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Abstract.  In this work, a novel first-order shear deformation beam theory is applied to explore the vibration and 
buckling characteristics of thick functionally graded beams. The material properties are assumed to vary across the 
thickness direction in a graded form and are estimated by a power-law model. A Fourier series-based solution 
procedure is implemented to solve the governing equation derived from Hamilton’s principle. The obtained results of 
natural frequencies and buckling loads of functionally graded beam are checked with those supplied in the literature 
and demonstrate good achievement. Influences of several parameters such as power law index, beam geometrical 
parameters, modulus ratio and axial load on dynamic and buckling behaviors of FGP beams are all discussed. 
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1. Introduction 
 

Normally, due to their specific properties, composite materials have found very wide 

applications in various applications into modern industrial construction such as mechanical 

engineering, aerospace, transportation industries and so on. However, in extreme conditions as a 

use in the high-temperature environments, these classical composite materials represent some 

deficits and fail to preserve their integrity. To surmount these drawbacks, a new sort of advanced 

composite materials or functionally graded materials (FGMs) have been designed (Koizumi 1997). 

Usually these materials are made from a mixture of a ceramic and a metal with volume fractions 

which are varied continuously as a function of location depending on some dimension(s) of the 

structure to reach a required function. The FGMs have been applied in several hi-tech industrial 

applications of for defense industries, aerospace, aircrafts, automobile, shipbuilding industries, and 

further engineering structures. Presenting these notable advantages, studies of structures made of 

these types of materials have attracted the worldwide interest by numerous researchers 

(Chakraborty et al. 2003, Li 2008, Sina et al. 2009, Attia et al. 2015, Tounsi et al. 2013). Sankar et 
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al. (2001) developed an elasticity solution on the basis of functionally graded Euler-Bernoulli 

beam theory; the FG beam was subjected to static transverse loads and assuming that Young’s 

modulus of the beam changes exponentially across the thickness. Aydogdu and Taskin (2007) 

analyzed the dynamic behavior of a simply supported FG beam by employing various beam theory 

like Euler-Bernoulli beam theory, parabolic shear deformation theory and exponential shear 

deformation model. Zhong and Yu (2007) used a two-dimensional elasticity theory and analytical 

solution for a cantilever FG beam with arbitrary graded variations of material property 

distribution. Li (2008) analyzed the static and dynamic behaviors of FG beams by using a new 

unified approach, the rotary inertia and shear deformation have been included. Sallai et al. (2009) 

contributed to the bending responses of a sigmoid FG thick beam by different higher order beam 

theories. Simsek (2010a) researched the free vibration characteristic of an FG beam via different 

higher order beam theories. In another one, Simsek (2010b) has investigated the dynamic 

deflections and the stresses of an inhomogeneous FG beam subjected to a moving mass by 

utilizing Euler-Bernoulli, Timoshenko and the parabolic shear deformation beam theory. Thai and 

Vo (2012) studied the impacts of using various shear deformation beam theories on the bending 

and vibration responses of thick FG beams. Bouremana et al. (2013) developed a new first shear 

deformation beam theory model based on neutral surface position for FG beams. Ould Larbi et al. 

(2013) used an efficient shear deformation beam theory and the concept of neutral surface position 

for bending and free vibration of functionally graded beams. Nguyen et al. (2013) investigated by 

employing a novel first order shear deformation beam model the static bending and free vibration 

of axially loaded FG beams in which, an improved transverse shear stiffness has been introduced 

without using shear correction factor. Vo et al. 2014 used a new developed finite element model 

based on refined shear deformation theory to examine the Static and vibration analysis of 

functionally graded beams. Meradjah et al. (2015) proposed a novel shear deformation beam 

model including the stretching effect for studying the flexural and free vibration responses of 

functionally graded beams. Vo et al. (2015) employed a finite element model to examine the 

dynamic vibration and buckling of FG sandwich beams via the novel quasi-3D theory in which 

both shear deformation and thickness stretching effects are incorporated. Bourada et al. (2015) 

developed a new simple shear and normal deformations theory for functionally graded beams in 

which the numbers of unknowns has been reduced to optimize the calculation time. Bensaid et al. 

(2017) contributed to static deflection and dynamic behavior of higher-order hyperbolic shear 

deformable compositionally graded beams, in this study the authors made a further supposition in 

the beam kinematic to construct a new simple and efficient shear deformation beam model. Zidi et 

al. 2017 proposed a novel simple two-unknown hyperbolic shear deformation theory to investigate 

bending and free vibration analysis of functionally graded (FG) beams. Recently, Vo et al. (2017) 

investigated the free vibration of axially loaded composite beams by employing a four-unknown 

shear and normal deformation theory. More recently, Kaci et al. (2018) studied the postbuckling 

response of laminated composite beams via the new developed two unknowns shear deformation 

beam model. 

In addition, a significant progression in the use of structural elements such as beams and plates 

at nano scales after the invention of carbon nanotubes (CNTs) by Iijima (1991), due to providing 

outstanding mechanical, chemical, and electronic characteristics compared to the conventional 

structural materials. Recently, lots of studies have been also performed to investigate mechanical 

responses of the nano structures subjected to multi field load; one can cite the works of Reza 

Barati and his co-workers (Ebrahimi and Barati 2016b, c, d, 2017, a, b, Barati et al. 2016, Barati 

and Shahverdi 2016, Barati and Shahverdi 2017a, b, c, d, e) they used an improved analytical 
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Fig. 1 Schematic arrangement of axially loaded functionally graded beam 

 

 

models in their investigations. They also discussed the effects of various physical fields and small 

scale parameter on the buckling, wave propagation and dynamic behavior of functionally graded 

nano beams and plates. Also, and in the recent years, the concept of functionally graded materials 

(FGMs) has been integrated in the design of smart materials and structures, several researchers 

examined mechanical properties of structural elements made from the well-known magneto-

electro-elastic functionally graded (MEEFG) materials. Some of researchers in recent years have 

analyzed mechanical behaviors of FGM macro/nano beams and plates based on various plate shear 

deformation plate theories (Ebrahimi and Barati 2016e, f). 

In view of above, some works cited were based on the classical first order shear deformation 

theory which sometimes involves many unknowns in the governing equations of motion which is 

highly computational cost. Recently, a new FSDT which involves only four unknowns by making 

a further assumption in the plate kinematic was developed by Thai et al. (2014). A number of 

investigations have been recently provided on the basis of this model. Nguyen (2015) employed 

this supposition to develop a higher-order hyperbolic shear deformation plate model for analysis of 

functionally graded materials. Hadji et al. (2016) performed a dynamic analysis of functionally 

graded beam using a novel first-order shear deformation theory. Bellifa et al. (2016) utilized this 

simple NFSDT to explore the static bending and free vibration analysis of functionally graded 

plates based on the concept the neutral surface position. It is apparent that few of published papers 

on FG beams have explored the vibration and buckling of graded beam by using the new first 

order shear deformation theory discussed earlier. It is mentioned that the mechanical attitude of FG 

beams is notably influenced when taking into account the coupling between the vibration and axial 

load. 

Present research is devoted to study free vibration and buckling of axially loaded simply 

supported FG beams by employing a refined first shear deformation beam theory. The materials 

properties of the FG beam are presumed to be graded across the thickness direction based on 

power-law model. By using the Hamilton’s principle, the governing equations are extracted and 

then solved in the framework of an analytical procedure. To confirm the validity of the proposed 

theory, the obtained results are compared with the existing solutions. A variety of graphical and 

tabulated results reveal the remarkable effect of length to thickness ratios, power-law exponent, 

Young’s modulus ratio, axial loadings, on the vibration frequencies and buckling loads of FGP 
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beams. 

 
 

2. Mathematical development 
 

Let assume a functionally graded beam having length L and uniform rectangular cross section 

b× h, with b represents the width and h the thickness which its coordinates is depicted in Fig. 1. 

The beam is fabricated of elastic and isotropic material with material properties changing graded 

and smoothly in the z thickness direction. 

 

2.1 Material properties 
 

The volume fraction of the ceramic constituent of the FG beam is supposed to be given by 

1

2

k

c

z
V

h

 
= + 
   

(1) 

In which k is a variable parameter that dictates material variation profile through the thickness 

and z is the distance from the mid-plane of the FG beam. When k is set to be zero represents a fully 

ceramic beam, whereas infinite k indicates a fully metallic beam. Material characteristics of a 

functionally graded beam may be acquired by means of the Voigt rule of mixture (Suresh and 

Mortensen 1998, Bourada et al. 2012, Simsek and Yurtcu 2013, Nguyen et al. 2013, Chien et al. 

2016, Ebrahimi and barati 2016a, Bensaid and Bekhadda 2018) as 

f c c m mP PV P V= +
 

(2) 

where Pm, Pc, Vm and Vc are the corresponding material properties and the volume fractions of the 

metal and the ceramic constituents related by 

1c mV V+ =
 

(3) 

Hence, Young’s modulus (E) and mass density (ρ), of the FG beam can be described by the 

following power-law distribution as 

( ) ( )
1

2

k

c m m

z
E z E E E

h

 
= − + + 

   

(4) 

( ) ( )
1

2

k

c m m

z
z

h
   

 
= − + + 

   

(5) 

 

2.2 Kinematic relations 
 

Until now, various beam theories have been developed for modeling and analysis of beams 

(Ebrahimi and Barati 2016b, e, g, Barati and Zenkour 2017). So, based on the new proposed 

refined First order shear deformation theory, the displacement field of the present beam model can 

be written in a simpler form as follow (Thai et al. 2014, Nguyen 2015, Bellifa et al. 2016) 
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( ) ( )

( ) ( )

0, , ,

, , ,

u x z t u x t z
x

w x z t w x t


= −



=
 

(6) 

It is mentioned that the displacement field of the recent refined or simplified existing FSDT 

theories (Thai and Choi 2013a, b) are obtained by splitting the transverse displacement into 

bending and shear parts, in which the number of unknowns are reduced in the general equations of 

motion, the procedure is shown by the following equation, (Bouremana et al. 2013, Malikan 

2017): 

( ) ( )w w bending w shear= +  (7) 

In addition, the φ in Timoshenko beam theory (TBT) parameter was also supposed as follow: 

b
x

dw

dx
 = −

 
(8) 

Therefore, by making another assumption to existing ones as θx = −dϕ /dx and without splitting 

the transverse displacement w into two components, the displacement field also generates fewer 

unknown variables and the governing equations of motion resulting in this study will be 

completely different compared with those cited above. 

In Eq. (6), u, w are displacements in the x, z directions, u0 is the mid surface displacements. ϕ is 

function of coordinates x and time t which represents the shear transverse displacement. 

The nonzero strains combined with the displacements in Eq. (6), there must be 

0

x x xzk = +
 

(9a) 

s

xz xz =
 

(9b) 

where 

2
0 0

2
,x x

u
k

x x




 
= = −
   

(10a) 

s

xz

w

x x




 
= −
   

(10b) 

Supposing that the material of FG beam obeys Hooke’s law, the constitutive relations can be 

given as 

( ) ( )11 55 ;x x xz s xzQ z and k Q z   = =
 

(11a) 

In which, ks is a shear correction factor which is similar to shear correction factor proposed by 

Mindlin (1951). Employing the material properties defined in Eq. (2), stiffness coefficients, Qij can 

be given as 

( )
( )

( )
( )

( )11 5521 2 1

E z E z
Q z and Q z

 
= =

− +
 

(11b) 
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2.3 Variational formulation 
 

To derive the governing equations of motion, Hamilton’s principle is employed, (Reddy 2002) 

( )
0

0

T

U V K dt + − =
 

(12) 

By which δU is the difference of the strain energy; δV represents the work done by external 

forces due to in-plane load; and the variation of the kinetic energy is given by δK. The variation of 

the strain energy of the beam can be declared by the following form 

( )

( )

2

0

2

2

0 0

2

0

h

L

x x xz xz

h

L

x x xz

U dzdx

d wd u d w
N M Q dx

dx dx dx

    

  

−

= +

 −
= − + 

 

 


 

(13) 

where N, M and Q are the stress resultants defined as 

( ) ( )
2 2

2 2

, 1,

h h

x x x xz xz

h h

N M z dz and Q dz 
− −

= = 
 

(14) 

The variation of work done by externally transverse load q and the in-plane N̅, which can be 

expressed as 

0

( )
L

dw d w
V q w N dx

dx dx


 

 
= − + 

 


 
(15) 

where (q and N̅) are the transverse and axial loads, respectively. Since this paper is devoted to the 

study of the free vibration and buckling of FG beams, the transverse load q will be omitted, 

because of the absence of the investigation on the bending behavior. 

The variation of the kinetic energy can be expressed as 

 

 

/2

0

2

0 0 0 1 0 0

0

2

( )

( )( )

L h

h

L

K z u u w w dzdx

d d
I u u w w I u u

dx dx

d d
I dx

dx dx

   

 
  

 

−

= +

  
= + − +  

  

 
+  

 

 



 

(16) 

where, the dot-superscript sign indicates the differentiation with sense to the time variable t; ρ is 

the mass density; and (I0, I1, I2) are the mass inertias expressed as 

( ) ( )
2

2

0 1 2

2

, , 1, , ( )

h

h

I I I z z z dz
−

= 
 

(17) 

Substituting the expressions for δU, δV, and δK from Eqs. (13), (15), and (16) into Eq. (12) and 
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integrating by parts, and collecting the coefficients of δu0, δw0 and δφ, the following equations of 

motion of the FG beam are obtained 

0 0 0 1: xdN d
u I u I

dx dx


 = −

 
(18a) 

2

0
1 22 2

: x xzd M dQ du d
I I

dx dx dx dx


 − = −

 
(18b) 

2

02
: xzdQ d w

w N I w
dx dx

 − =
 

(18c) 

Eqs. (18) can be expressed in terms of displacements (u0, w0 and ) by using Eqs. (6), (9), (11) 

and (14) as follows 

2 3

11 11 0 12 3

d u d d
A B I u I

dx dx dx

 
− = −

 
(19a) 

( )
3 4 2

11 11 55 1 23 4 2 2

sd u d d du d
B D A w I I

dx dx dx dx dx

 
− − − = −

 
(19b) 

( )
2 2

55 02 2

s d d w
A w N I w

dx dx
− − =

 
(19c) 

where A11, B11, D11, etc., are the beam stiffness, defined by 

( ) ( )
2

2

11 11 11 11

2

, , 1, ,

h

h

A B D Q z z dz
−

= 
 

(20a) 

and 

( )

( )

2

55

2

2 1

h

s

s

h

E z
A k dz

−

=
+  (20b) 

 

 

3. Solution method 
 

In this part, by employing analytical solution (Navier’s method), the governing equations of 

motion for free vibration and buckling of simply-supported FG beam has been solved. The 

displacement functions are provided as product of non-unknowns coefficients and known 

trigonometric functions to assure the boundary conditions at x=0, x=L, the next displacements 

functions are estimated to be of the formed 

( )
( )
( )

0

1

cos

sin

sin

i t

m

i t

m

m i t

m

u U x e

x e

w W x e









  





=

  
  

=   
   
   
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(21) 
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where (Um, m, Wm) are the unknown Fourier coefficient that will be determined for each value 

of m, and λ = mπ / L. 

Substituting the expansions of u0,  and w from Eqs. (21), into the equations of motion Eq. 

(19), the analytical solutions can be obtained from the following Eqs. (22a) to (22c) 

3

2 11

2

11 0

2

1

0m m m

m

m
B

m L
A I U

L m
I

L




 




  
       − − − =           −   

    

(22a) 

4 2

211 55

552
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2
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s
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m m
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m m
D A

L L m
A W

Lm
I

L

 







    
− + −             + =          
  
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(22b) 
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m m
A Nm

A L L
L

I

 






      − +      
+ =             −   

(22c) 

By making the determinant of the coefficient matrix of the beyond equations and setting this 

polynomial to zero, we can obtain natural frequencies ωm and buckling load N̅. 
 

 

4. Numerical result and discussions 
 

Through this section, a variety of numerical examples are presented and discussed to verify the 

correctness of the present theory in predicting the free vibration and buckling responses of simply 

supported FG beams. The new results are obtained from the new simple and accurate first-order 

beam theory. 

In this study, the FG beam is selected to be built of aluminum and alumina with the following 

material properties: 

Ceramic (PC: Alumina, Al2O3): Ec = 380 GPa; v = 0.3; ρc 3960 kg/m3. 

Metal (Pm: Aluminium, Al): Em = 70 GPa; v = 0.3; ρm = 2707 kg/m3. 

For convenience, the following non-dimensional forms are used during this investigation. 

