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Abstract.  Bending, buckling and free vibration responses of functionally graded (FG) higher-order beams resting 
on two parameter (Winkler-Pasternak) elastic foundation are studied using a new inverse hyperbolic beam theory. 
The material properties of the beam are graded along the thickness direction according to the power-law distribution. 
In the present theory, the axial displacement accounts for an inverse hyperbolic distribution, and the transverse shear 
stress satisfies the traction-free boundary conditions on the top and bottom surfaces of the beams. Hamilton’s 
principle is employed to derive the governing equations of motion. Navier type analytical solutions are obtained for 
the bending, bucking and vibration problems. Numerical results are obtained to investigate the effects of power-law 
index, length-to-thickness ratio and foundation parameter on the displacements, stresses, critical buckling loads and 
frequencies. Numerical results by using parabolic beam theory of Reddy and first-order beam theory of Timoshenko 
are specially generated for comparison of present results and found in excellent agreement with each other. 
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1. Introduction 
 

A functionally graded (FG) material is formed by varying the microstructure from one material 
to another material with a specific gradient. Now days, the application of FG material in 
engineering structures is growing rapidly due to their attractive properties (Koizumi 1993, 1997, 
Muller et al. 2003, Pompe et al. 2003, Schulz et al. 2003). Therefore, understanding bending, 
buckling and free vibration responses of FG beams becomes an important task. Few researchers 
have developed elasticity solutions for the analysis of FG beams (Sankar 2001, Zhong and Yu 
2007, Ding et al. 2007, Ying et al. 2008, Daouadji et al. 2013) which are analytically very 
difficult. Therefore, researchers have developed various approximate beam theories which are 
mathematically simpler compared to elasticity solutions. The Euler-Bernaulli beam theory and the 
first-order beam theory (Timoshenko 1921) are not suitable for the analysis of thick beams due to 
neglect of shear deformation effect. Therefore, higher-order beam theories are developed by 
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various researchers which considered the effect of transverse shear deformation and accurate for 
the analysis of thick beams. There exist various classes of higher-order beam theories which 
account the effect of transverse shear deformation such as parabolic beam theories (Reddy 1984, 
Sayyad et al. 2015a), trigonometric beam theories (Touratier 1991, Mantari et al. 2012a, b, Neves 
et al. 2012a, Sayyad and Ghugal 2011a, Sayyad et al. 2015b), hyperbolic beam theories (Soldatos 
1992, Neves et al. 2012b, Sayyad and Ghugal 2011b), exponential beam theories (Karama et al. 
2003), etc. Recently, Sayyad and Ghugal (2015, 2017a) presented a comprehensive literature 
review on various higher-order beam theories for the analysis of beam and plate structures. Several 
research papers have been published by researchers in last decade on bending, buckling and free 
vibration analysis of functionally graded beams (Thai and Vo 2012, Sayyad and Ghugal 2017b, 
Simsek 2010, Hadji et al. 2016a, b, Bourada et al. 2015, Vo et al. 2014a, b). 

Fazzolari (2016) presented the free vibration analysis of three-dimensional metallic and 
functionally graded beams with arbitrary boundary conditions using refined variable-kinematics of 
quasi-3D beam theories hierarchically generated by using the method of power series expansion of 
displacement components. Ghumare and Sayyad (2017) have developed a new fifth-order shear 
and normal deformation theory for static bending and elastic buckling of functionally graded 
beams. Recently, Fazzolari (2018) investigated the free vibration and elastic stability behaviour of 
three-dimensional functionally graded sandwich beams featured by two different types of porosity, 
with arbitrary boundary conditions and resting on Winkler-Pasternak elastic foundations. This 
investigation is carried out by using exponential, polynomial, and trigonometric higher-order beam 
theories. 

Hyperbolic function considering the effect of transverse shear deformation was first time 
suggested by Soldatos (1992). The theory is called as hyperbolic beam theory which is further 
used by the many researchers for the analysis of isotropic, laminated composite, sandwich and 
functionally graded beams and plates. Later on, researchers have suggested various hyperbolic 
functions which take into account shear deformation (Meiche et al. 2011, Akavci and Tanrikulu 
2008, Mahi et al. 2015, Grover et al. 2013). 

