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Abstract.  This paper presents the study of the effects of rigid-body motion simultaneously with the presence of the 
effects of temporal variation due to the existence of morphing speed on the aeroelastic stability of the two-stage 
telescopic wings, and hence this is the main novelty of this study. To this aim, Euler-Bernoulli beam theory is used to 
model the bending-torsional dynamics of the wing. The aerodynamic loads on the wing in an incompressible flow 
regime are determined by using Peters’ unsteady aerodynamic model. The governing aeroelastic equations are 
discretized employing a finite element method based on the beam-rod model. The effects of rigid-body motion on the 
length-based stability of the wing are determined by checking the eigenvalues of system. The obtained results are 
compared with those available in the literature, and a good agreement is observed. Furthermore, the effects of 
different parameters of rigid-body such as the mass, radius of gyration, fuselage center of gravity distance from wing 
elastic axis on the aeroelastic stability are discussed. It is found that some parameters can cause unpredictable changes 
in the critical length and frequency. Also, paying attention to the fuselage parameters and how they affect stability is 
very important and will play a significant role in the design. 
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1. Introduction 
 

In recent years, morphing wing aircrafts have become a special topic of interest to researchers. 

Among the various concepts of morphing, the wing deployment concept has been shown to be an 

effective concept for improving both aircraft range and endurance (Friswell and Inman 2006). 

However, due to changes in system dynamics by changing the wing dimensions, the flutter 

prediction is of paramount importance for the analysis and design of an axially deploying 

telescopic wing. 

Due to the dimensions and nature of UAV wings, the dynamics of slender wings are mainly 

modeled with the beam theory (Bisplinghoff et al. 2013). Many researchers have modelled the 

dynamic behaviour of axially deploying telescopic beams. Wang and Wei (1987) modelled the 

vibration of a robot arm of a moving slender prismatic beam. In this study, it was shown that the 

length changing of the flexible arm has stabilizing or destabilizing effects on the vibrations of arm. 

Stylianou and Tabarrok (1994a) studied the axially deploying beam based on finite element 
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analysis. This study was then continued by considering the effects of, tip support, tip mass, 

physical damping, and wall flexibility on the beam stability characteristics using the eigenvalue 

analysis (Stylianou and Tabarrok 1994b). The eigenvalue analysis was also used to determine the 

stability of the beam with the constant extension speed based on the Rayleigh beam theory by 

Chang et al. (2010). They also used Floquet theory to investigate the beam stability with motion of 

periodical back-and-forth. Raftoyiannis and Michaltsos (2013) used a technique of modal 

superposition for the telescopic cranes’ boom dynamic analysis based on a continuum approach. 

Park et al. (2013) determined the dynamic behaviour of an axially deploying telescopic beam 

modelled by employing the nonlinear theory of von Kármán (Salami and Dariushi 2018). The 

results showed that the response of the system was consistent for both nonlinear and linear 

conditions. Furthermore, it was obtained that depending on the Young’s modulus and morphing 

acceleration values, the differences between nonlinear and linear solutions might increase. Duan et 

al. (2014) studied the dynamic response of an axially deploying nested beam experimentally and 

theoretically. The governing equations of motion were driven employing D’Alembert's principle 

and a good agreement between numerical and experimental results were obtained. The moving 

mass effects on the dynamic behavior of a two-stage telescopic mechanism employed in truss 

structures of a bridge inspection vehicle were investigated by Sui et al. (2015). In this research, 

Euler-Bernoulli beam theory was used to model the structural dynamics of the two-stage 

telescopic mechanism. This study was then continued to consider the dynamic behavior of a 2-

DOF telescopic mechanism (Sui et al. 2016b). Yang et al. (2016) studied the invariants and 

energetics of the moving beam with given initial conditions by the method of assumed-mode. It 

was concluded that when the moving beam is being extended with constant speed, the adiabatic 

invariant may be kept constant.  

As it was mentioned above, the structural dynamics of the span morphing beam depends on its 

length, and hence the aeroelastic analysis of morphing wings can also be affected. Huang and Qiu 

(2013) studied the effects of span morphing speeds on the flutter instability of a single variable-

span with uniformity assumption (uniform time invariant parameters). They combined Euler-

Bernoulli beam theory with an unsteady vortex lattice aerodynamic theory and showed that using a 

span morphing mechanism can improve the wing aeroelastic performance. Yang and Zhang (2014) 

investigated the nonlinear vibrations of an axially deploying beam by considering the coupling of 

the transversal and longitudinal motion. Also, Zhang et al. (2014) studied the nonlinear dynamics 

of a moving orthotropic composite rectangular plate with third-order nonlinear piston and Reddy’s 

third-order plate Theories. It was shown that damping coefficients and deploying speed have 

special effects on the system stability. This study was then continued to consider the subsonic 

airflow by combining Kutta-Joukowski lift theorem and von Kármán theory (Zhang et al. 2017). 

They investigated the effects of deploying speed on the nonlinear dynamic behaviour and stability 

of the system. Huang et al. (2018) investigated the aeroelastic response of span-morphing wings 

with rigid-body motions. The established aeroelastic model was based on Euler-Bernoulli beam 

theory and unsteady strip aerodynamic theory. It was shown that the quasi static stability of the 

morphing wing is dependent on the flexibility of fuselage. Research related to the work of Huang 

et al. Includes the works of Schmidt et al. (2016)., in which a significant coupling between rigid-

body and elastic degrees of freedom on a simple wing is shown (Schmidt 2016). The aeroelastic 

behavior of a span-morphing wing in supersonic flow employing the piston theory was 

investigated by Li and Jin (2018). Ajaj and Friswell (2018) considered the sensitivity of the 

aeroelastic stability of a single variable-span morphing wing for various morphing speeds and 

system parameters with uniformity assumption. They combined the torsional and bending shape 
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functions with the Theodorsen’s unsteady aerodynamic model, and showed that the wing 

morphing speed affects the flutter instability of the system, and needs to be taken into account. 

Ajaj et al. (2019) studied the quasi static aeroelastic behaviour of multi-segment, telescopic, 

stepped, span morphing wing. In this study, Theodorsen’s unsteady aerodynamic model and Euler-

Bernoulli beam theory were used to form the aeroelastic equations and the effect of morphing 

speed was ignored. It was concluded that this mechanism can be employed as a means for flutter 

suppression of the wing. Moravej Barzani et al. (2022b) investigated the aeroelastic stability of a 

two-stage axially moving telescopic wing. The established aeroelastic model was based on Peters' 

unsteady aerodynamic model (Peters et al. 1995) and Euler-Bernoulli beam theory. It was shown 

that the flutter instability of an axially telescopic wing is more sensitive to the fixed part 

parameters than the moving part. This study was then continued to consider the effect of structural 

nonlinearity on the aeroelasticity of span morphing telescopic wings employing the geometrically 

exact fully intrinsic equations (Moravej Barzani et al. 2022a). It was concluded that by using the 

geometrically exact fully intrinsic equations, the flutter instability of the telescopic morphing wing 

can be determined more accurately and also the overlapping mass and morphing length have 

significant effects on the flutter instability of the span morphing telescopic wing. Shafaghat et al. 

(2022) studied the effects of the amount of the bending and the torsional rigidity of the fuselage on 

the flutter instability. They showed that when the amount of the bending and the torsional rigidity 

of the fuselage is close to the amounts of the wings and tails, a full aircraft analysis is necessary. 

In the present study, the effects of rigid-body motion on the aeroelastic stability of a two-stage 

axially deploying telescopic wing are investigated. To this aim, Euler-Bernoulli beam theory is 

used to model the bending-torsional dynamics of the wing, and Peters' unsteady aerodynamic 

model (Peters et al. 1995) is used to simulate the aerodynamic loads. The governing aeroelastic 

equations are discretized employing a finite element method based on the beam-rod model. 

Finally, the effects of rigid-body motion on the length-based (Moravej Barzani et al. 2022b) 

stability of the wing is determined by checking the system eigenvalues. It is noted that in none of 

the previous studies that have observed the rigid-body effects, the morphing speed was used for 

the aeroelastic analysis of telescopic morphing wings, and hence this is the main purpose and the 

main novelty of this study. Moreover, the main novelties of this paper are to investigate the effects 

of rigid-body motion simultaneously with the presence of the effects of temporal variation due to 

the existence of morphing speed on the aeroelastic stability of two-stage telescopic wing. 

