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1. Introduction 

 
The slab–column structures are simple in form and high 

availability in space, and have been widely used in various 
construction industries (Shubha et al. 2014, Bhowmik et al. 
2017 and Tovi et al. 2017). For the slab–column structures, 
the ability of resisting internal force and deformation of 
connections are relatively weak, easy to occur punching 
shear failure, what is more, cause the collapse of the whole 
structure. Therefore, the research on the mechanical 
behavior of slab–column connection has not stopped. Ma 
and Lü (2001) completed the tests of six slab–column 
connections under vertical and horizontal repeated loads, 
and deduced the calculating formulae of the punching shear 
and bending strengths of slab–column connections. 
Sagaseta et al. (2014) investigated the effect of loading 
conditions (unidirectional or bidirectional bending) on the 
punching shear strength of concrete slabs. The results 
showed that the column section shape will lead to the 
concentration of shear stresses at the control perimeter. 
Alam et al. (2016) designed and completed 15 punching 
tests of slab–column connections to explore the influence of 
boundary constraint, bending reinforcement and slab 
thickness on the connections performance and punching 
capacity. The test results showed that the influence of 
bending reinforcement on the connection bearing capacity 
was smaller than that of boundary constraint and slab 
thickness. In addition, a lot of work has been done to 
improve the punching shear capacity of slab–column 
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connections. Mamede et al. (2013) studied the contribution 
of rational use of high strength concrete (HSC) to the 
punching shear capacity of slab–column connections. The 
results show that use of the HSC showed excellent results in 
terms of punching strength. Meanwhile, the compressive 
strength of concrete can improve the punching capacity 
more than the tensile strength of concrete (Inácio et al. 
2020). Zhou et al. (2021) proposed a new type of slab-
column connection embedded in a steel skeleton, and 
studied the punching shear performance of composite 
connection. The test results show that the embedded steel 
skeleton can effectively improve the punching capacity of 
slab-column connection and improve the ductility of the 
structure. 

At present, in the study of the ultimate bearing capacity 
of slab–column connection, the punching shear capacity is 
usually calculated by the regression formula of punching 
shear test, and then the bending capacity obtained from the 
yield-line theory is used to check the punching shear 
capacity, and the smaller value of the two is taken as the 
bearing capacity of the slab–column connection. When 
calculating the bending capacity of slab–column 
connections, GB 50010-2010, ACI Committee 318, and 
Eurocode 2 have similar calculation methods, which all 
estimate the bending capacity of slab–column connections 
based on the yield-line theory. The yield-line theory was 
first applied to study on the bending capacity of the slab–
square column connection (Park and Gambe 1980). On this 
basis, Baskaran and Morley (2004) referring to different 
codes, gave a formula for calculating the bending capacity 
of slab–square column connection considering the support 
conditions. However, it can be found that these studies 
mostly take square columns as the research objects, and 
only rectangular columns and circular columns are 
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considered to influence the shape of column section (Cho et 
al. 2006 and Liu 2006). Howere, the test studies and 
theoretical analyses of slab–special-shaped column 
connections have not reported in public literature. 

In addition, with the in-depth study on the failure 
mechanism of slab–column connections, Chanthabouala 
and Teng (2015) and Goswami et al. (2019) found that the 
slab–column connection has punching failure characteristics 
when the reinforcement ratio (ρ) is large. When the 
reinforcement ratio in the slab is low, the punching failure 
usually shows obvious bending deformation before it 
occurs. Bending failure is marked by the formation of yield 
hinge line at the slab surface, and punching failure is 
marked by the formation of punching failure cone in the 
slab and the punching ofrom the tensile surface of the slab 
(Ghali et al. 2015). However, the actual reinforcement of 
the slab belongs to the normal reinforcement ratio, which is 
neither very high nor very low. The mode of failure will not 
be clear because it can be a combination of bending failure 
and punching failure. The research results of Thomas 
(2004) and Stein et al. (2007) also showed a strong 
correlation between the punching and bending 
characteristics of the slab–column connection. In this case, 
how to accurately identify the failure mode and assess its 
ultimate bearing capacity is particularly important. 
Therefore, this paper studied the bending capacity of slab–
special-shaped column connections (cruciform column, T-
shaped column and L-shaped column) by using yield-line 
theory. This is new research on special-shaped column. This 
will help to open the application prospect of special-shaped 
column structure and provide help for the structural design 
of slab–special-shaped column. 

 
 

2. Tests dataset 
 
Through a large number of literature selection, the 

results of bending of 32 slab–column connections in 
literature (Liu and Huang 2004, Cai et al. 2006, Guandalini 
et al. 2009, Guidotti 2010, Yi et al. 2016, Teng et al. 2018 
and Pinto et al. 2018) are collected. See Appendix A1 for 
the test data. 

Since the tests in the literature are completed in different 
countries and laboratories, there may be differences in test 
design, material performance index, geometric shape, 

 
 

loading mode, etc. To achieve the unification of key test 
data, the data are described as follows: 

 
(1) The selected test data are all the test results of slab–

column connections under bending failure; 
(2) The selected test data are all use the international 

system of units (kN); 
(3) The shape of the reinforced concrete slab is square, 

the vertical load is applied along the column head 
by the actuator, and the boundary conditions are 
simply supported on four sides. 

 
 

3. Bending capacity based on yield-line theory 
 
The yield-line theory is an upper bound method for RC 

slabs, in which the ultimate load of slab is estimated by 
assuming a failure mechanism compatible with boundary 
conditions (Quintas 2003, Elsheikh 2006 and Braestrup 
2008). For a given slab, the ultimate load obtained by yield-
line theory may be correct or larger, because this method is 
an upper bound method. Therefore, various possible failure 
mechanisms of the slab should be considered to ensure that 
the bearing capacity of the slab is not overestimated. It 
should be noted that the yield-line theory assumes a 
bending failure mode, that is, the slab is assumed to have 
sufficient shear strength to prevent shear failure. 

