 494.193

7 2238.705 2283.705 2283.705 2238.705 2238.705 2238.705 2238.705

8 1008.385 1008.385 1008.385 1008.385 1008.385 1008.385 1008.385

9 506.451 494.193 494.193 494.193 494.193 494.193 494.193

10 1283.868 1283.868 1283.868 1283.868 1283.868 1283.868 1283.868

11 1161.288 1161.288 1161.288 1161.288 1161.288 1161.288 1161.288

12 506.451 494.193 494.193 494.193 494.193 494.193 494.193

Best weight (kg) 1899.35 1902.605 1902.605 1902.605 1902.605 1902.605 1902.605

FE 3840 7100 4750 3720 3656 5343 2819 

Average weight (kg) 1963.12 1909.856 1903.076 1906.735 1905.489 1913.098 1903.407

Worst weight (kg) 2262.8 1912.646 1904.83 1925.714 1929.918 1972.016 1911.268

Standard deviation 106.01 7.09 1.13 6.679 6.232 18.594 1.952 

 

(a) Diversity index recorded in 20 runs (b) Convergence of minimum weight 

Fig. 5 Optimization history for 52-bar truss by ADDE 
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other hand, the results of JADE are not as good as ADDE and the others, except CBO. From this 
example, it is confirmed that ADDE is very competitive to the other considered algorithms. 

Fig. 5(b) plots the convergence histories of the minimum weight found by ADDE against the 
number of function evaluations. It is observed that the convergence curve of the best run is quite 
similar with the average convergence curve. The change in diversity index is illustrated in Fig. 
5(a). In all runs, the diversity index gradually decreases with similar trends to small values at the 
end of optimization process, which indicates that the ADDE has good exploration/exploitation 
balance and stability. The best optimized geometry of the structure is illustrated in Fig. 4(b). 
 

5.3 The 72-bar space truss 
 
The third example considered in this study is the 72-bar space truss depicted in Fig. 6(a). The 

truss elements are categorized in sixteen member groups considering the structural symmetry (Fig. 
6(a)). The cross-section areas are chosen from the list of allowable values in Table 4. The structure 
is subjected to two loading cases, which are given in Table 6. The material properties and 
constraints are summarized in Table 1. 

 
 

 
(a) Layout of the 72-bar space truss (b) The optimized geometry by ADDE 

Fig. 6 The 72-bar truss structure 
 
Table 6 Loading conditions for 72-bar truss 
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This truss sizing optimization is solved by ADDE, SHADE and JADE and compared with 
literature, including ECBO (Kaveh and Ghazaan 2015) , WCA and IMBA (Sadollah et al. 2015), 
and aeDE (Ho-Huu et al. 2016). The results are shown in Table 7. It is noted that the member 
group order and node sequence in this study are different from that in the other studies. It is seen 
that the ADDE, SHADE and JADE give the same optimal weight of 389.334 lb as compared to 
that reported by the other studies. As for average weight and worst weight, IMBA ranks first and 
ADDE stands second, while ADDE provides smallest standard deviation of 0.632 lb. It is also 
emphasized that ADDE is more computationally efficient than the other algorithms. ADDE uses 
2515 analyses in the best run to obtain the best weight, which is about 60.5%, 40.2%, 54.7% and 
14.8% of those required by aeDE, IMBA, WCA and ECBO, respectively. In this example, JADE 
shows worst performance, whereas the results of SHADE are quite similar to those of aeDE. 

Fig. 7(b) plots the history of the minimum weight found by ADDE, which shows very fast 
convergence rate. It is also seen that the best run curve and the average curve are much closed. It 
explains for the small standard deviation of weight provided by ADDE in this problem. The 
diversity indices in 20 runs are plotted in Fig. 7(a). These curves show rapid decrement of the 
population diversity, which indicates great exploration and exploitation capacities of ADDE in this 
problem. The optimized geometry of the structure is shown in Fig. 6(b). 