 

 

2. Governing equations 
 

As shown in Fig. 1, a model of two-stage Euler-Bernoulli beam is used to simulate the 

structural dynamics of an axially deploying telescopic wing with sliding motion. The wing has a 

constant morphing speed (constant axially moving speed) of 𝜅̇, and the length of the moving and 

fixed parts are denoted by 𝑙𝑚  and 𝑙1 , respectively. The total time-dependent length, 𝑙 , can be 

expressed as  

(1) 𝑙(𝑡) = 𝜅̇𝑡 + 𝑙1 

It should be noted that the range of 𝑙(𝑡) has a lower limit of the length of the fixed part and an 

upper limit of the sum of the length of the fixed part and the increase in length. On the other hand, 

𝑚𝐹, 𝑥𝐹  and 𝑟𝐹  are half of the mass of the fuselage, the fuselage center of gravity distance from 

wing elastic axis and the radius of gyration of the fuselage, respectively. Also, the fuselage mass  
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Fig. 1 Two-stage telescopic beam 

 

 

Fig. 2 Typical section of wing 

 

 

moment of inertia is considered around the x axis (pitch motion). 

The governing equations of motion are derived employing the extended Hamilton's principle as 

follows 

(2) 𝛿 ∫ (𝑇 − 𝑉 +𝑊)𝑑𝑡 = 0
𝑡2
𝑡1

  

where 𝑇 , 𝑊  and 𝑉  are the kinetic energy, nonconservative work and potential (strain) energy, 

respectively.  

Fig. 2 shows the out-of-plane bending (ℎ) and the torsion (𝛼) degrees of freedom of a typical 

section of the wing. 

The potential and kinetic energies of the wing can be expressed as 

𝑇 =
1

2
∫ 𝑚1 [(

𝑑ℎ1

𝑑𝑡
+ 𝑟1

𝑑𝛼1

𝑑𝑡
)
2
] 𝑑𝑥 +

1

2
∫ 𝑚2 [(

𝑑ℎ2

𝑑𝑡
+ 𝑟2

𝑑𝛼2

𝑑𝑡
)
2
+ 𝜅̇2] 𝑑𝑥 +

𝑙

𝑙1

𝑙1
0

1

2
∫ 𝐼𝑐.𝑔1

(
𝑑𝛼1

𝑑𝑡
)
2
𝑑𝑥 +

𝑙1
0
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1

2
∫ 𝐼𝑐.𝑔2

(
𝑑𝛼2

𝑑𝑡
)
2
𝑑𝑥

𝑙

𝑙1
+
1

2
𝑚𝐹 [(

𝑑ℎ1
0

𝑑𝑡
+ 𝑥𝐹

𝑑𝛼1
0

𝑑𝑡
)
2

] +
1

2
𝐼𝑐.𝑔𝐹

(
𝑑𝛼1

0

𝑑𝑡
)
2

  

𝑉 =
1

2
∫ 𝛦𝛪1 (

𝑑2ℎ1

𝑑𝑥2
)
2

𝑑𝑥
𝑙1
0

+
1

2
∫ 𝐺𝐽1 (

𝑑𝛼1

𝑑𝑥
)
2
𝑑𝑥

𝑙1
0

+
1

2
∫ 𝛦𝛪2 (

𝑑2ℎ2

𝑑𝑥2
)
2

𝑑𝑥
𝑙

𝑙1
+
1

2
∫ 𝐺𝐽2 (

𝑑𝛼2

𝑑𝑥
)
2
𝑑𝑥 +

𝑙

𝑙1

∫ 𝑚1𝑔(ℎ1 + 𝑟1𝛼1)𝑑𝑥
𝑙1
0

+ ∫ 𝑚2𝑔(ℎ2 + 𝑟2𝛼2)𝑑𝑥
𝑙

𝑙1
  

𝑊 = −𝐹𝑒ℎ1(𝑙1, 𝑡) − 𝐹𝑒𝑟1𝛼1(𝑙1, 𝑡) + 𝐿ℎ1(𝑥, 𝑡) + 𝐿ℎ2(𝑥, 𝑡) + 𝑀𝛼1(𝑥, 𝑡) + 𝑀𝛼2(𝑥, 𝑡) 

𝐹𝑒 = 𝑚𝑒(𝑡)[𝑔 + ℎ̈1(𝑙1, 𝑡) + 𝑟1𝛼̈1(𝑙1, 𝑡)] (3) 

where 𝐸𝐼 is the bending rigidity, 𝑚 is the mass per length and 𝐺𝐽 is the torsional rigidity. Also, 𝑔 

is the acceleration of gravity, 𝑟 is the distance between the center of mass and the elastic center, 

𝐼𝑐.𝑔  is the moment of inertia about center of mass, 𝑀  is the aerodynamic moment, 𝐿  is the 

aerodynamic force. Furthermore, the indices (•1) and (•2) refer to the fixed and moving parts of 

the wing, respectively. Also, ℎ1
0 and 𝛼1

0 denote the plunge motion and pitch motion of the fuselage, 

respectively. 

𝑚𝑒(𝑡) is the equivalent mass (overlapped part mass) at the end of the fixed part due to the 

incomplete connection of the moving part with the fixed part (Sui et al. 2016a) 

𝑚𝑒(𝑡) =
𝑚2[𝑙1

3−(𝑙(𝑡)−𝑙𝑚)
3]

3𝑙1
2                                                       (4) 

The first variation of potential and kinetic energies are defined as 

∫ (𝛿𝑇)𝑑𝑡 = ∫ ∫ 𝑚1 [
𝑑ℎ1

𝑑𝑡
+ 𝑟1

𝑑𝛼1

𝑑𝑡
] [
𝑑(𝛿ℎ1)

𝑑𝑡
+ 𝑟1

𝑑(𝛿𝛼1)

𝑑𝑡
] 𝑑𝑡𝑑𝑥 + ∫ ∫ 𝑚2 [

𝑑ℎ2

𝑑𝑡
+

𝑡2
𝑡1

𝑙

𝑙1

𝑡2
𝑡1

𝑙1
0

𝑡2
𝑡1

𝑟2
𝑑𝛼2

𝑑𝑡
] [
𝑑(𝛿ℎ2)

𝑑𝑡
+ 𝑟2

𝑑(𝛿𝛼2)

𝑑𝑡
] 𝑑𝑡𝑑𝑥 + ∫ ∫ 𝑚2𝜅̇(𝛿𝜅̇)𝑑𝑡𝑑𝑥

𝑡2
𝑡1

𝑙

𝑙1
+ ∫ ∫ 𝐼𝑐.𝑔1

𝑑𝛼1

𝑑𝑡

𝑑(𝛿𝛼1)

𝑑𝑡
𝑑𝑡𝑑𝑥

𝑡2
𝑡1

+
𝑙1
0

∫ ∫ 𝐼𝑐.𝑔2
𝑑𝛼2

𝑑𝑡

𝑑(𝛿𝛼2)

𝑑𝑡
𝑑𝑡𝑑𝑥 + ∫ 𝑚𝐹 [

𝑑ℎ1
0

𝑑𝑡
+ 𝑥𝐹

𝑑𝛼1
0

𝑑𝑡
] [
𝑑(𝛿ℎ1

0)

𝑑𝑡
+ 𝑥𝐹

𝑑(𝛿𝛼1
0)

𝑑𝑡
] 𝑑𝑡

𝑡2
𝑡1

+
𝑡2
𝑡1

𝑙

𝑙1

∫ 𝐼𝑐.𝑔𝐹
[
𝑑𝛼1

0

𝑑𝑡
] [
𝑑(𝛿𝛼1

0)

𝑑𝑡
] 𝑑𝑡

𝑡2
𝑡1

  

∫ (𝛿𝑉)𝑑𝑡
𝑡2
𝑡1

= ∫ ∫ 𝛦𝛪1 (
𝑑2ℎ1

𝑑𝑥2
) 𝛿 (

𝑑2ℎ1

𝑑𝑥2
) 𝑑𝑥𝑑𝑡 +

𝑙1
0

𝑡2
𝑡1

∫ ∫ 𝛦𝛪2 (
𝑑2ℎ2

𝑑𝑥2
) 𝛿 (

𝑑2ℎ2

𝑑𝑥2
) 𝑑𝑥𝑑𝑡 +

𝑙

𝑙1

𝑡2
𝑡1

  

∫ ∫ 𝐺𝐽1 (
𝑑𝛼1

𝑑𝑥
) 𝛿 (

𝑑𝛼1

𝑑𝑥
) 𝑑𝑥𝑑𝑡 +

𝑙1
0

𝑡2
𝑡1

∫ ∫ 𝐺𝐽2 (
𝑑𝛼2

𝑑𝑥
) 𝛿 (

𝑑𝛼2

𝑑𝑥
) 𝑑𝑥𝑑𝑡

𝑙

𝑙1
+ ∫ ∫ 𝑚1𝑔(𝛿ℎ1 +

𝑙1
0

𝑡2
𝑡1

𝑡2
𝑡1

𝑟1𝛿𝛼1)𝑑𝑥 + ∫ ∫ 𝑚2𝑔(𝛿ℎ2 + 𝑟2𝛿𝛼2)𝑑𝑥
𝑙

𝑙1

𝑡2
𝑡1

  

∫ (𝛿𝑊)𝑑𝑡
𝑡2
𝑡1

= ∫ [𝐿(𝛿ℎ1 + 𝛿ℎ2) + 𝑀𝑒.𝑐(𝛿𝛼1 + 𝛿𝛼2) − 𝛿(𝐹𝑒ℎ1(𝑙1, 𝑡)) − 𝛿(𝐹𝑒𝑟1𝛼1(𝑙1, 𝑡))]
𝑡2
𝑡1

𝑑𝑡  (5) 

By substituting Eq. (5) in Eq. (2), the general governing equations of motion for a two-stage 

telescopic wing can be obtained as follows 

(𝑚1 +𝑚𝑒𝛿(𝑥 − 𝑙1)) [
𝑑2ℎ1

𝑑𝑡2
+ 𝑔] + 𝑚1𝑟1

𝑑2𝛼1

𝑑𝑡2
+

𝑑2

𝑑𝑥2
(𝛦𝛪1

𝑑2ℎ1

𝑑𝑥2
) +

+𝑚𝐹
𝑑2ℎ1

0

𝑑𝑡2
+𝑚𝐹𝑥𝐹

𝑑2𝛼1
0

𝑑𝑡2
= 𝐿

𝐼𝑒.𝑐1
𝑑2𝛼1

𝑑𝑡2
+𝑚𝑒𝑟1𝛿(𝑥 − 𝑙1)

𝑑2𝛼1

𝑑𝑡2
+𝑚1𝑟1

𝑑2ℎ1

𝑑𝑡2
−

𝑑

𝑑𝑥
(𝐺𝐽1

𝑑𝛼1

𝑑𝑥
) + 𝑚1𝑟1𝑔 +

+𝑚𝐹𝑥𝐹
𝑑2ℎ1

0

𝑑𝑡2
+𝑚𝐹𝑟𝐹

2 𝑑
2𝛼1

0

𝑑𝑡2
= 𝑀𝑒.𝑐 }

  
 

  
 

 0 < 𝑥 < 𝑙1  
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𝑚2 (
𝑑2ℎ2

𝑑𝑡2
+ 𝑔) + 𝑚2𝑟2

𝑑2𝛼2

𝑑𝑡2
+

𝑑2

𝑑𝑥2
(𝛦𝛪2

𝑑2ℎ2

𝑑𝑥2
) = 𝐿

𝐼𝑒.𝑐2
𝑑2𝛼2

𝑑𝑡2
+𝑚2𝑟2

𝑑2ℎ2

𝑑𝑡2
−

𝑑

𝑑𝑥
(𝐺𝐽2

𝑑𝛼2

𝑑𝑥
) + 𝑚2𝑟2𝑔 = 𝑀𝑒.𝑐

} 𝑙1 < 𝑥 < 𝑙                   (6) 

where 𝐼𝑒.𝑐 = 𝐼𝑐.𝑔 +𝑚𝑟
2. 

As both torsional and bending variables are functions of space and time, and also due to the fact 

that 𝜅̇ =
𝑑𝑙

𝑑𝑡
=

𝑑𝑥

𝑑𝑡
, the partial derivatives of each variable can be obtained as 

𝑑ℎ

𝑑𝑡
=

𝜕ℎ

𝜕𝑡
+ 𝜅̇

𝜕ℎ

𝜕𝑥
  

𝑑𝛼

𝑑𝑡
=

𝜕𝛼

𝜕𝑡
+ 𝜅̇

𝜕𝛼

𝜕𝑥
  

𝑑2ℎ

𝑑𝑡2
=

𝜕2ℎ

𝜕𝑡2
+ 2𝜅̇

𝜕2ℎ

𝜕𝑥𝜕𝑡
+ 𝜅̇2

𝜕2ℎ

𝜕𝑥2
+ 𝜅̈

𝜕ℎ

𝜕𝑥
  

𝑑2𝛼

𝑑𝑡2
=

𝜕2𝛼

𝜕𝑡2
+ 2𝜅̇

𝜕2𝛼

𝜕𝑥𝜕𝑡
+ 𝜅̇2

𝜕2𝛼

𝜕𝑥2
+ 𝜅̈

𝜕𝛼

𝜕𝑥
  (7) 

Finally, by substituting Eq. (7) in Eq. (6), and considering suitable torsional and bending shape 

functions (𝐻𝛼(𝑥) and 𝐻ℎ(𝑥)), the discretized weak form can be obtained (Moravej Barzani et al. 

2022b) based on Hermitian beam element and Galerkin method (Cook 2007).  

The generalized moment and lift applied on the wing (𝑀𝑒.𝑐
𝑔
, 𝐿𝑔) are obtained using Peters' 

unsteady aerodynamic model as follows (Peters et al. 1995)  

𝐿 = 𝜋𝜌𝑏2(ℎ̈ + 𝑢𝛼̇ − 𝑏𝑎𝛼̈) + 2𝜋𝜌𝑢𝑏 (ℎ̇ + 𝑢𝛼 + 𝑏 (
1

2
− 𝑎) 𝛼̇ − 𝜆0)  

𝑀𝑒.𝑐 = 𝑀𝑐

4
+ 𝑏 (

1

2
+ 𝑎) 𝐿  

𝑀𝑐

4
= −𝜋𝜌𝑏3 (

1

2
ℎ̈ + 𝑢𝛼̇ + 𝑏(

1

8
−
𝑎

2
)𝛼̈)  

𝜆0 =
1

2
∑ 𝑏inflow𝜆𝑛
𝑁
𝑛=1   

[𝐴inflow]{𝜆̇𝑛} +
𝑢

𝑏
{𝜆𝑛} = {𝐶inflow}[ℎ̈ + 𝑢𝛼̇ + 𝑏(0.5 − 𝑎)𝛼̈]                         (8) 

where 𝑏 is the semi-chord, 𝑢 is the flight speed, 𝑎 is the nondimensional distance from the elastic 

center to the mid-chord, 𝜌  is the air density, and the definitions of [𝐴inflow] , {𝐶inflow} and 
{𝑏inflow} are presented in the work of (Peters et al. 1995). Also, 𝛼 and ℎ consist of two parts, fixed 

( )1 and movable ( )2. It is noted that the discretized generalized aerodynamic moment and lift 

equations are given in Appendix A and related matrices obtained from the discretization process 

based on shape functions (𝐻𝛼(𝑥) and 𝐻ℎ(𝑥)) are defined in Appendix B. 

The boundary conditions at the roots and the tips of the fixed and moving beams based on 

rigid-body freedom are listed as follows 

𝜕ℎ1
0

𝜕𝑥
(𝑡) = 0  

𝛦𝛪1
𝜕2ℎ1

𝜕𝑥2
(𝑙1, 𝑡) = 𝛦𝛪2

𝜕2ℎ2

𝜕𝑥2
(𝑙1, 𝑡), 𝛦𝛪1

𝜕3ℎ1

𝜕𝑥3
(𝑙1, 𝑡) = 𝛦𝛪2

𝜕3ℎ2

𝜕𝑥3
(𝑙1, 𝑡), 𝐺𝐽1

𝜕𝛼1

𝜕𝑥
(𝑙1, 𝑡) = 𝐺𝐽2

𝜕𝛼2

𝜕𝑥
(𝑙1, 𝑡)  

𝛦𝛪2
𝜕2ℎ2

𝜕𝑥2
(𝑙, 𝑡) = 0,       𝛦𝛪2

𝜕3ℎ2

𝜕𝑥3
(𝑙, 𝑡) = 0,      𝐺𝐽2

𝜕𝛼2

𝜕𝑥
(𝑙, 𝑡) = 0                       (9) 

Finally, the compact form of the discretized aeroelastic governing equations can be written as 

follows 
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Fig. 3 Flowchart of eigenvalue analysis for the two stage morphing wing 

 

 

[𝐌]{𝐗̈} + [𝐂]{𝐗̇} + [𝐊]{𝐗} = {𝐅}                                              (10) 

where K, C and M are the stiffness, mass and damping matrices, respectively.  

It is worth mentioning that the above general aeroelastic equations form contains the effects of 

change in length and related parameters (such as morphing speed). The dynamic instability onset 

of the system can be found at any time during the length change (step-by-step manner) by 

assuming the system morphs slowly, employing the eigenvalue analysis (frequency and damping 

changes with changes in length). This is referred to as the length-based analysis of stability 

(Moravej Barzani et al. 2022b) which can be closer to the actual operation. Fig. 3 shows the 

flowchart of eigenvalue analysis for the two stage morphing wing. Also, It should be noted that the 

number of finite elements is fixed in time, and hence the elements size on the moving part changes 

at each step of time. 

 

 

3. Verification 
 

To verify the developed model for morphing wings (like as the verification carried out by 

Moravej Barzani et al. (2022b), first the time response of a two-stage Euler-Bernoulli telescopic 

beam subjected to a concentrated moving mass is obtained and compared with those reported by  
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                                           Table 1 Parameters of telescopic beams 

Parameter Value 

𝑙 (m) 10.7 

𝑙𝑚 (m) 10.7 

𝑚1 (kg/m) 85 

𝑚2 (kg/m) 46 

𝐸𝐼1 (Nm2) 35 

𝐸𝐼2 (Nm2) 35 

𝜅̇ (m/s) 0.5 

𝑚𝑝 (kg) 400 

 

 

Fig. 4 The dynamic response of a two-stage telescopic beam subjected to a concentrated mass 

 

 

Sui et al. (2015), and shown in Fig. 4. The parameters used for this case are presented in Table. 1. 

It is clear that the present results are in a good agreement with those presented by Sui et al. (2015) 

with maximum difference of 4%. It is noted that the initial conditions are considered as compatible 

deformation with the presence of a concentrated mass (𝑚𝑝) at the end of the beam. Furthermore, 

here the effect of gravity is retained in the equations to be able to compare the results directly.  

Next, to verify the developed model for flutter analysis with rigid-body motion, the work done 

by Goland and Luke (1948) is considered with the properties presented in Lottati (1987) work. It is 

noted that Lottati (1987) has used generalized Euler-Bernoulli beam structural model for 

composite wings and Theodorsen’s unsteady aerodynamic model.  

Table 2 and Table 3 compare the values of the speed and frequency of flutter obtained from the 

present analysis with the results presented by Lottati (1987), respectively. It is clear that the 

present results are in a very good agreement with those presented by Lottati. 
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Table 2 Validation and comparison of flutter speed under rigid-body condition 

 Lottati (1987) 
Present method Percent 

of Difference 10 elements 20 elements 

𝑢𝑓𝑙𝑢𝑡𝑡𝑒𝑟1(𝑓𝑡/𝑠) 645.4 671.9 669.8 3.8 

𝑢𝑓𝑙𝑢𝑡𝑡𝑒𝑟2(𝑓𝑡/𝑠) 

(Rigid Body Mode) 
939 936.3 941.1 0.2 

 
Table 3 Validation and comparison of flutter frequency under rigid-body condition 

 Lottati (1987) 
Present method Percent 

of Difference 10 elements 20 elements 

𝐹𝑟𝑒𝑞𝑓𝑙𝑢𝑡𝑡𝑒𝑟1(𝑟𝑎𝑑/𝑠) 32.6 30.8 31 4.9 

𝐹𝑟𝑒𝑞𝑓𝑙𝑢𝑡𝑡𝑒𝑟2(𝑟𝑎𝑑/𝑠) 

(Rigid Body Mode) 
14.2 14.3 14.3 0.7 

 

 

Fig. 5 Goland wing 

 
                       Table 4 The properties of Goland wing 

Parameter Value 

𝑙 (ft) 20 

𝑐 (ft) 6 

𝑚 (slugs/ft) 0.746 

𝐸𝐼spanwise (Lb. ft
2) 23.65×106 

𝐺𝐽 (Lb. ft2) 2.39×106 

Spanwise elastic axis 33% chord 

Center of gravity 43% chord 

Radius of gyration of wing about mass center 25% chord 

 

 

It should be noted that in order to present the results, the Goland wing (Fig. 5) is considered 

with the properties presented in Table 4. Also, for validation, the flutter speed and frequency of 

this wing are compared with those calculated by Patil (1999) with the clamped boundary condition 

(Table 5). It is noted that Patil considered this problem by solving the mixed beam formulation 

using a finite element approach. It is clear that the present results are in very good agreement with 

those presented by Patil with a maximum difference of 1.6%. 
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Table 5 The comparison of the flutter speed and frequency of the Goland wing 

 Patil (1999) 
Present method 

Percent of Difference 
10 elements 20 elements 

𝑢𝑓(ft/s) 445 453 452.1 1.6 

𝜔𝑓(rad/s) 70.2 70.1 70.33 0.2 

 

 

Fig. 6 The convergence of the flutter speed at maximum wing length 

 

 

In what follows, it is assumed that the Goland wing length due to the moving part in the 

telescopic wing can be extended up to 50%. Fig. 6 shows the convergence of the flutter speed for 

the case of maximum length, for different numbers of elements. It is clear that by using 20 

elements, the flutter speed can be predicted accurately, and hence from here on, 20 elements are 

used for moving part (In total, 40 elements are used with the fixed part for all cases). 

By considering all above studies, it can be concluded that the developed aeroelastic model is 

able to capture the flutter stability of telescopic wings with rigid-body motion accurately. In what 

follows, the effects of various parameters on the aeroelastic stability of telescopic wings with 

rigid-body motion are investigated. To this aim, the following nondimensional parameters are used  

𝑀𝐹 =
𝑚𝐹

𝑚𝑙1
  

 𝑋𝐹 =
𝑥𝐹

𝑏
  

 𝑅𝐹 =
𝑟𝐹

𝑏
  

𝜔𝐹 =
𝜔Flutter

𝜔𝛼
                                                             (11) 

where 𝜔𝛼 is the first uncoupled torsional frequency. 
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Fig. 7 The effect of morphing speed on the critical length and frequency of the wing (𝑀𝐹 = 1.34, 𝑋𝐹 =
−1 , 𝑅𝐹 = 2) 

 
 
4. Results 
 

In what follows, the critical length, (Lf), at which the wing gets unstable is obtained, and the 

effects of various parameters with rigid-body condition on the sensitivity of the critical length and 

its frequency are investigated. It should be noted that the effect of rigid body motion may be a 

change in the coupling of the modes compared to the case which the wing is analyzed 

independently with the clamped boundary condition. 

 

4.1 Variation of morphing speed 
 

The effect of morphing speed on the critical length of axially moving wings is determined and 

shown in Fig. 7. It is noted that unless otherwise stated, from here on all results are presented at a 

flight speed of 420 ft/s and all values are nondimensionalized (Eq. (11)) using the original wing 

parameters. Also, all results are presented at a morphing speed (κ̇ = 1  ft/s) and the change of 

flutter mode is written only for non-rigid mode. 

Considering the effect of morphing speed results in an improvement of up to 35% in the critical 

length compared to the original wing. Furthermore, the morphing wing critical length increases 

(decreases) when the morphing speed increases (decreases). Also, this effect is greater in the small 

morphing speeds. Moreover, as shown in Fig. 7, the critical frequency of the morphing wing 

decreases (increases) when the morphing speed increases (decreases). It should be noted that 

frequencies presented in Fig. 7 are the rigid torsional frequency of the body. Also, the results show 

that changing the morphing speed does not change the type of flutter mode. 

 

4.2 Variation of flight speed 
 
Obviously, the critical length decreases with increasing flight speed; Also, the critical 

frequency is increased according to Fig. 8. It is noteworthy that the change of flight speed did not  
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Fig. 8 The effect of flight speed on the critical length and frequency of the wing (𝑀𝐹 = 1.34, 𝑋𝐹 =
−1 , 𝑅𝐹 = 2) 

 

  

Fig. 9 The effect of radius of gyration on the critical length and frequency of the wing (𝑀𝐹 = 1.34, 𝑋𝐹 =
−1) 

 

 

affect the change of the type of flutter mode and always had a rigid mode (with the mentioned 

conditions and parameters). Therefore, depending on the parameters studied, the flutter mode may 

change, but with the change of flight speed, it remains in the same flutter mode.  

 

4.3 Variation of radius of gyration 
 

The effect of fuselage radius of gyration on the critical length is shown in Fig. 9. According to 

Fig. 9, first the radius of gyration causes the flutter to occur in the first bending mode of the wing  
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Fig. 10 The effect of fuselage center of gravity distance from wing elastic axis on the critical length and 

frequency of the wing (𝑀𝐹 = 1.34, 𝑅𝐹 = 2) 

 

  

Fig. 11 The effect of fuselage mass on the critical length and frequency of the wing (𝑋𝐹 = −1, 𝑅𝐹 = 2) 

 

 

(due to the coupling of the first bending mode of the wing with the rigid body mode) and then 

changed to the rigid body mode (due to the coupling of the first bending mode with the rigid body 

mode) and by increasing it again, it reaches the torsional mode of the wing (due to the coupling of 

the first bending and torsional modes of the wing). Also in the present study, it caused a 30% 

change in critical length. Recent cases indicate the importance and effect of fuselage radius of 

gyration on the occurrence of flutter. Critical frequency changes can also be seen in Fig. 9. This 

figure shows up to 25% change in the critical frequency and the fluctuations of the frequencies are 

due to the change of the critical mode. 
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4.4 Variation of fuselage center of gravity distance from wing elastic axis 
 

The effect of the distance between the center of gravity of the fuselage and the elastic axis of 

the wing (body position) on the critical length is shown in Fig. 10. According to Fig. 10, first the 

fuselage center of gravity distance from wing elastic axis causes the occurrence of a flutter in the 

first torsional mode of the wing (due to coupling of the first bending and torsional modes of the 

wing) and then changed to rigid body mode (due to coupling of the first bending mode of the wing 

with the rigid body mode) and by changing it again reaches the first torsional mode of the wing 

(coupling of the first bending and torsional modes of the wing). Also in the present study, the 

difference in critical length values with increasing the fuselage center of gravity distance from the 

wing elastic axis is up to 25%, which indicates the importance of this parameter. The critical 

frequency changes can also be seen in Fig. 10. This figure shows up to 30% change in critical 

frequency and the fluctuation of frequencies is due to changes in the critical mode. Like the radius 

of gyration, the fuselage center of gravity distance from wing elastic axis can cause unpredictable 

changes in the critical length and frequency; Therefore, paying attention to these parameters and 

how to change them will be of special importance in structural design process. 

 

4.5 Variation of fuselage mass 
 

Fig. 11 shows the effect of fuselage mass on the critical length. According to Fig. 11, it can be 

seen that with increasing (decreasing) fuselage mass, the critical length decreases (increases) and 

this parameter is inversely related to the critical length. Also, in the present study, all critical 

modes have occurred in the rigid body mode. Of course, with the change of other parameters, 

another mode may become critical, but what is observed indicates that the fuselage mass parameter 

has no effect on changing the type of critical mode. The critical frequency variations are also 

shown in Fig. 11. This figure shows that the critical frequency is inversely related to the fuselage 

mass, and an increase (decrease) in fuselage mass causes a decrease (increase) in the critical 

frequency. 

 
 
5. Conclusions  
 

In this study, the effects of rigid-body motion on the aeroelastic stability of a two-stage axially 

deploying telescopic wing have been studied. The extended Hamilton’s principle has been used to 

derive the equations of motion. The equations have been discretized with finite element method. 

Validation of the results is obtained by comparing with those available in the literature. The effect 

of rigid-body parameters on the wing stability has been determined by checking the system 

eigenvalues. A summary of the results of this study is as follows: 

1. The variation of the morphing speed, flight speed and fuselage mass has no effect on 

changing the type of flutter mode.  

2. The critical length and frequency are inversely related to the fuselage mass and their 

sensitivity to changing this parameter is low. 

3. The critical length and frequency are more sensitive to the radius of gyration and the 

fuselage center of gravity distance from wing elastic axis, and these two parameters can cause 

unpredictable changes in the critical length and frequency. 

4. Paying attention to the fuselage parameters and how they affect stability is very important 
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and will play a significant role in the design.  
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Aeroelastic stability analysis of a two-stage axially deploying telescopic wing… 

Appendix A 
 

substituting Eq. (7) in Eq. (6) results in Eq. (A.1) 

(𝑚1 +𝑚𝑒𝛿(𝑥 − 𝑙1)) [
𝑑2ℎ1

𝑑𝑡2
+ 𝑔] +𝑚1𝑟1

𝑑2𝛼1

𝑑𝑡2
+

𝑑2

𝑑𝑥2
(𝛦𝛪1

𝑑2ℎ1

𝑑𝑥2
) = 𝐿

𝐼𝑒.𝑐1
𝑑2𝛼1

𝑑𝑡2
+𝑚𝑒𝑟1𝛿(𝑥 − 𝑙1)

𝑑2𝛼1

𝑑𝑡2
+𝑚1𝑟1

𝑑2ℎ1

𝑑𝑡2
−

𝑑

𝑑𝑥
(𝐺𝐽1

𝑑𝛼1

𝑑𝑥
) + 𝑚1𝑟1𝑔 = 𝑀𝑒.𝑐

}  0 < 𝑥 < 𝑙1  

𝑚2 (
𝜕2ℎ2

𝜕𝑡2
+ 2𝜅̇

𝜕2ℎ2

𝜕𝑥𝜕𝑡
+ 𝜅̇2

𝜕2ℎ2

𝜕𝑥2
+ 𝜅̈

𝜕ℎ2

𝜕𝑥
+ 𝑔) +

+𝑚2𝑟2 (
𝜕2𝛼2

𝜕𝑡2
+ 2𝜅̇

𝜕2𝛼2

𝜕𝑥𝜕𝑡
+ 𝜅̇2

𝜕2𝛼2

𝜕𝑥2
+ 𝜅̈

𝜕𝛼2

𝜕𝑥
) +

𝑑2

𝑑𝑥2
(𝛦𝛪2

𝑑2ℎ2

𝑑𝑥2
) = 𝐿

𝐼𝑒.𝑐2 (
𝜕2𝛼2

𝜕𝑡2
+ 2𝜅̇

𝜕2𝛼2

𝜕𝑥𝜕𝑡
+ 𝜅̇2

𝜕2𝛼2

𝜕𝑥2
+ 𝜅̈

𝜕𝛼2

𝜕𝑥
) +

+𝑚2𝑟2 (
𝜕2ℎ2

𝜕𝑡2
+ 2𝜅̇

𝜕2ℎ2

𝜕𝑥𝜕𝑡
+ 𝜅̇2

𝜕2ℎ2

𝜕𝑥2
+ 𝜅̈

𝜕ℎ2

𝜕𝑥
) −

𝑑

𝑑𝑥
(𝐺𝐽2

𝑑𝛼2

𝑑𝑥
) + 𝑚2𝑟2𝑔 = 𝑀𝑒.𝑐}

 
 
 

 
 
 

𝑙1 < 𝑥 < 𝑙  (A.1) 

The weak form of Eq. (A.1) is obtained as (A.2) (Moravej Barzani et al. 2022b). 

Fixed part (𝜅̇ = 0, 𝜅̈ = 0): 

∑ [𝑚𝑖𝑗
𝑎 ℎ̈𝑗 + 𝑟𝑚𝑖𝑗

𝑏 𝛼̈𝑗 + 2(𝑐𝑖𝑗
𝑎 + 𝜅̇𝑐𝑖𝑗

𝑏 )ℎ̇𝑗 + 2𝑟(𝑐𝑖𝑗
𝑐 + 𝜅̇𝑐𝑖𝑗

𝑑)𝛼̇𝑗 + (𝑘𝑖𝑗
𝑎 + 2𝜅̇𝑘𝑖𝑗

𝑏 + 𝜅̇2𝑘𝑖𝑗
𝑐 + 𝜅̈𝑘𝑖𝑗

𝑑 +
𝑛1
𝑗=1

𝑘𝑖𝑗
𝑒 )ℎ𝑗 + 𝑟(𝑘𝑖𝑗

𝑓
+ 2𝜅̇𝑘𝑖𝑗

𝑔
+ 𝜅̇2𝑘𝑖𝑗

ℎ + 𝜅̈𝑘𝑖𝑗
𝑘 )𝛼𝑗 + 𝑓𝑖

𝑔
+𝑚𝑖𝑗

𝑐 𝜓̈𝑗 +𝑚𝑖𝑗
𝑑 𝜑̈𝑗] = 𝐿

𝑔  

∑ [𝑟𝑚𝑚𝑛
𝑎 ℎ̈𝑛 +𝑚𝑚𝑛

𝑏 𝛼̈𝑛 + 2𝑟(𝑐𝑚𝑛
𝑎 + 𝜅̇𝑐𝑚𝑛

𝑏 )ℎ̇𝑛 + 2(𝑐𝑚𝑛
𝑐 + 𝜅̇𝑐𝑚𝑛

𝑑 )𝛼̇𝑛 + 𝑟(𝑘𝑚𝑛
𝑎 + 2𝜅̇𝑘𝑚𝑛

𝑏 +
𝑛1
𝑛=1

𝜅̇2𝑘𝑚𝑛
𝑐 + 𝜅̈𝑘𝑚𝑛

𝑑 )ℎ𝑛 + (𝑘𝑚𝑛
𝑓
+ 2𝜅̇𝑘𝑚𝑛

𝑔
+ 𝜅̇2𝑘𝑚𝑛

𝑜 + 𝜅̈𝑘𝑚𝑛
𝑝

− 𝑘𝑚𝑛
𝑒 )𝛼𝑛 + 𝑟𝑓𝑚

𝑔
+𝑚𝑚𝑛

𝑐 𝜓̈𝑛 +

𝑚𝑚𝑛
𝑑 𝜑̈𝑛] = 𝑀𝑒.𝑐

𝑔
  

Moving part 

∑ [𝑚𝑖𝑗
𝑎 ℎ̈𝑗 + 𝑟𝑚𝑖𝑗

𝑏 𝛼̈𝑗 + 2(𝑐𝑖𝑗
𝑎 + 𝜅̇𝑐𝑖𝑗

𝑏 )ℎ̇𝑗 + 2𝑟(𝑐𝑖𝑗
𝑐 + 𝜅̇𝑐𝑖𝑗

𝑑)𝛼̇𝑗 + (𝑘𝑖𝑗
𝑎 + 2𝜅̇𝑘𝑖𝑗

𝑏 + 𝜅̇2𝑘𝑖𝑗
𝑐 +𝑁

𝑗=𝑛1+1

𝜅̈𝑘𝑖𝑗
𝑑 + 𝑘𝑖𝑗

𝑒 )ℎ𝑗 + 𝑟(𝑘𝑖𝑗
𝑓
+ 2𝜅̇𝑘𝑖𝑗

𝑔
+ 𝜅̇2𝑘𝑖𝑗

ℎ + 𝜅̈𝑘𝑖𝑗
𝑘 )𝛼𝑗 + 𝑓𝑖

𝑔
] = 𝐿𝑔  

∑ [𝑟𝑚𝑚𝑛
𝑎 ℎ̈𝑛 +𝑚𝑚𝑛

𝑏 𝛼̈𝑛 + 2𝑟(𝑐𝑚𝑛
𝑎 + 𝜅̇𝑐𝑚𝑛

𝑏 )ℎ̇𝑛 + 2(𝑐𝑚𝑛
𝑐 + 𝜅̇𝑐𝑚𝑛

𝑑 )𝛼̇𝑛 + 𝑟(𝑘𝑚𝑛
𝑎 + 2𝜅̇𝑘𝑚𝑛

𝑏 +𝑁
𝑛=𝑛1+1

𝜅̇2𝑘𝑚𝑛
𝑐 + 𝜅̈𝑘𝑚𝑛

𝑑 )ℎ𝑛 + (𝑘𝑚𝑛
𝑓
+ 2𝜅̇𝑘𝑚𝑛

𝑔
+ 𝜅̇2𝑘𝑚𝑛

𝑜 + 𝜅̈𝑘𝑚𝑛
𝑝

− 𝑘𝑚𝑛
𝑒 )𝛼𝑛 + 𝑟𝑓𝑚

𝑔
] = 𝑀 𝑒.𝑐

𝑔
  

(A.2) 

Also, the weak form of aerodynamic equations can be written as 

𝐿𝑔 = ∑ {𝜋𝜌𝑏2 [𝑚𝑖𝑗
𝑐 ℎ̈𝑗 − 𝑏𝑎𝑚𝑖𝑗

𝑑 𝛼̈𝑗 + 2(𝑐𝑖𝑗
𝑒 + 𝜅̇𝑐𝑖𝑗

𝑓
)ℎ̇𝑗 − 2𝑏𝑎(𝑐𝑖𝑗

𝑔
+ 𝜅̇𝑐𝑖𝑗

𝑝
)𝛼̇𝑗 + 𝑢𝑐𝑖𝑗

𝑞
𝛼̇𝑗 +

𝑛
𝑗=1

(𝑘𝑖𝑗
𝑙 + 2𝜅̇𝑘𝑖𝑗

𝑜 + 𝜅̇2𝑘𝑖𝑗
𝑝
+ 𝜅̈𝑘𝑖𝑗

𝑞
)ℎ𝑗 − 𝑏𝑎(𝑘𝑖𝑗

𝑟 + 2𝜅̇𝑘𝑖𝑗
𝑠 + 𝜅̇2𝑘𝑖𝑗

𝑡 + 𝜅̈𝑘𝑖𝑗
𝑢 )𝛼𝑗 + 𝑢(𝑘𝑖𝑗

𝑣+𝑘𝑖𝑗
𝑤)𝛼𝑗] +

2𝜋𝜌𝑢𝑏[𝑐𝑖𝑗
𝑟 ℎ̇𝑗 + 𝑏 (

1

2
− 𝑎) 𝑐𝑖𝑗

𝑞
𝛼̇𝑗+(𝑘𝑖𝑗

𝑦
+𝑘𝑖𝑗

𝑧 )ℎ𝑗 + 𝑢𝑘𝑖𝑗
𝑥𝛼𝑗 + 𝑏(

1

2
− 𝑎)(𝑘𝑖𝑗

𝑣+𝑘𝑖𝑗
𝑤)𝛼𝑗 − 𝜆0]}  

𝑀𝑐/4
𝑔

= −𝜋𝜌𝑏3∑ {
1

2
𝑚𝑚𝑛
𝑐 ℎ̈𝑛 + 𝑏 (

1

8
−
𝑎

2
)𝑚𝑚𝑛

𝑑 𝛼̈𝑛 + (𝑐𝑚𝑛
𝑒 + 𝜅̇𝑐𝑚𝑛

𝑓
)ℎ̇𝑛 + 𝑏 (

1

4
− 𝑎) (𝑐𝑚𝑛

𝑔
+𝑁

𝑛=1

𝜅̇𝑐𝑚𝑛
𝑝
)𝛼̇𝑛 + 𝑢𝑐𝑚𝑛

𝑞
𝛼̇𝑛 +

1

2
(𝑘𝑚𝑛

𝑙 + 2𝜅̇𝑘𝑚𝑛
𝑜 + 𝜅̇2𝑘𝑚𝑛

𝑝
+ 𝜅̈𝑘𝑚𝑛

𝑞
)ℎ𝑛 + 𝑏(

1

8
−
𝑎

2
)(𝑘𝑚𝑛

𝑟 + 2𝜅̇𝑘𝑚𝑛
𝑠 +

𝜅̇2𝑘𝑚𝑛
𝑡 + 𝜅̈𝑘𝑚𝑛

𝑢 )𝛼𝑛 + 𝑢(𝑘𝑚𝑛
𝑣 +𝑘𝑚𝑛

𝑤 )𝛼𝑛}  

(A.3) 
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Sayed Hossein Moravej Barzani and Hossein Shahverdi 

Appendix B 
 

Considering torsional and bending shape functions (𝐻𝛼(𝑥) and 𝐻ℎ(𝑥)), the related matrices are 

introduced as follows 

𝑚𝑖𝑗
𝑎 =

𝑚∫ 𝐻𝑖
ℎ𝐻𝑗

ℎ𝑑𝑥
𝑥𝑗+1
𝑥𝑗

  

𝑚𝑚𝑛
𝑎 =

𝑚∫ 𝐻𝑚
𝛼𝐻𝑛

ℎ𝑑𝑥
𝑥𝑛+1
𝑥𝑛

  

𝑚𝑖𝑗
𝑐 =

∫ 𝐻𝑖
ℎ𝐻𝑗

ℎ𝑑𝑥
𝑥𝑗+1
𝑥𝑗

  

𝑚𝑚𝑛
𝑐 =

∫ 𝐻𝑚
𝛼𝐻𝑛

ℎ𝑑𝑥
𝑥𝑛+1
𝑥𝑛

  

𝑐𝑖𝑗
𝑎 =

𝑚∫ 𝐻𝑖
ℎ𝐻̇𝑗

ℎ𝑑𝑥
𝑥𝑗+1
𝑥𝑗

  

 𝑐𝑚𝑛
𝑎 =

𝑚∫ 𝐻𝑚
𝛼 𝐻̇𝑛

ℎ𝑑𝑥
𝑥𝑛+1
𝑥𝑛

 

𝑐𝑖𝑗
𝑒 =

∫ 𝐻𝑖
ℎ𝐻̇𝑗

ℎ𝑑𝑥
𝑥𝑗+1
𝑥𝑗

  

𝑐𝑚𝑛
𝑒 =

∫ 𝐻𝑚
𝛼 𝐻̇𝑛

ℎ𝑑𝑥
𝑥𝑛+1
𝑥𝑛

  

𝑐𝑖𝑗
𝑏 =

𝑚∫ 𝐻𝑖
ℎ𝐻′𝑗

ℎ𝑑𝑥
𝑥𝑗+1
𝑥𝑗

  

𝑐𝑚𝑛
𝑏 =

𝑚∫ 𝐻𝑚
𝛼𝐻′𝑛

ℎ𝑑𝑥
𝑥𝑛+1
𝑥𝑛

  

𝑐𝑖𝑗
𝑓
=

∫ 𝐻𝑖
ℎ𝐻′𝑗

ℎ𝑑𝑥
𝑥𝑗+1
𝑥𝑗

  

𝑐𝑚𝑛
𝑓

=

∫ 𝐻𝑚
𝛼𝐻′𝑛

ℎ𝑑𝑥
𝑥𝑛+1
𝑥𝑛

  

𝑘𝑖𝑗
𝑎 =

𝑚∫ 𝐻𝑖
ℎ𝐻̈𝑗

ℎ𝑑𝑥
𝑥𝑗+1
𝑥𝑗

  

 𝑘𝑚𝑛
𝑎 =

𝑚∫ 𝐻𝑚
𝛼 𝐻̈𝑛

ℎ𝑑𝑥
𝑥𝑛+1
𝑥𝑛

 

𝑘𝑖𝑗
𝑙 =

∫ 𝐻𝑖
ℎ𝐻̈𝑗

ℎ𝑑𝑥
𝑥𝑗+1
𝑥𝑗

  

𝑘𝑚𝑛
𝑙 =

∫ 𝐻𝑚
𝛼 𝐻̈𝑛

ℎ𝑑𝑥
𝑥𝑛+1
𝑥𝑛

  

𝑘𝑖𝑗
𝑏 =

𝑚∫ 𝐻𝑖
ℎ𝐻′̇ 𝑗

ℎ𝑑𝑥
𝑥𝑗+1
𝑥𝑗

  

𝑘𝑚𝑛
𝑏 =

𝑚∫ 𝐻𝑚
𝛼𝐻′̇ 𝑛

ℎ𝑑𝑥
𝑥𝑛+1
𝑥𝑛

  

𝑘𝑖𝑗
𝑜 =

∫ 𝐻𝑖
ℎ𝐻′̇ 𝑗

ℎ𝑑𝑥
𝑥𝑗+1
𝑥𝑗

  

𝑘𝑚𝑛
𝑜 =

∫ 𝐻𝑚
𝛼𝐻′̇ 𝑛

ℎ𝑑𝑥
𝑥𝑛+1
𝑥𝑛

  

𝑘𝑖𝑗
𝑐 =

𝑚∫ 𝐻𝑖
ℎ𝐻′′𝑗

ℎ𝑑𝑥
𝑥𝑗+1
𝑥𝑗

  

𝑘𝑚𝑛
𝑐 =

𝑚∫ 𝐻𝑚
𝛼𝐻′′𝑛

ℎ𝑑𝑥
𝑥𝑛+1
𝑥𝑛

  

𝑘𝑖𝑗
𝑝
=

∫ 𝐻𝑖
ℎ𝐻′′𝑗

ℎ𝑑𝑥
𝑥𝑗+1
𝑥𝑗

  

𝑘𝑚𝑛
𝑝

=

∫ 𝐻𝑚
𝛼𝐻′′𝑛

ℎ𝑑𝑥
𝑥𝑛+1
𝑥𝑛

  

𝑘𝑖𝑗
𝑑 =

𝑚∫ 𝐻𝑖
ℎ𝐻′𝑗

ℎ𝑑𝑥
𝑥𝑗+1
𝑥𝑗

  

𝑘𝑚𝑛
𝑑 =

𝑚∫ 𝐻𝑚
𝛼𝐻′𝑛

ℎ𝑑𝑥
𝑥𝑛+1
𝑥𝑛

  

𝑘𝑖𝑗
𝑞
=

∫ 𝐻𝑖
ℎ𝐻′𝑗

ℎ𝑑𝑥
𝑥𝑗+1
𝑥𝑗

  

𝑘𝑚𝑛
𝑞

=

∫ 𝐻𝑚
𝛼𝐻′𝑛

ℎ𝑑𝑥
𝑥𝑛+1
𝑥𝑛

  

𝑚𝑖𝑗
𝑏 =

𝑚∫ 𝐻𝑖
ℎ𝐻𝑗

𝛼𝑑𝑥
𝑥𝑗+1
𝑥𝑗

  

𝑚𝑚𝑛
𝑏 =

𝐼𝑒.𝑐 ∫ 𝐻𝑚
𝛼𝐻𝑛

𝛼𝑑𝑥
𝑥𝑛+1
𝑥𝑛

  

𝑚𝑖𝑗
𝑑 =

∫ 𝐻𝑖
ℎ𝐻𝑗

𝛼𝑑𝑥
𝑥𝑗+1
𝑥𝑗

  

𝑚𝑚𝑛
𝑑 =

∫ 𝐻𝑚
𝛼𝐻𝑛

𝛼𝑑𝑥
𝑥𝑛+1
𝑥𝑛

  

 𝑐𝑖𝑗
𝑐 =

𝑚∫ 𝐻𝑖
ℎ𝐻̇𝑗

𝛼𝑑𝑥
𝑥𝑗+1
𝑥𝑗

  

𝑐𝑚𝑛
𝑐 =

𝐼𝑒.𝑐 ∫ 𝐻𝑚
𝛼 𝐻̇𝑛

𝛼𝑑𝑥
𝑥𝑛+1
𝑥𝑛

  

𝑐𝑖𝑗
𝑔
=

∫ 𝐻𝑖
ℎ𝐻̇𝑗

𝛼𝑑𝑥
𝑥𝑗+1
𝑥𝑗

  

𝑐𝑚𝑛
𝑔

=

∫ 𝐻𝑚
𝛼 𝐻̇𝑛

𝛼𝑑𝑥
𝑥𝑛+1
𝑥𝑛

  

𝑐𝑖𝑗
𝑑 =

𝑚∫ 𝐻𝑖
ℎ𝐻′𝑗

𝛼𝑑𝑥
𝑥𝑗+1
𝑥𝑗

  

𝑐𝑚𝑛
𝑑 =

𝐼𝑒.𝑐 ∫ 𝐻𝑚
𝛼𝐻′𝑛

𝛼𝑑𝑥
𝑥𝑛+1
𝑥𝑛

  

𝑐𝑖𝑗
𝑝
=

∫ 𝐻𝑖
ℎ𝐻′𝑗

𝛼𝑑𝑥
𝑥𝑗+1
𝑥𝑗

  

𝑐𝑚𝑛
𝑝

=

∫ 𝐻𝑚
𝛼𝐻′𝑛

𝛼𝑑𝑥
𝑥𝑛+1
𝑥𝑛

  

𝑘𝑖𝑗
𝑓
=

𝑚∫ 𝐻𝑖
ℎ𝐻̈𝑗

𝛼𝑑𝑥
𝑥𝑗+1
𝑥𝑗

  

𝑘𝑚𝑛
𝑓

=

𝐼𝑒.𝑐 ∫ 𝐻𝑚
𝛼 𝐻̈𝑛

𝛼𝑑𝑥
𝑥𝑛+1
𝑥𝑛

  

𝑐𝑖𝑗
𝑞
=

∫ 𝐻𝑖
ℎ𝐻𝑗

𝛼𝑑𝑥
𝑥𝑗+1
𝑥𝑗

  

𝑐𝑚𝑛
𝑞

=

∫ 𝐻𝑚
𝛼𝐻𝑛

𝛼𝑑𝑥
𝑥𝑛+1
𝑥𝑛

  

𝑘𝑖𝑗
𝑔
=

𝑚∫ 𝐻𝑖
ℎ𝐻′̇ 𝑗

𝛼𝑑𝑥
𝑥𝑗+1
𝑥𝑗

  

𝑘𝑚𝑛
𝑔

=

𝐼𝑒.𝑐 ∫ 𝐻𝑚
𝛼𝐻′̇ 𝑛

𝛼𝑑𝑥
𝑥𝑛+1
𝑥𝑛

  

𝑐𝑖𝑗
𝑟 =

∫ 𝐻𝑖
ℎ𝐻𝑗

ℎ𝑑𝑥
𝑥𝑗+1
𝑥𝑗

  

𝑘𝑚𝑛
𝑟 =

∫ 𝐻𝑚
𝛼 𝐻̈𝑛

𝛼𝑑𝑥
𝑥𝑛+1
𝑥𝑛

  

𝑘𝑖𝑗
ℎ =

𝑚∫ 𝐻𝑖
ℎ𝐻′′𝑗

𝛼𝑑𝑥
𝑥𝑗+1
𝑥𝑗

  

𝑘𝑚𝑛
𝑜 =

𝐼𝑒.𝑐 ∫ 𝐻𝑚
𝛼𝐻′′𝑛

𝛼𝑑𝑥
𝑥𝑛+1
𝑥𝑛

  

𝑘𝑖𝑗
𝑟 =

∫ 𝐻𝑖
ℎ𝐻̈𝑗

𝛼𝑑𝑥
𝑥𝑗+1
𝑥𝑗

  

𝑘𝑚𝑛
𝑠 =

∫ 𝐻𝑚
𝛼𝐻′̇ 𝑛

𝛼
𝑑𝑥

𝑥𝑛+1
𝑥𝑛

  

𝑘𝑖𝑗
𝑘 =

𝑚∫ 𝐻𝑖
ℎ𝐻′𝑗

𝛼𝑑𝑥
𝑥𝑗+1
𝑥𝑗

  

𝑘𝑚𝑛
𝑝

=

𝐼𝑒.𝑐 ∫ 𝐻𝑚
𝛼𝐻′𝑛

𝛼𝑑𝑥
𝑥𝑛+1
𝑥𝑛

  

𝑘𝑖𝑗
𝑠 =

∫ 𝐻𝑖
ℎ𝐻̇′𝑗

𝛼𝑑𝑥
𝑥𝑗+1
𝑥𝑗

  

𝑘𝑚𝑛
𝑡 =

∫ 𝐻𝑚
𝛼𝐻′′𝑛

𝛼
𝑑𝑥

𝑥𝑛+1
𝑥𝑛
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𝑘𝑖𝑗
𝑒 =

𝐸𝐼 ∫ 𝐻′′𝑖
ℎ𝐻′′𝑗

ℎ𝑑𝑥
𝑥𝑗+1
𝑥𝑗

  

𝑘𝑚𝑛
𝑒 =

𝐺𝐽 ∫ 𝐻′𝑚
𝛼 𝐻′𝑛

𝛼𝑑𝑥
𝑥𝑛+1
𝑥𝑛

  

𝑘𝑖𝑗
𝑡 =

∫ 𝐻𝑖
ℎ𝐻′′𝑗

𝛼𝑑𝑥
𝑥𝑗+1
𝑥𝑗

  

𝑘𝑚𝑛
𝑢 =

∫ 𝐻𝑚
𝛼𝐻′𝑛

𝛼𝑑𝑥
𝑥𝑛+1
𝑥𝑛

  

𝑓𝑖
𝑔
= 𝑚𝑔∫ 𝐻𝑖

ℎ𝑑𝑥
𝑥𝑗+1
𝑥𝑗

  𝑓𝑚
𝑔
= 𝑚𝑔∫ 𝐻𝑚

𝛼𝑑𝑥
𝑥𝑛+1
𝑥𝑛

  
𝑘𝑖𝑗
𝑤 =

∫ 𝐻𝑖
ℎ𝐻′𝑗

𝛼𝑑𝑥
𝑥𝑗+1
𝑥𝑗

  

𝑘𝑚𝑛
𝑤 =

∫ 𝐻𝑚
𝛼𝐻′𝑛

𝛼𝑑𝑥
𝑥𝑛+1
𝑥𝑛

  

𝑘𝑖𝑗
𝑢 = ∫ 𝐻𝑖

ℎ𝐻′𝑗
𝛼𝑑𝑥

𝑥𝑗+1
𝑥𝑗

  
𝑘𝑚𝑛
𝑣 =

∫ 𝐻𝑚
𝛼 𝐻̇𝑛

𝛼𝑑𝑥
𝑥𝑛+1
𝑥𝑛

  

𝑘𝑖𝑗
𝑣 =

∫ 𝐻𝑖
ℎ𝐻̇𝑗

𝛼𝑑𝑥
𝑥𝑗+1
𝑥𝑗

  
𝑘𝑖𝑗
𝑥 = ∫ 𝐻𝑖

ℎ𝐻𝑗
𝛼𝑑𝑥

𝑥𝑗+1
𝑥𝑗

  

𝑘𝑖𝑗
𝑦
= ∫ 𝐻𝑖

ℎ𝐻̇𝑗
ℎ𝑑𝑥

𝑥𝑗+1
𝑥𝑗

  𝑘𝑖𝑗
𝑧 = ∫ 𝐻𝑖

ℎ𝐻′𝑗
ℎ𝑑𝑥

𝑥𝑗+1
𝑥𝑗

  
𝑚𝑖𝑗
𝑐 =

𝑚𝐹 ∫ 𝐻𝑖
ℎ𝐻𝑗

ℎ𝑑𝑥
𝑥𝑗+1
𝑥𝑗

  

𝑚𝑖𝑗
𝑑 =

𝑚𝐹𝑥𝐹 ∫ 𝐻𝑖
ℎ𝐻𝑗

𝛼𝑑𝑥
𝑥𝑗+1
𝑥𝑗

  

𝑚𝑚𝑛
𝑐 =

𝑚𝐹𝑥𝐹 ∫ 𝐻𝑚
𝛼𝐻𝑛

ℎ𝑑𝑥
𝑥𝑛+1
𝑥𝑛

  

𝑚𝑚𝑛
𝑑 =

𝑚𝐹𝑟𝐹
2 ∫ 𝐻𝑚

𝛼𝐻𝑛
𝛼𝑑𝑥

𝑥𝑛+1
𝑥𝑛
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