In this study, a new inverse hyperbolic function suggested by Nguyen et al. (2016) is used to 
develop an inverse hyperbolic beam theory. This theory is applied for the bending, buckling and 
free vibration analysis of functionally graded beams resting on two parameter elastic foundation. 
The material properties of functionally graded beams are varied through the thickness according to 
the power-law distribution. The theory gives hyperbolic cosine distribution of transverse shear 
stress through the thickness of the beam and satisfies the traction free boundary conditions on the 
top and bottom surfaces without using the problem dependent shear correction factor. Governing 
equations of motion are obtained using the Hamilton’s principle. Analytical solutions for simply 
supported boundary condition are obtained using Navier’s solution technique. Numerical results 
are compared with those reported previously in literature. The effects of the power-law index, 
length-to-thickness ratio and foundation parameter on the displacements, stresses, critical buckling 
loads and natural frequencies of FG beams are investigated. 
 
 
2. Theoretical formulation 
 

Consider a beam resting on two parameter elastic foundation as shown in Fig. 1 with length L 
and rectangular cross-section (b×h). The beam is made of functionally graded material such that 
the bottom surface of beam is ceramic rich and top surface is metal rich. The origin of the 
Cartesian coordinate system is assumed at the left support of the beam. The x-axis coincides 
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Fig. 1 FGM Beam resting on two parameter elastic foundation 

 
 
with the beam neutral axis and the z-axis is assumed positive downward. The beam is assumed to 
be placed on the two-parameter elastic foundation, including Winkler layer and Pasternak shearing 
layer with stiffnesses kw and kp respectively. The relation between these stiffnesses and the 
transverse deflection (w) of the FG beam is given by 

2

2w p
d wR k w k
dx

= - , (1)

where R is the reaction force of foundation. 
The functionally graded beam is made of ceramic (alumina) and metal (aluminum) materials. 

The material property distribution of functionally graded beams through the thickness is given by 
the power-law: 

( ) ( )1

1
2

c c c m

p

c

P z PV V P

zV
h

= + -

é ù= +ê úë û  

(2)

where Pc and Pm are the properties (Young’s modulus E, Poisson’s ratio μ, shear modulus G, and 
density ρ) of ceramic and metal, respectively; p is the power-law index and Vc is the volume 
fraction. The variation of the volume fraction Vc through the thickness of the beam for various 
values of the power-law index is shown in Fig. 2.  

 
2.1 An inverse hyperbolic beam theory (IHBT) 
 
To include the effect of transverse shear deformation and rotary inertia, the present theory is 

developed based on the following kinematical assumptions: (1) the axial displacement consists of 
the extension, bending and shear components; (2) The axial displacement in x-direction accounts 
for an inverse hyperbolic distribution; (3) there is no relative motion in the y-direction at any 
points in the cross section of the beam; (4) the theory gives hyperbolic cosine distribution of 
transverse shear strain across the thickness of the beam and satisfies zero traction boundary 
conditions on the top and bottom surfaces of the beam. Based on these assumptions, the  
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Fig. 2 Variation of Young’s modulus E(z) through the thickness of FG beam for various values of the 
power-law index (p) 

 
 

displacement field of the present inverse hyperbolic shear deformation theory is given by: 
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where u and w are the displacements in x and z- directions respectively; u0 and w0 are 
displacements of a point on the neutral axis (z = 0) of the beam. An inverse hyperbolic shape 
function is assumed according to transverse shearing strain distribution across the thickness of the 
beam. The non-zero strains associated with the displacement field in Eq. (3) are: 
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The stress-strain relationships at any point within the beam are given by one dimensional 
Hooke’s laws as follows: 

( ) ( )andx x zx zxE z G zs e t g= = , (7)

 
2.2 Governing equations of motion 
 
The variational strain energy (δU) due to internal forces, variational potential energy (δV) due 

to external forces and stiffness of elastic foundation; and variational kinetic energy (δK) due to 
inertia forces are required to derive the governing equations of motion.      

The variation of the strain energy (δU) can be stated as: 
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(8)

where c s
x x x zxN ,M ,M ,Q are the stress resultants in terms of the axial force, bending moment, 

higher order moment and shear force, respectively as defined below:  
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The variation of the potential energy (δV) due to external forces and stiffness of elastic 
foundation can be written as 

dd d dæ ö= + -ç ÷
è øò 00L dw d wV q w N R w dx

dx dx , 
(11)

The variation of kinetic energy (δK) can be written in following form, 
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where ρ(z) is the mass density and IA, IB, IC, ID, IE, IF are the inertia coefficients as defined below: 
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Governing equations of motion of the present inverse hyperbolic shear deformation theory are 
derived using Hamilton’s principle stated in Eq. (14),  

( )2

1

0
t

t
U V K dtd d d- + =ò , 

(14)

where t1 and t2 are the initial time and final time, respectively. Substituting Eqs. (8)-(13) into the 
Eq. (14) and integrating by parts and setting the coefficients of δu0, δw0 and δϕ equal to zero, the 
following equations of motion are obtained, 
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(15)

By substituting the stress resultants from Eq. (9) into Eq. (15), the following governing 
equations of motion can be obtained, 
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3. Analytical solutions 
 
Navier-type analytical solutions are obtained for the bending, buckling and free vibration 

analysis of functionally graded beams resting on two parameter elastic foundation. According to 
the Navier-type solution technique, the unknown displacement variables and the transverse load 
are expanded in a Fourier series as given below: 

( ) ( )
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0 0
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(17)

where 1i = - , /m La p= and um, wm, ϕm are the unknown coefficients; ω is the natural 
frequency; and qm is the coefficient of Fourier expansion of the transverse load.  

0

0

for sinusoidal load

4 for uniform load

m

m

q q

qq
mp

=

=
, 

(18)

where q0 is the maximum intensity of load. By substituting Eqs. (17) and (18) into Eq. (16), the 
analytical solution can be obtained from the following equations: 

[ ] { } { }K Q´ D = , (19)

[ ] [ ]{ } { } { }0 0K N N- ´ D =  (20)

[ ] [ ]{ } { } { }2 0K Mw- ´ D =
 (21)

where [K] represents stiffness matrix, [M] represents mass matrix, [N] represents geometric matrix, 
{Δ} represents vector of unknowns and {Q} represents force vector. The elements of these 
matrices are as follows: 
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4. Numerical results and discussion 
 

4.1 Numerical results 
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Numerical results for displacements, stresses, critical buckling load and natural frequencies of 
functionally graded beams resting on two parameter elastic foundation are presented in this section 
to verify the accuracy of the present theory. The beam is made of following material properties: 

Ceramic: Alumina (Al2O3) (Ec = 380 GPa, ρc = 3960 kg/m3, μ = 0.3) 

Metal: Aluminum (Al) (Em = 70 GPa, ρm = 2702 kg/m3, μ = 0.3) 

For simplicity, the following non-dimensional parameters are used: 

Axial displacement (x = 0, z =-h/2): 
3

0

100 mu E hu
q L

=
 

Transverse displacement (x = L/2, z = 0): 3
0100 /mw wE h q L=  

Axial stress (x = L/2, z = h/2): 0/x x h q Ls s=  
Transverse shear stress (x = 0, z = 0): 0/xz xz h q Lt t=  

Critical buckling load: 2 3
012 /cr mN N a E h=  

Fundamental frequency: 2 / /m mL h Ew w r=  

 
4.2 Discussion 
 
In this example, the bending response of FG beam under sinusoidal load is investigated. 

Displacements and stresses obtained by using the present theory (IHBT), parabolic beam theory 
(PBT) of Reddy (1984) and first order beam theory (FBT) of Timoshenko (1921) are presented in 
Table 1. These results are obtained for L/h = 5 and various values of power law index (p) and 
foundation parameters (ζw, ζp). It is seen that the displacements and stresses obtained from the 
present theory are in excellent agreement with those obtained from PBT. The FBT   
underestimates the displacements and stresses. Furthermore, it is observed from the Table 1 that 
the displacements are increased with the increase in power-law index whereas stresses are identical 
when beam is made of fully ceramic (p = 0) or fully metal (p = ∞). This is due to the fact that an 
increase of the power-law index makes FG beams more flexible i.e. reduces the stiffness. It is also 
observed from the Table 1 that the displacement and stresses of FG beam are reduced when it is 
resting on two parameter elastic foundation i.e. Winkler layer and shearing layer. Figs. 3-5 show 
effect of power-law index and foundation parameter on axial displacement of FG beam subjected 
to sinusoidal load. Figs. 6-8 show non-linear variation of bending stress for p = 2, 5 and 10and 
linear variation for p = 0 and ∞. Through the thickness variations of transverse shear stresses are 
shown in Figs. 9-11 for various values of power law index and foundation parameters.        

The critical buckling loads of FG beams resting on two parameter elastic foundation obtained 
from the present theory (IHBT), PBT, FBT and Vo et al. (2014b) are presented in Table 2. The 
critical buckling load is obtained for various values of the power-law index (p), length to thickness 
ratio (L/h) and foundation parameters. As expected, it is observed that a beam with larger 
slenderness ratio has a smaller critical buckling load. It can be seen that the increase of p leads to 
the reduction in critical buckling load, indicating that the increase in p decreases the stiffness of 
beam. It is also observed that the critical buckling load is minimum when beam is resting on two 
parameter elastic foundation. 

The non-dimensional natural frequencies of a simply supported FG beam obtained from the 
present theory (IHBT) are given in Table 3 for different values of power-law index. The present 
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results are compared with those presented by Reddy (1984), Simsek (2010), Thai and Vo (2012), 
Vo et al. (2014a), Timoshenko (1921) and Bernoulli-Euler. The examination of Table 3 reveals that 
the fundamental frequencies obtained using the present theory are in excellent agreement with the 
previously published results. It is observed that an increase in value of the p leads to a reduction of 
fundamental frequencies. This is due to an increase in value of p results in a decrease in the value 
of elasticity modulus. The non-dimensional natural frequencies of an FG beam resting on two 
parameter elastic foundation obtained from the present theory (IHBT) are given in Table 4 for 
different values of power-law index. These results are first time presented in this paper. It is 
observed that the natural frequencies are increased when beam is resting on two parameter elastic 
foundation.  
 
 
Table 1 Non-dimensional displacements and stresses of functionally graded beam resting on two parameter 
elastic foundation and subjected to sinusoidal load 

    L/h = 5  L/h = 20 

p wx  px  Theory u  w  xs  zxt   u  w  xs  zxt  
0 0 0 Present 0.7253 2.5019 3.0922 0.4800  0.1784 2.2839 12.171 0.4806 
   Reddy (1984) 0.7251 2.5020 3.0916 0.4769  0.1784 2.2838 12.171 0.4774 
   Timoshenko (1921) 0.7129 2.0523 3.0396 0.2653  0.1782 2.2839 12.158 0.2653 
 0.1 0 Present 0.6826 2.3547 2.9102 0.4517  0.0932 1.1935 6.3608 0.2511 
   Reddy (1984) 0.6824 2.3547 2.9096 0.4488  0.0932 1.1935 6.3606 0.2495 
   Timoshenko (1921) 0.6716 2.3205 2.8607 0.2499  0.0932 1.1929 6.3539 0.1387 
 0.1 0.1 Present 0.4317 1.4894 1.8407 0.2857  0.0163 0.2090 1.1136 0.0440 
   Reddy (1984) 0.4316 1.4894 1.8403 0.2839  0.0163 0.2090 1.1136 0.0437 
   Timoshenko (1921) 0.4271 1.4756 1.8093 0.1589  0.0163 0.2089 1.1124 0.0243 
             

1 0 0 Present 1.7796 4.9441 4.7867 0.5248  0.4400 4.5774 18.814 0.5245 
   Reddy (1984) 1.7793 4.9458 4.7857 0.5243  0.4400 4.5773 18.813 0.5249 
   Timoshenko (1921) 1.7588 4.8807 4.6979 0.5376  0.4397 4.5734 18.792 0.5376 
 0.1 0 Present 1.5838 4.4015 4.2600 0.4657  0.1554 1.6169 6.6458 0.1851 
   Reddy (1984) 1.5835 4.4015 4.2591 0.4666  0.1554 1.6169 6.6456 0.1854 
   Timoshenko (1921) 1.5675 4.3499 4.1871 0.4791  0.1554 1.6164 6.6418 0.1900 
 0.1 0.1 Present 0.7592 2.1100 2.0422 0.2232  0.0211 0.2190 0.9001 0.0251 
   Reddy (1984) 0.7591 2.1100 2.0417 0.2237  0.0211 0.2190 0.9001 0.0251 
   Timoshenko (1921) 0.7560 2.0981 2.0195 0.2311  0.0211 0.2190 0.8998 0.0257 
             

5 0 0 Present 2.8649 7.7739 6.6079 0.5274  0.7069 6.9541 25.795 0.5313 
   Reddy (1984) 2.8644 7.7723 6.6057 0.5314  0.7069 6.9540 25.794 0.5323 
   Timoshenko (1921) 2.8250 7.5056 6.4382 0.9942  0.7062 6.9373 25.752 0.9942 
 0.1 0 Present 2.3987 6.5089 5.5327 0.4416  0.1869 1.8389 6.8212 0.1397 
   Reddy (1984) 2.3984 6.5078 5.5310 0.4450  0.1869 1.8389 6.8211 0.1408 
   Timoshenko (1921) 2.3786 6.3198 5.4210 0.8371  0.1871 1.8377 6.8221 0.2634 
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Table 1 (Continued) 
 0.1 0.1 Present 0.9205 2.4976 2.1231 0.1694  0.0226 0.2226 0.8258 0.0170 
   Reddy (1984) 0.9204 2.4975 2.1226 0.1708  0.0226 0.2226 0.8258 0.0170 
   Timoshenko (1921) 0.9294 2.4693 2.1181 0.3271  0.0227 0.2226 0.8264 0.0319 
             

10 0 0 Present 2.9995 8.6539 7.9102 0.4237  0.7380 7.6422 30.923 0.4263 
   Reddy (1984) 2.9989 8.6530 7.9080 0.4226  0.7379 7.6421 30.999 0.4233 
   Timoshenko (1921) 2.9488 8.3259 7.7189 1.2320  0.7372 7.6215 30.875 1.2320 
 0.1 0 Present 2.4659 7.1147 6.5033 0.3484  0.1819 1.8838 7.6225 0.1051 
   Reddy (1984) 2.4655 7.1141 6.5016 0.3474  0.1819 1.8838 7.5606 0.1043 
   Timoshenko (1921) 2.4408 6.8914 6.3891 1.0197  0.1821 1.8825 7.6262 0.3043 
 0.1 0.1 Present 0.8950 2.5820 2.3601 0.1264  0.0216 0.2233 0.9035 0.0125 
   Reddy (1984) 0.8948 2.5819 2.3596 0.1261  0.0215 0.2233 0.8934 0.0124 
   Timoshenko (1921) 0.9039 2.5520 2.3660 0.3776  0.0216 0.2233 0.9045 0.0361 
             
¥  0 0 Present 3.9371 13.582 3.0922 0.4800  0.9677 12.329 12.171 0.4806 
   Reddy (1984) 3.9363 13.582 3.0916 0.4769  0.9686 12.398 12.171 0.4774 
   Timoshenko (1921) 3.8702 12.552 3.0396 0.3183  0.9676 12.398 12.158 0.3183 
 0.1 0 Present 2.9391 10.139 2.3084 0.3583  0.1631 2.0785 2.0425 0.0806 
   Reddy (1984) 2.9385 10.139 2.3079 0.3560  0.1625 2.0805 2.0424 0.0801 
   Timoshenko (1921) 2.8891 10.140 2.2691 0.2376  0.1624 2.0805 2.0403 0.0534 
 0.1 0.1 Present 0.8393 2.8955 0.6592 0.1023  0.0177 0.2258 0.2217 0.0088 
   Reddy (1984) 0.8392 2.8955 0.6591 0.1017  0.0176 0.2258 0.2217 0.0087 
   Timoshenko (1921) 0.8250 2.8955 0.6479 0.0679  0.0176 0.2258 0.2214 0.0058 

 
 

Table 2 Non-dimensional critical buckling load of functionally graded beam resting on two parameter elastic 
foundation 

    p      

L/h wx  px  Theory 0 1 2 5 10 ¥  
5 0 0 Present 48.596 24.584 19.070 15.640 14.049 8.9520 
   Reddy (1984) 48.596 24.584 19.071 15.643 14.050 9.3968 
   Vo et al. (2014b) 48.840 24.691 19.160 15.740 14.146 --- 
   Timoshenko (1921) 49.356 24.911 19.422 16.199 14.603 9.0915 
 0.1 0 Present 51.636 27.623 22.110 18.680 17.089 11.991 
   Reddy (1984) 51.635 27.623 22.110 18.683 17.090 12.436 
   Timoshenko (1921) 52.395 27.951 22.461 19.238 17.643 12.131 
 0.1 0.1 Present 81.636 57.623 52.110 48.680 47.089 41.991 
   Reddy (1984) 81.635 57.623 52.110 48.683 47.090 42.436 
   Timoshenko (1921) 82.395 57.951 52.461 49.238 47.643 42.131 
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Table 2 (Continued) 
10 0 0 Present 52.237 26.140 20.366 17.080 15.498 9.6227 
   Reddy (1984) 52.238 26.140 20.366 17.081 15.499 9.7375 
   Vo et al. (2014b) 52.308 26.172 20.393 17.111 15.529 --- 
   Timoshenko (1921) 52.456 26.233 20.465 17.243 15.663 9.6629 
 0.1 0 Present 64.396 38.299 32.524 29.239 27.657 21.781 
   Reddy (1984) 64.396 38.299 32.524 29.240 27.657 21.895 
   Timoshenko (1921) 64.614 38.391 32.623 29.402 27.821 21.821 
 0.1 0.1 Present 184.39 158.29 152.52 149.24 147.65 141.78 
   Reddy (1984) 184.39 158.29 152.52 149.24 147.65 141.89 
   Timoshenko (1921) 184.61 158.39 152.62 149.40 147.82 141.82 
          

20 0 0 Present 53.236 26.562 20.718 17.484 15.909 9.8066 
   Reddy (1984) 53.236 26.562 20.718 17.484 15.909 9.8356 
   Timoshenko (1921) 53.292 26.585 20.743 17.526 15.952 9.8170 
 0.1 0 Present 101.87 75.196 69.352 66.118 64.544 58.440 
   Reddy (1984) 101.87 75.196 69.352 66.118 64.544 58.469 
   Timoshenko (1921) 101.92 75.219 69.377 66.160 64.587 58.451 
 0.1 0.1 Present 581.87 555.19 549.35 546.11 544.54 538.44 
   Reddy (1984) 581.87 555.19 549.35 546.11 544.54 538.46 
   Timoshenko (1921) 581.92 555.21 549.37 546.16 544.58 538.45 
          

50 0 0 Present 53.523 26.682 20.819 17.601 16.029 9.8594 
   Reddy (1984) 53.519 26.687 20.820 17.602 16.029 9.8647 
   Timoshenko (1921) 53.532 26.686 20.825 17.608 16.037 9.8600 
 0.1 0 Present 357.48 330.64 324.78 321.56 319.99 313.82 
   Reddy (1984) 357.48 330.64 324.78 321.56 319.99 313.82 
   Timoshenko (1921) 357.49 330.65 324.79 321.57 320.00 313.82 
 0.1 0.1 Present 3357.4 3330.6 3324.7 3321.5 3319.9 3313.8 
   Reddy (1984) 3357.4 3330.6 3324.7 3321.5 3319.9 3313.8 
   Timoshenko (1921) 3357.5 3330.6 3324.7 3321.5 3320.0 3313.8 
          

100 0 0 Present 53.565 26.700 20.835 17.619 16.046 9.8670 
   Reddy (1984) 53.565 26.704 20.837 17.620 16.048 9.8688 
   Timoshenko (1921) 53.581 26.697 20.845 17.618 16.053 9.8652 
 0.1 0 Present 1269.4 1242.5 1236.6 1233.4 1231.9 1225.7 
   Reddy (1984) 1269.4 1242.5 1236.6 1233.4 1231.9 1225.7 
   Timoshenko (1921) 1269.4 1242.5 1236.6 1233.4 1231.9 1225.7 
 0.1 0.1 Present 13269.4 13242.5 13236.6 13233.4 13231.9 13225.7 
   Reddy (1984) 13269.4 13242.5 13236.6 13233.4 13231.9 13225.7 
   Timoshenko (1921) 13269.4 13242.5 13236.6 13233.4 13231.9 13225.7 
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Table 3 Non-dimensional natural frequencies of simply supported functionally graded beam 
  p      

L/h Theory 0 1 2 5 10 ¥  
5 Present 5.1453 3.9826 3.6184 3.3917 3.2727 2.6734 

 Reddy (1984) 5.1527 3.9904 3.6264 3.4012 3.2816 2.6773 

 Simsek (2010) 5.1527 3.9904 3.6261 3.4012 3.2816 2.6773 

 Thai and Vo (2012) 5.1527 3.9904 3.6264 3.4012 3.2816 2.6773 

 Vo et al. (2014a) 5.1527 3.9716 3.5979 3.3742 3.2653 2.6773 

 Timoshenko (1921) 5.1524 3.9902 3.6343 3.4311 3.3134 2.6771 

 Bernoulli-Euler 5.3953 4.1484 3.7793 3.5949 3.4921 2.8033 
        

20 Present 5.4603 4.2050 3.8361 3.6485 3.5389 2.8371 

 Reddy (1984) 5.4603 4.2050 3.8361 3.6485 3.5389 2.8371 

 Simsek (2010) 5.4603 4.2050 3.8361 3.6485 3.5389 2.8371 

 Thai and Vo (2012) 5.4603 4.2050 3.8361 3.6484 3.5389 2.8371 

 Vo et al. (2014a) 5.4603 4.2038 3.8342 3.6466 3.5378 2.8371 

 Timoshenko (1921) 5.4603 4.2050 3.8367 3.6508 3.5415 2.8371 

 Bernoulli-Euler 5.4777 4.2163 3.8472 3.6628 3.5547 2.8461 
 

Table 4 Non-dimensional flexural natural frequencies of functionally graded beams resting on elastic 
foundation 

    p      
L/h Mode wx  px  0 1 2 5 10 ¥  
5 1 0 0 5.1453 3.9826 3.6184 3.3917 3.2727 2.6734 
  0.1 0 5.3038 4.2216 3.8961 3.7066 3.6094 3.0942 
  0.1 0.1 6.6689 6.0973 5.9810 5.9830 5.9909 5.7903 
 2 0 0 17.589 13.754 12.388 11.260 10.748 9.1392 
  0.1 0 17.633 13.820 12.465 11.351 10.848 9.2623 
  0.1 0.1 19.287 16.200 15.200 14.493 14.224 13.240 
 3 0 0 32.324 25.538 22.812 20.117 19.003 16.794 
  0.1 0 32.346 25.570 22.849 20.163 19.053 16.855 
  0.1 0.1 34.223 28.261 25.980 23.881 23.1.7 21.626 
          

20 1 0 0 5.4603 4.2050 3.8361 3.6484 3.5389 2.8371 
  0.1 0 7.5533 7.0751 7.0184 7.0948 7.1279 6.9259 
  0.1 0.1 18.052 19.224 19.752 20.390 20.703 21.022 
 2 0 0 21.571 16.631 15.158 14.370 13.922 11.208 
  0.1 0 22.189 17.571 16.250 15.596 15.226 12.857 
  0.1 0.1 39.513 39.730 40.223 41.157 41.624 41.615 
 3 0 0 47.569 36.740 33.440 31.543 30.505 24.716 
  0.1 0 47.851 37.171 33.943 32.114 31.116 25.499 
  0.1 0.1 68.353 64.871 64.523 65.245 65.633 64.358 
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Fig. 3 Non-dimensional axial displacement through the thickness (L/h = 5) 

 

 
Fig. 4 Non-dimensional axial displacement through the thickness (L/h = 5) 
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Fig. 5 Non-dimensional axial displacement through the thickness (L/h = 5) 

 

 
Fig. 6 Non-dimensional axial stress through the thickness (L/h = 5) 
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Fig. 7 Non-dimensional axial stress through the thickness (L/h = 5) 

 

 
Fig. 8 Non-dimensional axial stress through the thickness (L/h = 5) 
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Fig. 9 Non-dimensional transverse shear stress through the thickness (L/h = 5) 

 

 
Fig. 10 Non-dimensional transverse shear stress through the thickness (L/h = 5) 
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Fig. 11 Non-dimensional transverse shear stress through the thickness (L/h = 5) 

 
 
5. Conclusions 

 
Analytical solutions for bending, buckling and free vibration analysis of functionally graded 

beams resting on two parameter elastic foundation are presented in this study. An inverse 
hyperbolic shear deformation theory taking into account effect of transverse shear deformation is 
presented. The theory gives hyperbolic cosine variation of transverse shear stress across the 
thickness of the beam. Effects of the power-law index, length-to-thickness ratio and foundation 
parameter on the displacements, stresses, critical buckling loads and natural frequencies of FG 
beams are investigated. From the numerical results, it is concluded that the increase in the power-
law index reduces the stiffness of functionally graded beam and consequently leads to an increase 
in displacements and a reduction of natural frequencies and critical buckling loads. The proposed 
theory is accurate and efficient in predicting bending, buckling and free vibration responses of 
functionally graded beams. Natural frequencies of FG beams resting on elastic foundation are 
presented for the first time in the present study and can be served as a benchmark solution for the 
future researchers.  
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