 
 

Table 7 Comparison on optimal designs of 72-bar truss 

Size of grouped 
members (in2) 

ECBO WCA IMBA aeDE 
This study 

SHADE JADE ADDE

1 0.196 0.196 0.196 0.196 0.196 0.196 0.196 

2 0.563 0.563 0.563 0.563 0.563 0.563 0.563 

3 0.391 0.391 0.391 0.391 0.391 0.391 0.391 

4 0.563 0.563 0.563 0.563 0.563 0.563 0.563 

5 0.563 0.563 0.563 0.563 0.563 0.563 0.563 

6 0.563 0.563 0.563 0.563 0.442 0.563 0.563 

7 0.111 0.111 0.111 0.111 0.111 0.111 0.111 

8 0.111 0.111 0.111 0.111 0.111 0.111 0.111 

9 1.228 1.228 1.228 1.228 1.228 1.228 1.228 

10 0.442 0.563 0.563 0.442 0.563 0.563 0.563 

11 0.111 0.111 0.111 0.111 0.111 0.111 0.111 

12 0.111 0.111 0.111 0.111 0.111 0.111 0.111 

13 1.990 1.990 1.990 1.990 1.990 1.990 1.990 

14 0.563 0.442 0.442 0.563 0.563 0.442 0.442 

15 0.111 0.111 0.111 0.111 0.111 0.111 0.111 

16 0.111 0.111 0.111 0.111 0.111 0.111 0.111 

Best weight (lb) 389.33 389.334 389.334 389.334 389.334 389.334 389.334

FE 17010 4600 6250 4160 3684 5579 2515 

Average weight (lb) 391.59 389.941 389.823 390.913 390.956 392.098 389.891

Worst weight (lb) – 393.778 389.457 393.325 394.323 411.703 391.326

Standard deviation – 1.43 0.84 1.161 1.381 4.836 0.632 
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(a) Diversity index recorded in 20 runs (b) Convergence of minimum weight 

Fig. 7 Optimization history for 72-bar truss by ADDE 
 

5.4 The 200-bar planar truss 
 
The last example investigated in this study is the benchmark 200-bar planar truss structure 

shown in Fig. 8(a). This structure is considered as a large-scale, size optimization problem in some 
recent studies (Azad and Hasançebi 2014; Hasançebi and Azad 2015; Ho-Huu et al. 2016). The 
design variables include all bar element cross-sectional areas which are categorized into 29 groups 
by considering geometrical symmetry as marked in Fig. 8(a). The values of cross-section area (in2) 
are selected from the list: 0.1, 0.347, 0.44, 0.539, 0.954, 1.081, 1.174, 1.333, 1.488, 1.764, 2.142, 
2.697, 2.8, 3.131, 3.565, 3.813, 4.805, 5.952, 6.572, 7.192, 8.525, 9.3, 10.85, 13.33, 14.29, 17.17, 
19.18, 23.68, 28.08, 33.7 (in2). The structure is subjected to three loading conditions: (1) 1.0 kip 
acting in the positive x-direction at nodes 1, 6, 15 20, 29, 34, 43, 48, 57, 62 and 71; (2) 10.0 kips 
acting in the negative y-direction at nodes 1-6, 8, 10, 12, 14, 16-20, 22, 24, 26,28-34, 36, 38, 40, 
42-48, 50, 52, 54, 56-62, 64, 66, 68, and 70-75; and (3) conditions 1 and 2 acting together. The 
material properties and constraints are given in Table 1. 