 
3.1 The condition of slab under ultimate load 
 
3.1.1 Reinforcement in slab 
When the yield-line theory is used to solve the ultimate 

load of slabs, the ultimate resistance moment per unit width 
is usually assumed to be a fixed value for the convenience 
of calculation. In this case, the reinforcement in the two 
directions of the slab is generally arranged at right angles, 
and the reinforcement is uniform and isotropic. It is worth 
noting that the reinforcement in the two directions of the 
slab can be different, and the reinforcement at the top and 
bottom of the slab can also be different. It only needs to 
meet the requirement that the reinforcement area per unit 
width is equal. It should be pointed out that the study of 
yield-line model in this paper is also based on this 
assumption. 

 
 
 

 
Fig. 1 Bending moment-curvature relationship of reinforced concrete slab section 
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3.1.2 Performance of the slab section 
Since the yield-line theory assumes a bending failure 

mode, which means that the slab section should have 
enough ductility to produce plastic rotation on the 
dangerous section and form plastic hinge on the whole slab. 
The effective ductility depends on the shape of the bending 
moment-curvature curve of the section. Fig. 1 shows the 
bending moment-curvature relationship of reinforced 
concrete slab section. The relationship curve can be roughly 
divided into three stages: the initial elastic stage before 
concrete cracking (a-b in Fig. 1); The straight line stage (b-
c in Fig. 1) before yielding of tensile reinforcement; Finally, 
the last is an almost horizontal straight line (c-d in Fig. 1), 
where the resistance bending moment of the section keeps 
close to the limit value until the concrete reaches its 
ultimate strain. The section ductility is measured by the 
curvature ductility coefficient, which is defined as the ratio 
of the curvature when the concrete reaches the ultimate 
strain to the curvature when the tensile reinforcement 
begins to yield, φu / φy. Obviously, for most slabs, in order 
to ensure that the failure mode is bending failure, it requires 
that the slab section has enough ductility. Accordingly, the 
ratio of tensile reinforcement should be low enough. 

 
3.1.3 Yield-line model and basic assumptions 
During the loading process, the deformation of reinforced 

concrete (RC) slab goes through three stages: in the first 
stage, the initial bending moment appears when the load is 
small; In the second stage, with the increase of load, the 
tensile reinforcement begins to yield, the curvature of yield 
section changes greatly, and the bending moment 
redistributes; In the third stage, the load increases again, the 
severe crack line (yield-line) subdivides the slab into failure 
mechanism, and the yield-line system of failure mechanism 
is the yield-line mode (Kennedy and Goodchild 2004). The 
forming process of yield-line mode of simply supported 
slab is shown in Fig. 2, and the oblique lines in Fig. 2 
represent simply supported edges. It should be pointed out 
that the yield-line is actually an idealization of a severely 
cracked zone through which the tensile reinforcement has 
yielded. 

The basic assumptions of the yield-line model are as 
follows (Burgess 2017): 

 
(1) The yield-line is generated at the maximum 

bending moment when the slab is close to failure 

 
 
and divides the slab into several blocks connected 
by the yield-line, making the slab becomes a 
variable system. 

(2) The yield-line is the crack line generated by the 
yielding of the reinforcement. The ultimate 
moment of resistance on the yield-line remains 
unchanged, but the angle of rotation can continue 
to increase. 

(3) The elastic deformation of each slab is negligible 
compared with the large displacements generated 
by each slab along the yield-line, and each slab can 
be regarded as a rigid body. 

(4) Among all possible failure mechanisms, only the 
one that produces the smallest failure load is the 
most important and the most dangerous. 

 
3.2 Analysis method of virtual work principle 
 
The principle of virtual work can be stated as follows: 

assuming that the rigid body is in equilibrium under the 
action of a system of forces, the sum of the work done by 
these forces will be zero if the rigid body produces any 
small translocation (Liu and Zhang 2008). Therefore, the 
displacement δ (x, y) produced at all points in the slab and 
the angle of rotation of each slab to the yield-line can be 
obtained by selecting a suitable point in the slab and making 
that point produce a small displacement (δ) under external 
load. Assuming that the unit concentrated load Pi acts 
vertically on the slab, the virtual work done by the external 
force is as follows 

 𝑊௘ = ෍ 𝑃௜𝛿(𝑥, 𝑦) (1)
 
Since there is a relative angle of rotation between the 

two sides of the yield-line, but there is no relative 
displacement, the work done on the yield-line is generated 
only by the ultimate bending moment, while the sum of 
work done by the torque and shear force is zero. The virtual 
work done by the unit length ultimate bending moment (mu) 
on the yield-line of length (l0) is as follows 

 𝑊௜ = − ෍ 𝑚௨𝜃௡𝑙଴ (2)
 

where θn is the relative angle of rotation between the two 
sides of the yield-line. Thus, the virtual work equation can 

 
(a) Initial yield (b) Further development of yield-line (c) Failure mode

Fig. 2 Forming process of yield-line of simply supported slab 
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be written as follows 
 ෍ 𝑃௜𝛿(𝑥, 𝑦) − ෍ 𝑚௨𝜃௡𝑙଴ = 0 (3)

 
3.3 Ultimate resistance moment at yield-line 
 
The yield-line theory is applicable to slabs with uniform 

reinforcement. Usually, the reinforcement in the slab are 
arranged at right angles in both directions, the cross-
sectional area of the steel bars per unit width is the same, 
and the ultimate bending moment per unit width is a fixed 
value. However, in some cases, the angle of the 
reinforcement in the slab is not 90° in both directions, and 
there is a torque in addition to the ultimate bending moment 
along the yield-line, which needs further exploration. For 
the convenience of discussion, only the bending failure of 
the slab with a reinforcement angle of 90° is studied in this 
paper. 

Assuming that mu is the ultimate bending moment on the 
yield-line, when the yield-line is at right angles to the 
reinforcement, the bending moment per unit width 
generated by the reinforcement can be expressed as (Zhu et 
al. 1993) 𝑚௨ = 𝐴௦𝑓௬ℎ଴ ቆ1 − 0.5𝜌 𝑓௬𝑓cmቇ (4)

 
where As is the area of tensile reinforcement per unit width; 
fy is design value of tensile reinforcement strength; h0 is 
effective thickness of the slab; fcm is design value of 
compressive strength of concrete; ρ is reinforcement rate of 
tensile reinforcement in the slab. 

 
3.4 Calculation of bending capacity for slab-column 

connections 
 
Scholars have done a lot of research on the ultimate load 

of traditional slab–square column connections under 
concentrated load (Ma et al. 2021), but there is little 
research on the bending ultimate load of slab–special-
shaped column connections under concentrated load. 
According to the yield-line theory, the bending capacity 
calculation equation of slab–special-shaped column 
connections under concentrated load is established in this 
paper. 

Osman et al. (2000) studied the theoretical solution of 
the yield-line for the bending capacity of the slab–square 
column connection with four simply supported edges and 
orthogonal isotropy. The form of the yield-line is shown in 
Fig. 3 (the thick line in the Fig. 3 represents the yield-line), 
and the calculation formula of the bending capacity is 
shown in Eq. (5). The results show that the position of the 
yield-line is symmetrically distributed and the angle 
between the yield-line and the x-axis is 22.5°(α). 

 𝑃flex = 8𝑚௨ 𝐿 − 𝑐𝐿଴ − 𝑐 ൤ 𝐿𝐿 − 𝑐 + 2൫√2 − 1൯൨ (5)

 
where L is the side length of the slab; L0 is the effective side 
length of slab; c is the side length of square column. 

 

Fig. 3 Yield-line model of slab–square column connection
 
 

Fig. 4 Yield-line model of slab–cruciform column 
connection

 
 
3.4.1 Theoretical solution of yield-line for 

bending capacity of slab–cruciform column 
According to the failure mode of yield-line of slab–

square column connection under concentrated load, it is 
assumed that the yield-line of slab–cruciform connection 
under concentrated load is shown in Fig. 4. According to the 
yield-line theory, the bending capacity is deduced by virtual 
work equation. 

In Fig. 4, c1 is column section limb thickness; c2 is 
column section limb length. 

It can be found from Fig. 4 that the work done by the 
ultimate bending moment is caused by the bending 
moments on eight isosceles trapezoidal blocks. When the 
column occurs a unit of virtual displacement relative to the 
slab support, the external work (We) done by the column 
load P is 𝑊௘ = 𝑃 × 1 = 𝑃 (6)

 
The virtual work (Wi) done by the internal force in the 

slab is the internal work (considering symmetry), which is 
obtained according to Eq. (2) 

 𝑊௜ = 4𝑊௜(𝐸𝑇𝐽𝐹) + 4𝑊௜(𝐴𝐻𝑁𝑇𝐸) (7)
 

where the internal virtual work of the slab 𝐸𝑇𝐽𝐹  and 𝐴𝐻𝑁𝑇𝐸 is as follows 
 𝑊௜(𝐸𝑇𝐽𝐹) = 𝑚௨ × 𝐸𝐹/𝑇𝑃 (8)
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𝑊௜(𝐴𝐻𝑁𝑇𝐸) = 𝑚௫ × 𝐴𝐸 𝑐𝑜𝑠(𝛼 + 𝛽)𝑇𝐾                                +𝑚௬ × 𝐴𝐻 𝑐𝑜𝑠(𝛼 + 𝛽) /𝑇𝐾 
(9)

 
According to the geometric relationship, Eqs. (8) and (9) 

can be changed into Eqs. (10) and (11) 
 𝑊௜(𝐸𝑇𝐽𝐹) = 2𝑚௨𝐿଴ − 𝑐ଶ ሾ𝑐ଵ + (𝐿 − 𝑐ଶ) 𝑡𝑎𝑛 𝛼ሿ (10)

 𝑊௜(𝐴𝐻𝑁𝑇𝐸) = 𝑚௨ሾ(𝐿 − 𝑐ଵ) − (𝐿 − 𝑐ଶ) 𝑡𝑎𝑛 𝛼ሿ 𝑐𝑜𝑠 ቀ𝜋4ቁ /𝑇𝐾 (11)

 
where TK can be found by the geometric relationship as 
followed 

 𝑇𝐾 = √2(𝐿଴ − 𝑐ଶ)4 (1 + 𝑡𝑎𝑛 𝛼) (12)

 
According to Eqs. (7)-(12), from the imaginary work 

Eq. (3), the flexural capacity (Pflex) is assessed as follows 
 𝑃flex = 8𝑚௨𝐿଴ − 𝑐ଶ ቈ𝑐ଵ + (𝐿 − 𝑐ଶ) 𝑡𝑎𝑛 𝛼+ (𝐿 − 𝑐ଵ) − (𝐿 − 𝑐ଶ) 𝑡𝑎𝑛 𝛼1 + 𝑡𝑎𝑛 𝛼 ቉ 

(13)

 

 

where 𝛼 = 𝑡𝑎𝑛ିଵ ൬ට1 + ௅ି௖భ௅ି௖మ − 1൰. 

 
 
3.4.2 Theoretical solution of yield-line for bending 

capacity of slab–T-shaped column connection 
Suppose that the yield-line of slab–T-shaped column 

connection under bending limit state is shown in Fig. 5, and 
the bending capacity derived from virtual work equation is 
as follows. 

In Fig. 5, λ, θ is the direction angle of yield-line. 
Obviously, the yield-line model consists of triangles, 

parallelograms and trapezoids. The external force work 
done by the column load can be calculated according to Eq. 
(1) 𝑊௘ = 𝑃 × 1 = 𝑃 (14)

 
The internal virtual work is calculated according to Eq. 

(2) 
 𝑊௜ = 2𝑊௜(𝐸𝑁𝑇𝐹) + 2𝑊௜(𝐴𝐻𝑁𝐸) + 2𝑊௜(𝐹𝑇𝐽𝑆𝐵)          +𝑊௜(𝐻𝑀𝑂𝑁) + 𝑊௜(𝑆𝑉𝑊𝐽) (15)

 𝑊௜(𝐸𝑁𝑇𝐹) = 𝑚௫ × 𝐸𝐹/𝑁𝑃 (16)
 𝑊௜(𝐴𝐻𝑁𝐸) = 𝑚௫ × 𝐴𝐸 𝑐𝑜𝑠(𝛼 + 𝛽)𝑁𝐾                             +𝑚௬ × 𝐴𝐻 𝑐𝑜𝑠(𝛼 + 𝛽) /𝑁𝐾 

(17)

 𝑊௜(𝐹𝑇𝐽𝑆𝐵) = 𝑚௫ × 𝐹𝐵 𝑐𝑜𝑠 ቀగଶ − 𝜑ቁ𝐽𝐼+𝑚௬ × 𝐵𝑆 𝑐𝑜𝑠 𝜑 /𝐽𝐼 
(18)

 𝑊௜(𝐻𝑀𝑂𝑁) = 𝑚௬ × 𝐻𝑀/𝑁𝑅 (19)
 𝑊௜(𝑆𝑉𝑊𝐽) = 𝑚௬ × 𝑆𝑉/𝐽𝐺 (20)
 
According to the geometric relationship, the following 

simplified results can be obtained 
 𝛼 + 𝛽 = 𝜋4 ,    𝜂 =  𝜃,     𝜆 + 𝜃 = 𝜑,  tan𝜑 = 2,      tan(𝜋/2 − 𝜑) = 1/2 
 

where the internal virtual work of the slab ENTF, AHNE, 
FTJSB, HMON and SVWJ is as follows 

 𝑊௜(𝐸𝑁𝑇𝐹) = 𝑚௨ ቂ𝑐ଵ + (௅ି௖మ)ଶ (𝑡𝑎𝑛 𝛼 + 𝑡𝑎𝑛 𝜂)ቃ(௅బି௖మ)ଶ  (21)

 𝑊௜(𝐴𝐻𝑁𝐸)= 𝑚௨ሾ(𝐿 − 𝑐ଶ) − (𝐿 − 𝑐ଶ) 𝑡𝑎𝑛 𝛼ሿ × 𝑐𝑜𝑠 𝜋4 /𝑁𝐾 (22)

 
 

 
 𝑊௜(𝐻𝑀𝑂𝑁) = 2𝑚௨ሾ𝑐ଶ + (𝐿 − 𝑐ଶ) 𝑡𝑎𝑛 𝛼ሿ/(𝐿଴ − 𝑐ଶ) (24)
 𝑊௜(𝑆𝑉𝑊𝐽) = 2𝑚௨ሾ𝑐ଵ + (𝐿 − 𝑐ଶ) 𝑡𝑎𝑛 𝜃ሿ/(𝐿଴ − 𝑐ଶ) (25)
 
The results of TW, JI and NK can be obtained by using 

the geometric relationship 
 𝑁𝐾 = √2(𝐿଴ − 𝑐ଶ)4 (1 + 𝑡𝑎𝑛 𝛼) (26)

 
 

Fig. 5 Yield-line model of slab–T-shaped column 
connection
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𝐽𝐼 = (𝐿଴ − 𝑐ଶ)2√5 (1 + 𝑡𝑎𝑛 𝜃) (27)

 
According to Eqs. (15)-(27), from the imaginary work 

Eq. (3), the flexural capacity (Pflex) is assessed as follows 
 

 
The partial derivatives of α, θ are taken separately, the 

partial derivatives are zero, and the minimum upper limit 
solution of the bending capacity can be found. 

 ௗ௉ௗఈ = 0,  𝛼 = arctan൫√2 − 1൯ ௗ௉ௗఏ = 0,  𝜃 = 𝑎𝑟𝑐𝑡𝑎𝑛 ൬ටହ(ଷ௅ିଶ௖భି௖మ)ଷ(௅ି௖మ) − 2൰ 

 
The flexural capacity (Pflex) is assessed as follows 
 

 

where 𝑡𝑎𝑛 𝜃 = ൬ටହ(ଷ௅ିଶ௖భି௖మ)ଷ(௅ି௖మ) − 2൰. 
 
3.4.3 Theoretical solution of yield-line for bending 

capacity of slab–L-shaped column connection 
In the same way, it is assumed that the yield-line model 

of slab–L-shaped column connection under bending limit 
state is shown in Fig. 6. 

The yield-line model consists of triangles and isosceles 
trapezoids centered on L-shaped columns. Internal virtual 

 
 

 
Fig. 6 Yield-line model of slab–L-shaped column 

connection 

work can be expressed as 
 𝑊௜ = 2𝑊௜(𝐸𝑁𝑇𝐹) + 2𝑊௜(𝐴𝐻𝑁𝐸) + 2𝑊௜(𝐻𝑀𝐽𝑁)+𝑊௜(𝐹𝑇𝑆𝐵) + 𝑊௜(𝑀𝐷𝑉𝐺𝐽) (30)

 
 

 
where the internal virtual work of the each sub-block is as 
follows 𝑊௜(𝐸𝑁𝑇𝐹) = 𝑚௫ × 𝐸𝐹/𝑁𝑃 (31)

 𝑊௜(𝐴𝐻𝑁𝐸) = 𝑚௫ × 𝐴𝐸 𝑐𝑜𝑠(𝛼 + 𝛽)𝑁𝐾  +𝑚௬ × 𝐴𝐻 𝑐𝑜𝑠(𝛼 + 𝛽) /𝑁𝐾 
(32)

 𝑊௜(𝐻𝑀𝐽𝑁) = 𝑚௬ × 𝐻𝑀/𝑁𝑅 (33)
 

 𝑊௜(𝐹𝑇𝑆𝐵) = 𝑚௫ × 𝐹𝐵 𝑐𝑜𝑠(𝜆 + 𝜃)𝑇𝐼  +𝑚௬ × 𝐵𝑆 𝑐𝑜𝑠(𝜆 + 𝜃) /𝑇𝐼 
(34)

 𝑊௜(𝑀𝐷𝑉𝐺𝐽) = 𝑚௫ × 𝐷𝑉 𝑐𝑜𝑠(𝛾 + 𝜂)𝐽𝑊  +𝑚௬ × 𝑀𝐷 𝑐𝑜𝑠(𝛾 + 𝜂) /𝐽𝑊 
(35)

 
Through the geometric relationship of each sub-block, 

the following relationship can be obtained 
 𝛼 + 𝛽 = 𝜋4 ,     𝛾 + 𝜂 = 𝜋4 ,    𝜆 + 𝜃 = 𝜋/4 
 
Combined with Eq. (30), the results are as follows 
 𝑊௜(𝐸𝑁𝑇𝐹) = 𝑚௨ × ቂ𝑐ଶ + (௅ି௖మ)ଶ (𝑡𝑎𝑛 𝛼 + 𝑡𝑎𝑛 𝜃)ቃ(௅బି௖మ)ଶ  (36)

 𝑊௜(𝐴𝐻𝑁𝐸) = 2𝑚௨ × ቀ௅ି௖మଶ − ௅ି௖మଶ 𝑡𝑎𝑛 𝛼ቁ 𝑐𝑜𝑠 గସ𝑁𝐾  (37)

 𝑊௜(𝐻𝑀𝐽𝑁) = 𝑚௨ × ቂ𝑐ଵ + (௅ି௖మ)ଶ (𝑡𝑎𝑛 𝛼 + 𝑡𝑎𝑛 𝜂)ቃ(௅బି௖మ)ଶ  (38)
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𝑃flex = 4𝑚௨𝐿଴ − 𝑐ଶ ቈ𝑐ଵ + (𝐿 − 𝑐ଶ)2 (𝑡𝑎𝑛 𝛼 + 𝑡𝑎𝑛 𝜂)቉ + 4𝑚௨(𝐿 − 𝑐ଶ)(𝐿଴ − 𝑐ଶ) × (1 − 𝑡𝑎𝑛 𝛼)(1 + 𝑡𝑎𝑛 𝛼)            + 8𝑚௨(𝐿଴ − 𝑐ଶ)(1 + 𝑡𝑎𝑛 𝜃) × ቈቆ(𝐿 + 𝑐ଶ)2 − 𝑐ଵቇ − (𝐿 − 𝑐ଶ)2 𝑡𝑎𝑛 𝜃቉             + 2𝑚௨(𝐿଴ − 𝑐ଶ) × ሾ𝑐ଵ + 𝑐ଶ + (𝐿 − 𝑐ଶ)(𝑡𝑎𝑛 𝛼 +𝑡𝑎𝑛 𝜃)ሿ + 4𝑚௨(𝐿଴ − 𝑐ଶ)(1 + 𝑡𝑎𝑛 𝜃) ቈ(𝐿 − 𝑐ଵ)2 − (𝐿 − 𝑐ଶ)2 𝑡𝑎𝑛 𝜃቉ 

(28)

𝑃flex = 8𝑚௨ (𝐿 − 𝑐ଶ)൫√2 − 1൯(𝐿଴ − 𝑐ଶ) + 2𝑚௨(3𝑐ଵ + 𝑐ଶ)(𝐿଴ − 𝑐ଶ) + 2𝑚௨(𝐿 − 𝑐ଶ)(𝐿଴ − 𝑐ଶ) × (𝑡𝑎𝑛 𝜃 + 𝑡𝑎𝑛 𝜂)              + 8𝑚௨(𝐿଴ − 𝑐ଶ)(1 + 𝑡𝑎𝑛 𝜃) ቈቆ(𝐿 + 𝑐ଶ)2 − 𝑐ଵቇ − (𝐿 − 𝑐ଶ)2 × 𝑡𝑎𝑛 𝜃ሿ              + 4𝑚௨(𝐿଴ − 𝑐ଶ)(1 + 𝑡𝑎𝑛 𝜃) ቈ(𝐿 − 𝑐ଵ)2 − (𝐿 − 𝑐ଶ)2 𝑡𝑎𝑛 𝜃቉ 

(29)
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𝑊௜(𝐹𝑇𝑆𝐵) = 2𝑚௨ × ቂ௅ି௖మଶ − ௅ି௖మଶ 𝑡𝑎𝑛 𝜃ቃ 𝑐𝑜𝑠 గସ𝑇𝐼  (39)

 

 
NK, TI, JW can be obtained by geometric relation 
 𝑁𝐾 = √2(𝐿଴ − 𝑐ଶ)4 (1 + 𝑡𝑎𝑛 𝛼) (41)

 𝑇𝐼 = √2(𝐿଴ − 𝑐ଶ)4 (1 + 𝑡𝑎𝑛 𝜃) (42)

 𝐽𝑊 = √2(𝐿଴ − 𝑐ଶ)4 (1 + 𝑡𝑎𝑛 𝜂) (43)

 
According to Eqs. (30)-(43), from virtual work equation 

Eq. (3), the flexural capacity (Pflex) is assessed as follows 
 

 
The minimum upper bound solution of bending capacity 

is obtained by calculating the partial derivative of α, η and θ 
and making the partial derivative equal to zero. 

 𝛼 = 𝑡𝑎𝑛ିଵ൫√2 − 1൯ ,     𝜂 = 𝑡𝑎𝑛ିଵ ቌඨ2𝐿 − 2𝑐ଵ𝐿 − 𝑐ଶ − 1ቍ , 𝜃 = 𝑡𝑎𝑛ିଵ൫√2 − 1൯ 
 
The flexural capacity (Pflex) is assessed as follows 
 𝑃flex = 2𝑚௨ 𝐿 − 𝑐ଶ𝐿଴ − 𝑐ଶ ൣ6൫√2 − 1൯ + 𝑡𝑎𝑛 𝜂൧+ 4𝑚௨(𝑐ଵ + 𝑐ଶ)(𝐿଴ − 𝑐ଶ)+ 2𝑚௨𝐿଴ − 𝑐ଶ× ൤𝐿 + 𝑐ଶ − 2𝑐ଵ − (𝐿 − 𝑐ଶ) 𝑡𝑎𝑛 𝜂1 + 𝑡𝑎𝑛 𝜂 ൨

(45)

 

where 𝑡𝑎𝑛 𝜂 = ටଶ௅ିଶ௖భ௅ି௖మ − 1. 
 
 

4. Discussing 
 
4.1 Comparison between the calculated results 

and the test results 
 
In order to verify the correctness of the theoretical 

solution of the yield-line of the bending capacity of the 
slab–special-shaped column connection, the calculation 
results of the bending capacity derived from the formula are 
compared with the test results by using the previously 

established test database, as shown in Fig. 7. To simplify the 
calculation, it is assumed that the simply supported position 
is at the edge of the slab, L = L0. 

 
Fig. 7 shows the comparison results between the 

calculated results and the test results. The comparison 
results take the test results (Pu) of each literature as the 
horizontal coordinate and the bending capacity calculated 
results (Pflex) as the horizontal coordinate. The discreteness 
between the calculated results and the test results is very 
small, and there is a good consistency, in which R2 = 0.985, 
RMSE = 18, which shows that the formula derived in this 
paper has a high accuracy for design and evaluation. 

In order to further demonstrate the reliability of the 
formula, the ratio of the experimental value of each 
literature and the theoretical prediction value of bending 
capacity (Pu/Pflex) is taken as the vertical coordinate, and the 

 

 
 

reinforcement ratio (ρ) is taken as the horizontal coordinate. 
The evaluation results are shown in Fig. 8. 

For convenience of understanding and explanation, a 
black auxiliary line is drawn in Fig. 8, indicating the case 
where the ratio of the experimental results to the theoretical 
results is 1. It can be found that for the scattered points 
whose ratio results are higher than the auxiliary line, the 
corresponding test results in the literature are all bending 
failure, and the corresponding reinforcement ratio is usually 
relatively small, as shown in Figs. 8(a), 8(b), 8(c) and 8(d). 
However, for the scattered points with the ratio results 
below the auxiliary line, the test phenomenon often shows 
the brittleness characteristic. During the failure process, the 
bending strength of the specimen was not fully exerted (the 
reinforcement ratio was greater than 1.3%), and the punching 
shear failure plays a controlling role, as shown in Fig. 8(f). 

 
 

Fig. 7 Comparison of calculated results and test results
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𝑊௜(𝑀𝐷𝑉𝐺𝐽) = 2𝑚௨ × ൤𝐿 + 𝑐ଶ − 2𝑐ଵ2 − 𝐿 − 𝑐ଶ2 𝑡𝑎𝑛 𝜂൨ × 𝑐𝑜𝑠 గସ𝐽𝑊  (40)

𝑃flex = 4𝑚௨𝐿଴ − 𝑐ଶ ቈ𝑐ଶ + (𝐿 − 𝑐ଶ)(𝑡𝑎𝑛 𝛼 + 𝑡𝑎𝑛 𝜃)2 ቉ + 4𝑚௨(𝐿 − 𝑐ଶ)(1 − 𝑡𝑎𝑛 𝛼)(𝐿଴ − 𝑐ଶ)(1 + 𝑡𝑎𝑛 𝛼) + 4𝑚௨𝐿଴ − 𝑐ଶ ቈ𝑐ଵ + (𝐿 − 𝑐ଶ)2 (𝑡𝑎𝑛 𝛼 + 𝑡𝑎𝑛 𝜂)቉           + 2𝑚௨(𝐿 − 𝑐ଶ)(𝐿଴ − 𝑐ଶ) × (1 − 𝑡𝑎𝑛 𝜃)(1 + 𝑡𝑎𝑛 𝜃) + 2𝑚௨(𝐿଴ − 𝑐ଶ) × ൤𝐿 + 𝑐ଶ − 2𝑐ଵ − (𝐿 − 𝑐ଶ) 𝑡𝑎𝑛 𝜂1 + 𝑡𝑎𝑛 𝜂 ൨ 
(44)
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The reinforcement ratio between 0.9% and 1.3% belongs to 
bending-punching failure. The failure mode is mainly 
punching failure, but it is accompanied by bending 
characteristics, see Fig. 8(e). Based on the above analysis 
and combined with the test results, in order to better study 
the bearing capacity of slab-column connections under 
bending failure, the follow-up only focuses on the case 
where the ratio of the test results to the theoretical 
calculation results is greater than 1. 

Based on the above results and appendix 1, the 
following conclusions can be drawn: i) The bending capacity 
of slab–special-shaped column connections estimated 

 
 

by the formula based on the yield-line theory is basically 
consistent with the test results, which provides an 
acceptable accuracy; ii) For the rectangular column, the 
change of column limb length to thickness ratio (c2/c1) and 
concrete strength (fc) has less influence on the bending 
capacity of slab–column connections under the same 
reinforcement ratio (see Figs. 8(b), 8(c) and 8(d)); iii) For 
L-shaped columns, there is no significant change in bending 
capacity with the increase or decrease of control perimeter 
(b0) of column section under the same reinforcement ratio 
(see Fig. 8(e)). 

 

(a) Different column section shape (b) Square and rectangular column 
 

(c) The change of c2/c1 (d) The influence of fc (Square) 
 

(e) The influence of b0 (f) Square column 

Fig. 8 Evaluation results
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4.2 Influence of column section shape on bending 
capacity 

 
This section mainly studies the influence of column 

section shape on bending capacity. In order to study the 
influence of column section shape on bending capacity and 
ensure the singleness of analysis variables, the following 
assumptions are made before the analysis. 

Assuming that the special-shaped column has the same 
section perimeter (l) and mu, at the same time, ignoring the 
influence of internal displacement of slab support and size 
effect, L0 = L = l. For the special-column, c1 + c2 = l/2 can 
be obtained; For the rectangular column, 4c2 = l can be 
obtained; In addition, it is assumed that ω = c2/c1. It is 
worth noting that as a correlation indicator, ω close to 1 
indicates that the column section tends to be regular. 

 
(1) Rectangular column 
 

 
(2) Cruciform column 
 

 
(3) T-shaped column 
 

 
(4) L-shaped column 
 

 
The parameters of each specimen were brought into Eqs. 

(46)-(49) and their bending capacity is calculated 
respectively. The results are shown in Fig. 9. 

Fig. 9 shows the influence of column section shape on 
the bending capacity. It can be observed from Fig. 9 that the 
bending capacity of special-shaped columns with equal 
column section perimeter has the following relationship: T-
shaped column > rectangular column > L-shaped column > 
cruciform column. In addition, the bending capacity does 
not change much with the column limb length to thickness 
ratio (c2/c1). Specifically, it can be concluded as follows: i) 
for the column section of equal perimeter, the bending 
capacity of T-shaped column is slightly higher than that of 
other three sections, but the magnitude of the increase is 
small. Obviously, the influence of the column section shape 
on the bending capacity is relatively limited; ii) the 
influence of the change of c2/c1 on the bending capacity of 
the connection does not exceed 6%, indicating that the 

Fig. 9 Pflex /mu-ω curves for different column section shape
 
 
 

 
 

 
 

 
 

 
influence of column section shape on the bending capacity 
can be ignored. 

To further demonstrate this point, taking the rectangular 
column slab connection as an example, the calculation 
results and the test results in references (Al-Yousif and 
Regan 2003, Teng et al. 2004, Guandalini et al. 2009 and Yi 
et al. 2016) are compared and analyzed. A total of 16 
rectangular column test results were collected, and the 
specific comparison results are shown in Fig. 10. It is not 
difficult to find that when the slab–rectangular column 
connection is subjected to concentrated load, the bending 
capacity of the connection decreases slightly with the 
increase of the column section from 1 to 4, but the overall 
state is flat. Therefore, for the slab–rectangular column 
connection, it can be concluded that the change of c2/c1 has 
little influence on the bending capacity of the slab–column 
connection. However, since there are few test results on the 
influence of large change of c2/c1 on the flexural capacity, it 
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𝑃flex = 4𝑚௨ሾ𝑙 + (2𝐿(𝜔 + 1) − 𝑙𝜔) 𝑡𝑎𝑛 𝛼ሿ2𝐿(𝜔 + 1) − 𝑙𝜔 + 4𝑚௨ሾ2𝐿(𝜔 + 1) − 𝑙 − (2𝐿(𝜔 + 1) − 𝑙𝜔) 𝑡𝑎𝑛 𝛼ሿሾ2𝐿(𝜔 + 1) − 𝑙𝜔ሿ(1 + 𝑡𝑎𝑛 𝛼)              +4𝑚௨ሾ2𝐿(𝜔 + 1) − 𝑙𝜔 − (2𝐿(𝜔 + 1) − 𝑙) 𝑡𝑎𝑛 𝛾ሿሾ2𝐿(𝜔 + 1)−𝑙ሿ(1 + 𝑡𝑎𝑛 𝛼) + 4𝑚௨ሾ𝑙𝜔 + (2𝐿(𝜔 + 1) − 𝑙) 𝑡𝑎𝑛 𝛾ሿ2𝐿(𝜔 + 1) − 𝑙  
(46)

𝑃flex = 8𝑚௨4𝐿 − 𝑙 ൤ 𝑙𝜔 + (4𝐿 − 𝑙) 𝑡𝑎𝑛 𝛼 + 4𝜔𝐿 − 𝑙 − 𝜔(4𝐿 − 𝑙) 𝑡𝑎𝑛 𝛼𝜔(1 + 𝑡𝑎𝑛 𝛼) ൨ (47)

𝑃flex = 8𝑚௨൫√2 − 1൯ + 2𝑚௨𝑙(𝜔 + 3)(4𝐿 − 𝑙)𝜔 + 2𝑚௨(𝑡𝑎𝑛 𝜃 + 𝑡𝑎𝑛 𝜂)            + 4𝑚௨(4𝐿 − 𝑙)(1 + 𝑡𝑎𝑛 𝜃) ቈ𝜔(4𝐿 + 𝑙) − 2𝑙 − 𝜔(4𝐿 − 𝑙) 𝑡𝑎𝑛 𝜃𝜔 ቉           + 2𝑚௨(4𝐿 − 𝑙)(1 + 𝑡𝑎𝑛 𝜃) ൤(4𝜔𝐿 − 𝑙) − 𝜔(4𝐿 − 𝑙) 𝑡𝑎𝑛 𝜃𝜔 ൨ 

(48)

𝑃flex = 2𝑚௨ൣ6൫√2 − 1൯ + 𝑡𝑎𝑛 𝜂൧ + 4𝑚௨(𝑙 + 𝜔𝑙)𝜔(4𝐿 − 𝑙) + 2𝑚௨(4𝐿 − 𝑙) × ቈ𝜔(4𝐿 + 𝑙) − 2𝑙 − 𝜔(4𝐿 − 𝑙) 𝑡𝑎𝑛 𝜂𝜔(1 + 𝑡𝑎𝑛 𝜂) ቉ (49)
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Fig. 10 Pflex / mu-ω curves for rectangular column
 
 

is difficult to carry out further analysis. 
 
 

5. Conclusions 
 
In this paper, using the yield-line theory, a new set of 

general expressions for calculating the bending capacity of 
slab–special-shaped connections are proposed, and the 
following conclusions can be obtained. 

 
(1) Based on the yield-line theory, a formula for 

calculating the bending capacity of the slab- 
special-shaped column is established, and 
compared with the test results. The results shown 
that the theoretical solution derived in this paper 
has the characteristics of small dispersion rate and 
high accuracy, which can be used as reference for 
corresponding engineering applications. 

(2) After verifying the theoretical solution of bending 
capacity based on yield-line theory, the sensitivity 
of column section shape to the bending capacity of 
slab–special-shaped column connections was 
studied. The results show that the column section 
shape has an influence on the bending capacity of 
slab–column connection, but the influence is not 
obvious. At the same time, the influence of the 
column limb length to thickness ratio (c2/c1) on the 
bending capacity of special-shaped columns can be 
ignored. 

(3) For the rectangular column section, when the 
change of column limb length to thickness ratio 
(c2/c1) increases from 1 to 4, the bending capacity 
of the connection has no obvious change. However, 
the influence of the greater c2/c1 variation on 
bending capacity needs to be further explored. 
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Notation 
 
fy yield strength of flexural reinforcement 
fc concrete compressive strength 
fcm design value of compressive strength of concrete 
b0 control perimeter 
ω column section aspect ratio 
h0 effective thickness of the slab 
As area of tensile reinforcement per unit width 
ρ reinforcement ratio of tensile reinforcement 
δ node displacement 
We external work 
Wi virtual work 
m bending moment 
mu ultimate bending moment per unit length 
mx ultimate bending moment per unit length in x direction 
my ultimate bending moment per unit length in y direction 
c side length of square column 
c1 column section limb thickness 
c2 column section limb length 
L side length of the slab 
L0 effective side length of slab 
l0 yield-line of length 
l perimeter of special-shaped column section 
θn relative angle of rotation between yield-lines 
α, β, λ, θ, η, φ, γ direction angle between the yield-line
P concentrated load 
Pi unit concentrated load 
Pflex calculated bending bearing capacity 
Pu ultimate bearing capacity test result 
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Appendix A1 
 

Test data 
Source Serial No. Section shape L/mm h/mm c2/mm c1/mm fc/Mpa fy/Mpa ρ/% Pu/kN Pflex/kN

Liu and Huang (2004) 

CS-1 cruciform 1500 140 300 100 36.4 377.0 1.59 533 613 
CT-1 T 1500 140 300 100 42.3 377.0 1.59 584 735 
CL-1 L 1500 140 300 100 34.2 377.0 1.59 520 628 
CF-1 square 1500 140 300 300 38.3 377.0 1.59 520 652 
CS-2 cruciform 1500 140 300 100 30.1 377.0 1.91 473 712 
CT-2 T 1500 140 300 100 38.4 377.0 1.91 633 862 
CL-2 L 1500 140 300 100 40.9 377.0 1.91 637 753 
CF-2 square 1500 140 300 300 39.6 377.0 1.91 557 772 
CS-3 cruciform 1500 140 300 100 37.4 377.0 0.80 440 408 
CT-3 T 1500 140 300 100 38.9 377.0 0.80 408 388 
CL-3 L 1500 140 300 100 41.9 377.0 0.80 405 389 

Cai et al. (2006) 

P150-1 T 2200 150 720 180 38.7 280.1 1.53 600 588 
P150-2 T 2200 150 720 180 37.7 280.1 1.63 640 652 
P150-3 T 2200 150 720 180 40.5 280.1 1.43 560 538 
P180-1 T 2200 180 720 180 38.7 280.1 1.30 900 881 

Guandalini et al. (2009) 

PG-2b square 3300 250 260 260 40.5 552.0 0.25 440 441 
PG-4 square 3300 250 260 260 32.3 541.0 0.25 408 430 
PG-5 square 3300 250 260 260 29.3 555.0 0.33 550 537 
PG-10 square 3300 250 260 260 28.5 577.0 0.33 540 557 

Guidotti (2010) 
PT22 square 3000 220 260 260 64.5 552 0.82 839 857 
PG20 square 3000 220 260 260 50.6 551 1.56 860 887 

Yi et al. (2016) 
CL-1 square 2550 180 250 250 30.0 453.6 0.86 507 518 
CL-2 rectangular 2550 180 330 170 28.2 453.6 0.86 516 512 
CL-4 rectangular 2550 180 400 100 28.6 453.6 0.86 498 511 

Teng et al. (2018) 

S11-28 square 2200 150 200 200 88.5 459.6 0.28 280 274 
S11-50 square 2200 150 200 200 88.5 537.2 0.50 394 404 
S13-28 rectangular 2200 150 600 200 90.1 459.4 0.28 308 306 
S13-50 rectangular 2200 150 600 200 90.1 537.5 0.50 418 449 

Pinto et al. (2018) 

L-R L 1800 120 400 100 25.0 538.0 0.94 285 271 
L-1 L 1800 120 400 100 25.0 538.0 0.94 273 269 
L-2 L 1800 120 400 100 25.0 538.0 0.92 275 294 
L-3 L 1800 120 400 100 25.0 538.0 0.92 277 303 
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