2

m

m

L

h E


 =

 

(23) 

2

3

12
cr cr

m

L
N N

E h
=

 

(24) 

as well as Young’s modulus ratio: 

c
ratio

m

E
E

E
=

 
(25) 
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Table 1 Comparison of the first three non-dimensional natural frequencies of simply-supported FG beams 

L/h Mode Source p 

5 

  0 1 2 5 10 

1 

Present 5.1524 3.9806 3.6223 3.4225 3.3091 

Ref(a) 5.1525 3.9902 3.6344 3.4312 3.3135 

Ref(b) 5.1525 3.9902 3.6344 3.4312 3.3134 

Ref(c) 5.1527 3.9904 3.6264 3.4012 3.2816 

2 

Present 17.8710 13.9109 12.5974 11.7388 11.2710 

Ref(a) 17.8711 14.0030 12.7120 11.8157 11.3073 

Ref(c) 17.8812 14.0100 12.6405 11.5431 11.0240 

3 

Present 34.1449 26.7934 24.1759 22.2619 21.2311 

Ref(a) 34.1439 27.0525 24.4970 22.4642 21.3219 

Ref(c) 34.2097 27.0979 24.3152 21.7158 20.5561 

20 

1 

Present 5.4603 4.2043 3.8358 3.6501 3.5412 

Ref(a) 5.4603 4.2051 3.8368 3.6509 3.5416 

Ref(b) 5.4603 4.2051 3.8368 3.6509 3.5416 

Ref(c) 5.4603 4.2051 3.8361 3.6485 3.5390 

2 

Present 21.5731 16.6230 15.1571 14.4004 13.9599 

Ref(a) 21.5732 16.6344 15.1715 14.4110 13.9653 

Ref(c) 21.5732 16.6344 15.1619 14.3746 13.9263 

3 

Present 47.5921 36.7138 33.4462 31.6983 30.6930 

Ref(a) 47.5921 36.7673 33.5135 31.7473 30.7173 

Ref(c) 47.5930 36.7679 33.4689 31.578 30.5369 

Ref(a) Nguyen et al. (2013) 

Ref(b) Simsek (2010)  

Ref(c) Thai and Vo (2012) 

 

 

in which I = bh3/12 and the shear correction factor is taken as k = 5/6 for simply supported, 

boundary conditions, respectively. 

 

4.1 Validation of vibration analysis 
 

To confirm the validity of the present model, the obtained results are compared with the other 

works that exist in the literature for the first five natural frequencies of FG beams. For L/h = (5, 

20) respectively and several values of gradient index (p), the results are showed in Table 1. It is 

observed that the results match well with those presented by (Simsek 2010, Thai and Vo 2012, 

Nguyen et al. 2013) which demonstrate the efficient of the present model. Also, it is apparent that 

an increase in the values of power-law exponent leads to a reduction in the stiffness of porous FG 

beam and consequently natural frequency decreases. Further, at bigger values of length-to-

thickness ratio, the present model provides higher frequencies, and vice versa for lower values of 

slenderness ratio. 
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Table 2 Validation of the critical buckling loads of simply-supported FG beams 

L/h Source p 

5 

  0 1 2 5 

Present 48.5903 24.5813 19.1616 15.9417 14.3444 

Ref(a) 48.835 24.687 19.245 16.024 14.427 

Ref(b) 48.835 24.687 19.245 16.024 14.427 

10 

Present 52.2373 26.1406 20.3924 17.1700 15.5879 

Ref(a) 52.308 26.171 20.416 17.194 15.612 

Ref(b) 52.309 26.171 20.416 17.192 15.612 

Ref(a) Nguyen et al. (2013) 

Ref(b) Li and Batra (2013) 
 
Table 3 the first three non-dimensional critical buckling loads of simply-supported FG beams 

Mode Source p 

  0 1 2 5 10 

1 Present 5.1524 3.9806 3.6223 3.4225 3.3091 

2 Present 151.9318 78.3841 61.7401 49.5790 43.4982 

3 Present 250.6507 135.2048 104.9102 81.3765 69.7502 

 

 

4.2 Validation for buckling analysis 
 

Tables 2 and 3 compare the numerical results obtained from the presented refined model 

concerning the non-dimensional buckling loads (N̅) with some works available in the same field 

(Li and Batra 2013, Nguyen et al. 2013) for the purpose of validation. The geometric ratios L/h are 

fixed for two values 5 and 20, in addition to various gradient indexes and mode numbers were 

selected. One can see that the current results are in good agreement with results the published cited 

previously. The buckling loads parameters obtained in the current analysis are in about close 

enough to the results supplied in these works and thus confirms the proposed process of solution. 

Likewise, an increase in the power law exponent leads to a reduction in critical buckling loads. 

Moreover, it is found that FG beams with superior values of slenderness ratio have greater critical 

buckling loads. In addition, a rise in mode number yields to an increment of buckling loads. 

 

4.3 Numerical results for various materials and geometrical properties 
 

Effect of length to thickness ratio on vibration frequency and buckling load of FG beam with 

respect to power law exponent (p) is showed in Figures 2 and 3 based on the novel FSDT. It is to 

be noticed that FG beams with higher values of length to thickness ratio have larger values on both 

critical loads and vibration frequencies, due to the stiffening phenomenon. Indeed, minimizing the 

thickness of FG beam leads to lower critical frequencies. Also, an increase in the gradient index 

generates a reduction in both non-dimensional values. So, it can be mentioned that composition of 

two parameters of FG beams has a main role on their vibration and buckling behaviors in such 

cases. 

Dimensionless frequency and buckling load of FG beam vs. length to thickness ratios (L/h) for  
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Fig. 2 Influence of the power law index p on the dimensionless frequency ϖ of FG beam with various 

Length to thickness ratio L/h 

 

 

Fig. 3 Influence of the slenderness ratios L/h on the dimensionless frequency ϖ of FG beam with various 

power law index p  

 

 

Fig. 4 Variation of the dimensionless critical buckling load N̅ with respect to the power law index p for 

different values of slenderness ratios L/h  
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Fig. 5 Variation of the dimensionless critical buckling load N̅ versus slenderness ratios L/h for different 

values of the power law index p 

 
Table 4 Impacts of Young’s modulus ratio on non-dimensional frequencies of S-S FG beams with different 

values of power-law index 

L/h Eratio 0 1 2 5 6 

5 

0.25 1.1057 1.7966 2.0008 2.2576 2.4160 

0.50 1.5637 2.0526 2.1991 2.3782 2.4894 

1.0 2.2114 2.4111 2.4899 2.5772 2.6206 

2.0 3.1274 2.8994 2.8754 2.8692 2.8354 

4.00 4.4228 3.5857 3.3634 3.2416 3.1461 

6.00 5.4168 4.1256 3.7149 3.4832 3.3651 

20 

0.25 1.1717 1.8956 2.1085 2.3809 2.5517 

0.50 1.6571 2.1718 2.3243 2.5136 2.6331 

1.00 2.3435 2.5552 2.6396 2.7329 2.7788 

2.00 3.3142 3.0711 3.0523 3.0537 3.0177 

4.00 4.6871 3.7907 3.5658 3.4575 3.3620 

6.00 5.7405 4.3562 3.9322 3.7143 3.6023 

 

 

diverse power law index (p) are depicted in Figs. 4 and 5 respectively. As seen previously, a rise in 

the power-law index power leads to reduce in the values of vibration frequencies and critical loads. 

Because that by growing the value of power-law index (p), the percentage of metal phase will rise, 

thus causes such FG beams to be less rigid. A further remark is that vibration and buckling 

behaviors of FG beams are considerably controlled by the slenderness ratio. In fact, at a constant 

gradient index, a decrease length to thickness (L/h) leads to lower frequencies and buckling loads 

by introducing a decreased rigidity on FG beam structure. 

The vibration frequencies of simply-supported FG beams are presented in Table 4 and Fig. 6 to 

demonstrate the impact of the Young’s modulus ratio. One can see that for a fixed value of power-

law index, the natural frequency increases with increasing Eratio. Vice versa, for a specifiedvalue of 

Eratio. Further, a rise in the power-law exponent, it causes opposing responses on the vibration, 

which is augmented when Eratio < 1 and decreased when Eratio > 1, when Eratio = 1 the vibration of 
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Fig. 6 Impacts of Young’s modulus ratio on the dimensionless fundamental natural frequencies of S-S FG 

beam with respect to power-law index (L/h = 5) 

 
Table 5 Impacts of Young’s modulus ratio on dimensionless buckling loads of S-S FG beams with diverse 

values of power-law index 

L/h Eratio 0 1 2 5 6 

5 

0.25 2.2377 4.9785 5.7869 6.8734 7.6110 

0.50 4.4754 6.4868 6.9824 7.6234 8.0790 

1.0 8.9508 8.9508 8.9508 8.9508 8.9508 

2.0 17.9017 12.9737 11.9682 11.1088 10.4824 

4.00 35.8034 19.9143 16.4694 14.2493 12.9363 

6.00 53.7051 26.4183 20.1751 16.5353 14.8479 

20 

0.25 2.4056 5.3084 6.1575 7.3220 8.1289 

0.50 4.8113 6.9561 7.4706 8.1522 8.6501 

1.00 9.6226 9.6226 9.6226 9.6226 9.6226 

2.00 19.2453 13.9123 12.8693 12.0000 11.3318 

4.00 38.4907 21.2336 17.5999 15.3897 14.0502 

6.00 57.7360 28.0710 21.4404 17.7865 16.1324 

 

 

the FG beam takes a values of isotropic beam and remain constant (Fig. 6). It also proves another 

time some dynamic responses cited in the previous examples. 

Table 5 and Fig. 7 exhibit the effect of Young’s modulus ratio on the critical buckling loads of 

simply supported FG beams. It can be observed that the critical loads enhance sequentially with 

the rise of Eratio for every values of power-law index considered. The effect of this ratio is more 

prominent for min values of gradient index than big ones (Table 5). In addition, if we take Eratio 

equal to unity, similar behavior of vibration analysis can be seen again for buckling investigation. 

It is also observable, with the increase in power-law index, the buckling load increases when Eratio 

< 1, and a reduction is noticed when Eratio > 1.  

Finally, as seen in previously as the beam becomes homogeneous, Eratio = 1, the critical 

buckling is independent of the power-law index and its value remains constant (Fig. 7). 

Finally, the impacts of the axial force on the natural frequencies are explored. Table 6 shows the  
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Fig. 7 Impacts of Young’s modulus ratio on the dimensionless buckling loads of S-S FG beam with 

respect to power-law index (L/h = 5) 

 

Table 6 Effect of the axial force on the dimensionless natural frequencies of simply-supported FG beams 

L/h p Ncr N0=-0.5Ncr No preload N0=0.5Ncr 

5 

0 2.2675 5.5473 5.1524 4.7247 

1 1.1471 4.2855 3.9806 3.6502 

2 0.8942 3.8998 3.6223 3.3216 

5 0.8439 3.6847 3.4225 3.1385 

10 0.6694 3.5897 3.3091 3.0023 

20 

0 0.0388 5.4476 5.3932 5.3383 

1 0.0193 4.1974 4.1557 4.1136 

2 0.0151 3.8273 3.7892 3.7508 

5 0.0127 3.6362 3.6001 3.5635 

10 0.0116 3.5252 3.4899 3.4543 

 

 

first three natural frequencies with and without the impact of the axial force. The variation of the 

natural frequencies owing to the axial force is important for all values of power-law exponent. 

Moreover it is obvious from this table that fundamental frequencies come down as the axial force 

switches from tension to compression, this is due to that the tension force imposes a stiffening 

effect while the compressive force has a softening effect on the natural frequencies parameters. 

 
 

5. Conclusions 
 

A novel first order shear deformation beam theory is proposed for studying the dynamic and 

buckling behavior of FG beams. The present theory is able to provide a lower number of variables 

in generalized cases which facilitate engineering design computations times, also respects the zero 

traction boundary conditions on the upper and lower surfaces of the FG beam with using a shear 

correction factor. Material’s properties of the FG beam are supposed to be changed along the 

thickness direction and are evaluated according to the power-law model. The governing equations 
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are derived by applying Hamilton’s principle, based on a newly first order beam theory and a 

Navier based analytical approach is implemented to resolve these equations. It has been shown that 

the proposed model based on the novel FSDT approach can offer precise frequency and buckling 

results of the FG beams as checked to analytical results cases that available in the literature and a 

good agreement has been revealed. At last, a parametric study was done, and the numerical results 

show the significant influences of several parameters such as material property gradient exponent, 

length to thickness ratio, Young’s modulus ratio, and axial load on the fundamental frequencies 

and critical buckling loads of FG beams. Unlike the conventional first shear deformation theory, 

the proposed first shear deformation theory contains only four unknowns in the general case. In 

conclusion, it can be said that the adopted improved model NFBT is not only accurate but also 

efficient in predicting the static buckling and dynamic behaviors of functionally graded beams, 

which is of great interest, especially in the design of various real engineering problems by 

facilitating engineering computations. 
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