The optimization results obtained by this work are listed in Table 8 in comparison with those 
from the other studies. The best weight obtained by ADDE is 26960.152 lb, which is lighter than 
that given by ESASS (28075.488 lb), ADS (27190.49 lb), aeDE (27858.500 lb), SHADE 
(27831.174 lb) and JADE (27991.297). Moreover, only the best solutions found by ADDE, 
SHADE and JADE satisfy the stress constraint, while the best solutions of the other methods 
violate the constraint at some degree. According to the results given, the maximum stresses in truss 
elements are recalculated and they are 10.088 ksi for ESASS, 10.0347 ksi for ADS, 10.0719 ksi 
for aeDE, and 10 ksi for ADDE. The ADDE gives the best results regarding the average weight, 
worst weight and standard deviation, while JADE provides the worst results. The computational 
effort of ADDE is about 50% and 44.5% lower than that of ESASS and aeDE, respectively, 
although it is higher than that of ADS. Fig. 8(b) shows the relative virtual effect of element cross-
sectional areas of the optimized geometry obtained using ADDE.  

The diversity indices and convergence histories of minimum weight provided by ADDE are 
illustrated in Fig. 9. Similar trends of the diversity indices in 20 runs are observed here. The trends 
show gradual decrement of diversity index, which indicates that the algorithm performs well 
global exploration and local exploitation. Some amount of diversity maintained at the end of the 
optimization implies that the search is still in progress. 
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Discrete optimal sizing of truss using adaptive directional differential evolution 

(a) Layout of the 200-bar truss (b) The optimized geometry by ADDE 

Fig. 8 The 200-bar truss structure 
 
Table 8 Comparison on optimal designs of 200-bar truss 

Size of grouped 
Members (in2) 

ESASS ADS aeDE 
This study 

SHADE JADE ADDE 

1 0.1 0.1 0.1 0.100 0.100 0.100 

2 0.954 0.954 0.954 0.954 0.954 0.954 

3 0.1 0.347 0.347 0.100 0.100 0.100 

4 0.1 0.1 0.1 0.347 0.100 0.100 

5 2.142 2.142 2.142 2.142 2.142 2.142 

6 0.347 0.347 0.347 0.347 0.347 0.347 

7 0.1 0.1 0.1 0.100 0.100 0.347 

8 3.131 3.131 3.131 3.813 3.131 3.131 

9 0.1 0.1 0.347 0.100 0.347 0.100 

10 4.805 4.805 4.805 4.805 4.805 4.805 
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15 16 16 15 16 16 15 16 16 15 16 16 15

17 17 17 17

18 21 21 18 21 21 18 21 21 18 21 21 18

4 19 19 19 19 19 19 4

20 21 21 20 21 21 20 21 21 20 21 21 20

22 22 22 22

23 26 26 23 26 26 23 26 26 23 26 26 23

4 24 24 24 24 24 24 4

25 26 26 25 26 26 25 26 26 25 26 26 25

27 27 27 27

28 29 28 28 29 28

240in 240in 240in 240in

1440in

360in

1 1 1 1

2 6 6 2 6 6 2 6 6 2 6 6 2

4 3 3 3 3 3 3 4

5 6 6 5 6 6 5 6 6 5 6 6 5

7 7 7 7

8 11 11 8 11 11 8 11 11 8 11 11 8

4 9 9 9 9 9 9 4

10 11 11 10 11 11 10 11 11 10 11 11 10

12 12 12 12

13 16 16 13 16 16 13 16 16 13 16 16 13

4 14 14 14 14 14 14 4

15 16 16 15 16 16 15 16 16 15 16 16 15

17 17 17 17

18 21 21 18 21 21 18 21 21 18 21 21 18

4 19 19 19 19 19 19 4

20 21 21 20 21 21 20 21 21 20 21 21 20
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Table 8 Continued 

Size of grouped 
Members (in2) 

