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Influence of the non-linearity of the aerodynamic
coefficients on the skewness of the buffeting drag force
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Abstract. This paper is devoted to the non linear quasi-steady aerodynamic loading. A linear
approximation is often used to compute the response of structures to buffeting forces. Some researchers
have however shown that it is possible to account for the non linearity of this loading. This non linearity
can come (i) from the squared velocity or (ii) from the shape of the aerodynamic coefficients (as
functions of the wind angle of attack). In this paper, it is shown that this second origin can have
significant implications on the design of the structure, particularly when the non linearity of the
aerodynamic coefficient is important or when the transverse turbulence is important.
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1. Introduction

Wind loads acting on bluff bodies like bridge decks are complex functions of the components of

the turbulence and of the structural displacements and velocities. In order to simplify the

representation of these loads, approached models are generally considered. Since a convenient linear

approximation gives accurate results in many cases, such a model has been widely used during the

last decades (e.g. Davenport 1962, Simiu and Scanlan 1978). In its most general formulation, this

linear model consists in decomposing the wind loads in three terms: (i) the static wind loading, (ii)

the self-excited forces and (iii) the buffeting forces:

(1)

where FD(t), FL(t) and FM(t) represent respectively the drag and lift forces and the pitching moment.

This general definition of the loading involves the well-known flutter derivatives and aerodynamic

transfer functions (e.g. Chen and Kareem 2002). After having measured these functions in wind
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tunnel experiments, the dynamic response and stability studies of the whole structure can be realized.

As a particular case of this linear approximation model, the linear quasi-steady theory (Fig. 1) provides

very particular approximations of the flutter derivatives and of the transfer functions in terms of the

usual aerodynamic coefficients (CD, CL, CM) and their derivatives with respect to the angle of attack

(C'
D, C'

L, C'
M). Even if this model is limited because of its inability to represent transient frequency

dependent forces, it can however represent correctly the low frequency motions of the structure. 

Furthermore this linear quasi-steady theory is also a particular case of another more general

model: the (non linear) quasi-steady theory. Even if it is also limited to low frequency motions, this

theory presents however the advantage to give a non linear model for the wind loading. It is thus

interesting in the sense that these non linear effects bring new physical phenomena that can’t be

enlightened with the usual linear models.

This paper focuses on some of these phenomena (mainly on the effects of non-linearity of the

aerodynamic coefficients) and on the way to account for them in numerical simulations.

2. Quasi-steady formulation of the wind loading

In order to clarify the context, a short recall of the usual linear quasi-steady theory is presented first.

The aerodynamic coefficients of a bridge deck are determined by measuring the aerodynamic

forces (FD, FL, FM) acting on a fixed section placed in a wind tunnel:

(2)

where ρ, B and V represent respectively the air density, the width of the deck and the constant wind

velocity used for the experiment. 

For the range of wind velocities considered in practical applications (high Reynolds number),
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Fig. 1 Schematic view of wind loading models

Fig. 2 Aerodynamic forces (drag, lift, moment)
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these aerodynamic coefficients can be considered to be independent of the wind velocity. On the

other hand these coefficients are very dependent on the angle of attack i of the wind with respect to

the bridge deck. This is illustrated in Fig. 3 which represents drag coefficients of some famous

European bridges. Any of these coefficients is indeed a non-linear function of the angle of attack.

For a convenient comparison, dotted lines represent tangents at the origin. 

Provided the displacements of the structure are slow and their amplitudes remain small, Eq. (2)

may be used to estimate the buffeting forces acting on a bridge deck. The subsequent developments

can be done similarly for the drag and lift forces as well as the pitching moment. For the sake of

brevity in the notations, drag forces only are studied in the following. The developments remain

however also valid for the other aerodynamic coefficients.

The time varying formulation for the drag force is:

(3)

where the aerodynamic coefficient CD is now time dependent (trough the angle of attack i) and

where the wind velocity is also time dependent since it depends on the mean wind speed U and on

the turbulence components u(t) and v(t) (Fig. 4).

In order to partially account for a fluid-structure interaction, relative values must be considered for

the wind angle of attack and the wind velocity. With notations of Fig. 4, these quantities can be

expressed by:

(4)

where the upper dot denotes a time derivative.

FD t( ) 1

2
---CD i t( )[ ]ρBV

2
t( )=

i t( ) ArcTan
v t( ) h

·
t( )–

U u t( ) p· t( )–+
------------------------------------⎝ ⎠

⎛ ⎞ α t( )–=

V
2

t( ) U ut p· t( )–+( )2 v t( ) h
·

t( )–( )
2

+=

Fig. 3 Examples of drag coefficients (Cremona 2002)
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Introducing Eqs. (4) into Eq. (3) gives the non linear quasi-steady expression of the wind loading.

As introduced before, it can be seen that this expression is a complex function of the components of

the turbulence and the motion of the structure.

The components of turbulence are known in a probabilistic way only (Simiu 1974). The most

common methods that can be used to compute the dynamic response of a bridge are therefore:

• A stochastic analysis procedure (see e.g. Clough and Penzien 1993), which is based, in its most

basic formulation, on the computation of the power spectral density (PSD) of the response of the

bridge as a function of the PSD of the turbulence components and of the mechanical and

aerodynamic properties of the bridge;

• To use Monte Carlo simulations; this consists in generating wind histories and solving several

times a deterministic problem by means of step-by-step analyses. This method allows accounting

for the complete non linear expression but is rather slow since many generations are needed for

a good accuracy. Thus this method should be used essentially to check results obtained by a

stochastic analysis.

2.1. Linearization of the aerodynamic loading

A couple of decades ago, the field of application of stochastic procedures was limited by the

abilities of computation means: probabilistic properties of structural response could thus be

determined up to the second order only (variances). Therefore the response was generally

considered to be Gaussian.

As the components of the turbulence can be considered as Gaussian, the classical procedure

consists in simplifying the expression of the loading to a linear function of the turbulence. The

loading is then Gaussian, and hence, if the structure can be assumed to behave linearly, the

structural response is Gaussian too.

After having linearized Eqs. (4), introduced the resulting equations into Eq. (3), replaced the exact

expression of aerodynamic coefficient by a linear approximation, and finally removed the

subsequent quadratic terms, the linear quasi-steady formulation can be obtained (Cremona 2002):

(5)

It can be seen that this expression is a particular case of Eqs. (1) since each term is a linear

expression of the displacements (or velocities) of the structure or of the components of the

turbulence. Since the vertical structural velocity  and the rotation of the deck (α(t)) are

present in this expression of the drag force, Eq. (5) shows that a coupling between vertical,

horizontal and torsional motions could exist.
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Fig. 4 Displacements of the structure
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2.2. Higher degree polynomial approximation of the aerodynamic loading

Nowadays more complex theories allow accounting for a non linear loading provided it is

expressed as a polynomial approximation of the actual loading. Instead of linearizing Eq. (3), a

higher order polynomial approximation can be used:

(6)

This expression is however obtained by neglecting non linear terms of the structural motions. Non-

linear components of buffeting forces only are kept in this approach. The values of the coefficients

Fkl in Eq. (6) are given in Table 1 for the first values of k and l. These coefficients are expressed in

terms of the first four derivatives of CD(i) with respect to the angle of attack; these derivatives are

defined by:

(7)

It can be seen that the curvature of the aerodynamic coefficient  is present in a second order

term of the loading (k = 2, l = 0). It can be also checked that Eq. (5) is a particular case of Eq. (6).

In Eq. (6) the terms containing the derivatives of the bridge deck are related to the aerodynamic

damping. Because they have already been widely studied and since the main aim of the paper

concerns the effects of the non linear buffeting forces, these terms will be neglected in the

following.

Since it is able to include any order of non linearity, the non linear model represented by Eq. (6)

is very general. In order to enlighten in closed form the most important influences of the non linear

loading, this paper focuses on the second order approximation of Eq. (6) only:
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Table 1 Values of the parameters Fkl (Denoel 2005)
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(8)

The non linearity of the aerodynamic coefficient can therefore be taken into account up to its

second order derivative only. Let us also consider the habitual hypothesis of Gaussian uncorrelated

components of the turbulence u(t) and v(t):

(9)

With these notations and assumptions, the statistical properties of the loading can be computed up

to the third order:

(10)

In the following these relations will be considered as reference values. Fig. 5 illustrates these first

three non-dimensional statistical moments for several values of the wind intensities Iu=σu/U and

Iv=σv/U. These are computed for the drag coefficients of the bridges given in Fig. 3. The

coefficients of the quadratic approximation are obtained by a least square fit with Gaussian weight

distribution:

Normandy Bridge: CD0
= 0.0748 ; C'

D0
= 0.476 ; C''

D0
=−0.66

Millau Viaduct: CD0
= 0.0830 ; C'
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D0
=−3.40 (11)

Vasco da Gama Bridge: CD0
= 0.1337 ; C'

D0
=−0.103 ; C''

D0
= 1.54

It can be proved that the actual statistical distribution of the angle of attack is almost Gaussian

when both wind intensities are almost the same (Denoel 2005), which justifies the use of a Gaussian

weighting function.

From these reference values of the statistical moments of the loading, two particular approxima-

tions can be derived.
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2.3. First approximation : linearization of the aerodynamic coefficient (C''
D0=0)

As a first approximation, it could be supposed that the aerodynamic coefficient is linear (C''
D0

= 0).

Since non linear terms coming from the expression of the squared velocity are kept, the subsequent

expression of loading remains non-linear and hence non Gaussian (see Eq. (8), in which C''
D0

= 0).

The approached statistical values obtained under this hypothesis are determined by imposing

C''
D0

= 0 in Eqs. (10). They are represented in Fig. 6.

The first developments concerning the non Gaussianity of the aerodynamic loading correspond to this

hypothesis. Many authors (Grigoriu 1986, Benfratello 1996, Kareem 1998, Gusella 2000, Floris 2002)

have studied the effects of the wind intensity on the skewness of the loading. These early developments

were based on a 1-D turbulence field (Iv=0). In this case, the comparison of Figs. 5 and 6 shows that

the exact and approached means, variances and skewnesses are exactly the same, as the values along the

vertical axis only have to be compared. From a theoretical point of view, this indicates that the

aerodynamic coefficients can be linearized provided the transverse wind intensity Iv is equal to zero.

In practical applications, the transverse intensity Iv is however generally not equal to zero and the

vertical axis of Figs. 5 and 6 is not sufficient anymore to represent the actual statistical moments.

The comparison of both figures shows that a small transverse intensity can modify drastically the

Fig. 5 “Exact” statistical characteristics of the loading as a function of the wind intensities
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values of the statistical moments. For example, for Iu= 10% and Iv= 10%, the exact and approached

non dimensional variances of the drag force on the Viaduct of Millau are respectively equal to

12.1E−4 and 6.9E−4. The originality of the paper lies in this observation and an important

contribution is to provide statistical moments up to the third order, in a 2-D flow and accounting for

the non linearity of the aerodynamic coefficients.

Regarding the skewness coefficient, the significantly different patterns depicted in Figs. 5 and 6

show that it is considerably affected by the non linearity of the aerodynamic coefficient.

Furthermore, Fig. 5 exhibits negative skewness zones (for large Iv) that can not be explained with

the approached model (Fig. 6). Consequently, the non linearity of the aerodynamic coefficient

(C''
D0

≠0) can turn the positively-skewed probability density function into a negatively-skewed one.

In terms of extreme values, this may have very important consequences.

It is interesting to notice that the skewness coefficient associated to Normandy Bridge is

significant despite the apparent linearity of its drag coefficient (Fig. 3).

2.4. Second approximation : linearization of the aerodynamic loading

As a second approximation, the equations of the linear quasi-steady loading could be derived. In

Fig. 6 Approached statistical characteristics of the loading as a function of wind intensities
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this method, linear terms of the loading only must be considered: the first three terms of Eq. (8)

only are thus kept. The non dimensional statistical characteristics of the loading are now much

simpler than Eqs. (10):

(12)

Exactly as for the statistical moments given in Eq. (10), these values are obtained thanks to the

theory of probabilities. 

They are plotted in Fig. 7. It can be checked that this method provides inaccurate results, even on

the vertical axis. Furthermore since the loading is now Gaussian, this method gives a skewness

coefficient obviously equal to zero.

3. Response of structures to non Gaussian loadings

Even if the theoretical background concerning the study of the dynamic response of structures
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Fig. 7 Approached statistical characteristics of the loading as a function of wind intensities
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subjected to non-Gaussian loading is quite old (Lutes and Hu 1986, Soize 1978), recent researches

have led to new ways of applying this theory in practical applications. Two major philosophies can

be distinguished:

• Third and fourth order characteristics can be represented by bispectra and trispectra, similarly as

second order characteristics can be represented by PSDs (Gurley, et al. 1997, Kareem 1998,

Spanos 1983);

• