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Abstract.  Kalman filter based spacecraft attitude estimation has been used in many space missions and has 
been widely discussed in literature. While some models in spacecraft attitude estimation include spacecraft 
dynamics, most do not. To our best knowledge, there is no comparison on which model is a better choice. In 
this paper, we discuss the reasons why spacecraft dynamics should be considered in the Kalman filter based 
spacecraft attitude estimation problem. We also propose a reduced quaternion spacecraft dynamics model 
which admits additive noise. Geometry of the reduced quaternion model and the additive noise are 
discussed. This treatment is easier in computation than the one with full quaternion. Simulations are 
conducted to verify our claims. 
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1. Introduction 

 

The Kalman filter found its earliest applications in some high-profile missions in the aerospace 

industry, such as the Apollo project McGee et al. (1985). Spacecraft attitude estimation has been a 

major research area since the Kalman filter was invented Lefferts et al. (1982). Although many 

different methods have been proposed, most models suggest using only quaternion kinematics 

equations of motion for the attitude estimation without considering spacecraft dynamics. See, for 

example, some widely cited survey papers Lefferts et al. (1982), Crassidis et al. (2007) and 

references therein. This model reduces the problem size but discards useful spacecraft attitude 

information available in the spacecraft dynamics equation. The drawbacks of this simplified model 

are (a) when gyros measurements have significant noise, the spacecraft dynamics information is 

not used to prevent the degradation of the attitude estimation, and (b) when gyro measurements are 

not available (as a matter of fact, gyros are not used in most small spacecraft, for example, Stoltz 

et al. (1998)), the simplified model cannot be used to estimate the spacecraft attitude. Moreover, 

the simplified model without the spacecraft dynamics cannot estimate the attitude rates even 

through the gyros measurements are used in the estimation. In contrast, the attitude rates can be 

estimated directly by the Kalman filter with the spacecraft dynamics. There are papers that 

consider models including the spacecraft dynamics in Kalman filter designs, for example, Lovera 
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et al. (2002), Khan et al. (2001). But to our best knowledge, there is no discussion of which model 

is a better fit to the application of spacecraft attitude estimation, and there is no performance 

comparison for Kalman filters using the two different models. In this paper, we will discuss the 

importance of the spacecraft dynamics to the attitude estimation problem and examine the 

performance difference between models that incorporate spacecraft dynamics and models that do 

not. As it is well-known that the models for the attitude estimation and for spacecraft dynamics are 

nonlinear, some natural choices for solving the estimation problem are either extended Kalman 

filter (EKF) or unscented Kalman filter (UKF).  

We recognize the recent trend of using an unscented Kalman filter instead of the extended 

Kalman filter in spacecraft attitude estimation problem Julier et al. (2000), Cheon et al. (2007), 

Crassidis et al. (2003).  However we are also aware of some simulation comparison between the 

two methods and different opinions about the potential advantages of unscented Kalman filter 

performed by LaViola (2003). Given the facts that (a) it is not clear which filter is better and (b) 

EKF is computational cheaper than UKF, we will consider only the extended Kalman filter in this 

paper.  
A special feature of the spacecraft attitude estimation problem is that the quaternion has a norm 

constraint, and many methods have been proposed to deal with this constraint Markley (2003), 

Zanetti et al. (2009), Persson et al. (2013), Forbes et al. (2014). These methods are more 

complicated in concept and more expensive in computation than traditional EKF without the norm 

constraint. Therefore, we suggest using a reduced quaternion model which does not need the norm 

constraint Yang (2010, 2014). The drawback of using reduced quaternion is that it has a singular 

point in this reduced quaternion model. Since this singular point is the farthest point from the 

equilibrium point Yang (2010), the reduced quaternion model should be a good choice for normal 

mode control system design which controls the attitude to align with a reference frame.  

The remainder of the paper is organized as follows. Section 2 provides a description of the 

extended Kalman filter for spacecraft attitude estimation that follows common practice, i.e., using 

a model without spacecraft dynamics. Section 3 provides a parallel description of the extended 

Kalman filter for spacecraft attitude estimation that is our vision, i.e., using a model with 

spacecraft dynamics. The merits of the proposed model over commonly used models are 

discussed. Simulations and results for these two methods are presented in Section 4 to demonstrate 

the superiority of using a model with spacecraft dynamics. The conclusions are summarized in 

Section 5. 

 

 

2. Extended Kalman filter without spacecraft dynamics 
 

This type of model is widely used in literature (see Lefferts (1982)) for spacecraft attitude 

estimation and can be expressed as follows. Let 
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sinˆ],,[ 321

TTT eqqqq , 

and  

TTqqq ][ 0      (1) 

be the quaternion that represents the rotation of the body frame relative to the inertial frame, where 

ê  is the unit vector of the rotational axis and  is the rotational angle; the rate of change of the 

quaternion is given by Wertz (1978) 
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where ωI=[ω1  ω2  ω3]
T is the body rotational rate with respect to the inertial frame represented 

in the body frame. However, using this full quaternion model introduces a singularity in the 

covariance matrix (see Lefferts et al. (1982)). Therefore, we suggest using a reduced 

representation derived in Yang (2014) given as follows. 
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where ϕ1 is the process noise, and Ω is a matrix given by 
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with 2
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11)( qqqqg  . The reduced model embeds the unit length requirement in g(q) 

which means that there is no need to consider the unit length constraint in EKF as it was treated in 

Zanetti (2009). This model therefore significantly simplifies the problem. In Yang (2014), it is 

shown that a reduced quaternion model has other merits: it admits an analytic LQR design, and the 

LQR design globally stabilizes the original nonlinear spacecraft system. Assuming that three rate 

gyros and quaternion measurement sensors are installed on board, the measurement equation can 

be written as Crassidis et al. (2003) 
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where β is a drift in the angular rate measurement, ϕ2 is the process noise, ωy is the angular rate 

measurement obtained from gyros, qy is the quaternion measurement (which can be obtained by 

using QUEST method by Shuster (1981) or analytic method by Yang et al. (2014) for 

measurements of astronomical vectors, such as sun sensor, magnetometer, gravitometer, and star 

trackers), and ψ1 and ψ2 are measurement noise.  

The reduced quaternion geometry of qy can be seen from the following argument. The noise ψ2 

can be viewed as a reduced rotational quaternion whose rotational axis is ψ2/ ||ψ2|| and rotational 

angle meets the condition ||||
2

sin 2










. For small noise quaternion ψ2 and the quaternion 
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eq  which is bounded away from the singular point α=π (||q||<1), we can see that 
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 and ||qy||≤1 (where ||ψ2|| is small), and the rotational angle around 
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 and Δ is small because ||ψ2|| is small. Therefore, the mathematical treatment for this 

model is much easier than the multiplicative perturbation model. 
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The simplest discrete version of (6) can be obtained by explicit Euler's method. However, the 

discrete formula obtained by this method as pointed in Stoer et al. (1993) is normally not stable for 

stiff differential equations. In Zanetti et al. (2009), the trapezoidal implicit method was proposed. 

But this method as pointed in Stoer et al. (1993) involves the solution of nonlinear system of 

equations which can be very expensive in computation. We suggest using the linearly implicit 

Euler method described in Sanda et al. (2013), Hairer et al. (2014). Let dt be the sampling time 

period and 
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The discrete version of (6) is therefore given as follows 
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where kkkk uxuxH ),( . 

As always, we assume that ϕk and ψk are white noise signals and the following relations hold 
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We need some explicit expression of (8a) to obtain the formulas of the extended Kalman filter. 
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The extended Kalman filter iteration is as follows 
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and 1|11|   kkkk 


.  

Clearly, the extended Kalman filter using this model cannot be updated without three 

dimensional gyro measurements 
ky . Moreover, the simplified model without the spacecraft 

dynamics cannot estimate the attitude rates because the rates are not in the state variable of the 

filter. In the next section, we will show that even if the gyro measurements are available, using this 

model is not as good as using a model which incorporates the spacecraft dynamics. In section 4, 

we will use simulation to compare the performance of two different methods to support our claim. 

To improve the estimation accuracy of 1| kkx


, we can reduce the step size of dt. But in some 

applications, the measurements may be available only after several sampling period. In this case, a 

multi-rate Kalman filter should be considered (see Yang 2006), which is beyond the scope of this 

paper. 

 

 

3. Extended Kalman filter with spacecraft dynamics  
 

Using the method in Yang (2010, 2014), we can write this type of model as follows. 

1
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where 
TTT q ],[ is the state vector, u is the control torque, y is the measurement vector, 

TTT ],[ 21   is the process Gaussian noise which models various disturbance torques, ψ is the 

measurement Gaussian noise, J is the inertia matrix of the spacecraft, and Ω is defined in (4). The 

control torques are in general known, for example, given the measured geomagnetic vector m and 

the current applied to the magnetic torque rods, the control torque can be calculated by the method 

of Shinde et al. (2016). Depending on the design, we may have angular rate measurements ωy and 

quaternion measurement qy; or we may have only quaternion measurement qy. Assuming that three 

gyros and quaternion measurement sensors are installed on board, then the measurement equation 

can be written as in Crassidis et al. (2003) 
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where β is a drift in the angular rate measurement, ϕ3 is the process noise, ωy is the angular rate 

measurement, qy is the quaternion measurement, and ψ1 and ψ2 are measurement noise. The 

overall system equations are given as follows 
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3          (18c) 

1 y           (18d) 

2 qqy         (18e) 

which can be rewritten as a standard state space model as follows 
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Note that for two vectors w=[w1, w2, w3]
T
 and v=[v1, v2, v3]

T
, the cross product of w×v vw  

can be written as the product of matrix w
× and vector v where 
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We also assume ϕk and ψk are white noise signals satisfying Eq. (9). For  
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The extended Kalman filter iteration is as follows 
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The beauty of the Kalman filter using spacecraft dynamics can be seen from (26f). The best 

estimation is composed of two parts. The first part is a prediction 1| kkx


which is based on the 

spacecraft dynamics and the inertia matrix information for the specific spacecraft. The second part 

is a correction ky~  which is based on observations. The filter gain Kk is constantly adjusted such 

that (a) if the measurement noise is higher, the gain is reduced so that the estimation depends more 

on the system dynamics model, and (b) if measurement noise is lower, the gain is increased so that 

the estimation depends more on the measurement. That is the reason why spacecraft dynamics 

should be included in the attitude estimation problem even if angular rate measurements are 

available. The attitude rates can be estimated directly by the Kalman filter with the spacecraft 

dynamics. 

As mentioned before, the Kalman filter with spacecraft dynamics works without the (gyro) 

measurement of spacecraft angular velocity vector with respect to the inertial frame. In this case, 

gyro measurement drift β does not exist. Therefore, the continuous system (18) is reduced to 
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where Ωk is the same as in (21). We also assume ϕk and ψk are white noise signals satisfying 

equations (9). For  
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we have 
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The extended Kalman filter will be the same as (26). 

 
 
4. Simulation test 
 

The extended Kalman filters with and without spacecraft dynamics have been implemented in 

Simulink to assess their performances. The inertia matrix J of the spacecraft in the simulation has 

the following values taken from Zhou (2005): 
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2
. The state and measurement noise variance matrices Qk and Rk are 

positive definite and represent the noise magnitudes of the angular and angular rate in state 

dynamics and measurement instruments. While the dimensions of Qk in the extended Kalman 

filters (with or without spacecraft dynamics) are different, Rk is the same for both filters and given 

by 

61.0 IRk   

where I6 is a 6×6 identity matrix. State dynamics noise Qk for the filter without spacecraft 

dynamics is given by 
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For the filter with spacecraft dynamics, Qk is given by a similar but different dimensional 

matrix 
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The initial values of the states 0|0x


 and the covariance P0|0 are set to zeroes. The true and 

estimated quaternions for the Kalman filters with and without spacecraft dynamics are shown in 

Fig. 1 through Fig. 4. 

The test case shown in Fig. 1 through Fig. 4 represents the filter performance with the 

spacecraft undergoing a fast attitude slew. The torque for the maneuver is a sine wave as a 
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Fig. 1 The first component of the estimated and true quaternion 

 

0 20 40 60 80 100 120 140
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time (sec)

q
2

 

 

qe2 with SC

qe2 without SC

q2

 

Fig. 2 The second component of the estimated and true quaternion 
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Fig. 3 The third component of the estimated and true quaternion 
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Fig. 4 The scalar component of the estimated and true quaternion 

 

 

function of time. The largest roll, pitch, and yaw angles during the slew are about 178, 76, and 177 

degrees, which can be calculated based on the quaternion shown in Fig. 1 through Fig. 4. The test 

case is a very aggressive maneuver with the most active spacecraft dynamics. In such an 

aggressive scenario the filter with the spacecraft dynamics performs better. 

Figs. 1-4 show that the estimated attitudes for both filters follow the true attitude, but the 

estimation using spacecraft dynamics is clearly better than the estimation without using spacecraft 

dynamics. The attitude errors between the estimated and true attitude are represented by the Euler 

angles, roll, pitch, and yaw angle errors. The attitude errors of the extended Kalman filters with 

and without spacecraft dynamics are compared. The mean and standard deviation of the attitude 

errors with and without SC dynamics are summarized in Table 1. 

Although the test mentioned above shows that using spacecraft model in Kalman filter is a 

better strategy, we would like to examine a case where the spacecraft model is inaccurate, for  
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Table 1 Mean and standard deviation of the attitude errors with and without SC dynamics 

 Attitude error mean (deg) Attitude error standard deviation (deg) 

Roll with SC dynamics -0.1573 2.6827 

Roll without SC dynamics 0.4145 4.8599 

Pitch with SC dynamics 1.0122 3.4061 

Pitch without SC dynamics 1.1230 7.7963 

Yaw with SC dynamics 0.0675 2.7551 

Yaw without SC dynamics 0.3741 4.9706 

 
Table 2 Means of the attitude error mean and standard deviation for 300 Monte-Carlo runs 

Euler angles Mean of the attitude error mean (deg) Mean of the attitude error standard deviation (deg) 

Roll -0.1622 2.6794 

Pitch 1.0087 3.4046 

Yaw 0.0595 2.7610 
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Fig. 5 The variation of the yaw angle error mean in the Monte-Carlo runs 

 

 

example, in the inertia matrix. The impact of the uncertainties and variations of the inertia matrix J 

to the performance of the estimation is investigated by a set of Monte Carlo runs. The six different 

elements J11, J22, J33, J12, J13, and J23, of the inertia matrix are varied uniformly and randomly 

between 50% and 150% of their nominal values in the Monte Carlo runs. J21 is equal to J12. J31 is 

equal to J13. J32 is equal to J23. Therefore, the inertia tensor is symmetric when the six different 

elements change. The uncertainties are 50% of the nominal values. For example, the nominal value 

of J11 is 1200 kg.m
2
. In the Monte- Carlo runs, J11 will vary uniformly and randomly between 600 

and 1800 kg.m
2
. 

The six different elements J11, J22, J33, J12, J13, and J23, of the inertia matrix are varied uniformly 

and randomly between 50% and 150% of their nominal values. The changes do not make the 

inertia tensor negative definite. The reason is as follows. In the worst case, the three diagonal 

terms J11, J22, and J33 are 50% of their nominal values and the three off-diagonal terms J12, J13, and 
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J23 are 150% of their nominal values. The inertia tensor becomes:  
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J

 

The above inertia tensor is still a diagonally dominant matrix and is positive definite. 

Fig. 5 through Fig. 7 show the variation of the attitude error mean for 300 Monte-Carlo runs. 

The attitude error mean and attitude error standard deviation are shown in Table 2. The impact of 

the uncertainties of the inertia matrix J to the performance of the Kalman filter estimation is small. 

The filter with spacecraft dynamics needs more computations. However, with current flight 

computer’s capability the CPU usage of the filter’s computation is not a major concern.  
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Fig. 6 The variation of the pitch angle error mean in the Monte-Carlo runs 
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Fig. 7 Rhe variation of the roll angle error mean in the Monte-Carlo runs 
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5. Conclusions 
 

In this paper, we compared two different models that can be used for spacecraft attitude 

estimation. One model does not use spacecraft dynamics and is more popular in the guidance, 

navigation, and control community; the other model includes the spacecraft dynamics and has not 

been investigated as much as the first model. We adopted a reduced quaternion spacecraft 

dynamics model which admits additive noise. Geometry of the reduced quaternion model and the 

additive noise was discussed. This treatment is easier in computation. The simplified model 

without the spacecraft dynamics cannot estimate the attitude rates even through the gyros 

measurements are used in the estimation. In contrast, the attitude rates can be estimated directly by 

the Kalman filter with the spacecraft dynamics. Our analysis and simulation results show that the 

second model and the corresponding extended Kalman filter is a better choice in attitude 

determination because the method uses more information and gives more accurate attitude 

estimation.  
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