ESASS ADS aeDE 
This study 

SHADE JADE ADDE 

11 0.347 0.44 0.539 0.347 0.347 0.539 

12 0.1 0.1 0.347 0.100 0.100 0.100 

13 5.952 5.952 5.952 5.952 5.952 5.952 

14 0.1 0.1 0.1 0.100 0.539 0.100 

15 6.572 6.572 6.572 6.572 6.572 6.572 

16 0.44 0.539 0.954 0.440 0.954 0.440 

17 0.539 0.1 0.44 0.539 0.100 0.539 

18 7.192 8.525 8.525 8.525 8.525 8.525 

19 0.44 0.539 0.1 0.539 0.347 0.347 

20 8.525 9.3 9.3 8.525 9.300 9.300 

21 0.954 0.954 0.954 0.954 0.954 0.954 

22 1.174 0.1 1.081 0.539 2.800 0.100 

23 10.85 10.85 13.33 10.850 13.330 13.330 

24 0.44 0.954 0.539 0.100 0.100 0.100 

25 10.85 13.33 14.29 13.330 14.290 13.330 

26 1.764 1.333 2.142 0.954 2.142 0.954 

27 8.525 7.192 3.813 6.572 3.813 5.952 

28 13.33 10.85 8.525 13.330 8.525 10.850 

29 13.33 14.29 17.17 14.290 17.170 14.290 

Best weight (lb) 28075.488 27190.49 27858.500 27831.174 27991.297 26960.152

Const. violation Yes Yes Yes No No No 

FE 11156 5000 12325 4546 8464 6189 

Average weight (lb) - 28146.1 28425.871 28760.941 29727.876 27969.510

Worst weight (lb) - 29667.76 29415.000 30050.680 32233.551 28901.109

Standard deviation - 786.6 481.590 702.478 1323.370 422.130 

 

(a) Diversity index recorded in 20 runs (b) Convergence of minimum weight 

Fig. 9 Optimization history for 200-bar truss 
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Table 9 Average function evaluations used by ADDE for 10-bar, 37-bar, 72-bar and 200-bar trusses 

Problem ௠ܶ௔௫	 ܰܲ Fitness evaluations 
Constraint evaluations 
(Structural analyses) 

% skipped 

10-bar truss 100 25 2500 1557 37.72 

52-bar truss 150 25 3750 2966 20.91 

72-bar truss 150 25 3750 2577 31.28 

200-bar truss 300 25 7500 5512 26.51 

 
 
In summary, the experiment results and comparison demonstrate that the proposed ADDE 

algorithm is competitive to some state-of-the-art metaheuristic algorithms for truss optimization 
with discrete variables, especially in terms of computational efficiency. It also showed in general 
better performance than that of three advanced adaptive DE variants.  

It is worth to note that in ADDE the number of constraint evaluations is different from and 
lower than the number of fitness evaluations. It is due to the fact that in the algorithm, the 
constraints and the objective function are treated separately and one can avoid constraint 
evaluations, which involve structural analysis, when a trial solution can be judged by it fitness 
(objective function value). In other words, if the compared solution (the target solution) is feasible 
and the fitness of the trial solution is not better than that of it, the trial solution will be skipped 
without constraint evaluation. In this way, more structural analyses can be saved. The actual 
number of structural analyses and the percentage of skipped analyses on average are listed in Table 
9. However, for the sake of comparison purpose, only the number of fitness evaluations is 
mentioned in the previous discussion. 

 
 

6. Conclusions 
 

In this article, the adaptive directional differential evolution, ADDE, is presented for solving 
truss sizing optimization with discrete variables. It is demonstrated that the proposed adaptation 
approach based on population diversity is capable to well balance between global exploration and 
local exploitation as well as locate the promising solutions. More specifically, in the sooner 
generations exploring the domain containing the global optimum is ensured, and in the later 
generations exploitation is strengthened for accelerating the convergence speed. Computational 
efficiency and simplicity are amongst the remarkable features of the proposed algorithm. 
Numerical results show that ADDE in most cases provides optimal solutions as good as or better 
than the similar results from some state-of-the-art metaheuristics, including one recently developed 
improved DE variant. The benefit of ADDE is that it often uses fewer structural analyses than 
those required by the other methods. This indicates that ADDE is a promising optimizer for 
complex structural optimization problems like truss structures with discrete variables. 
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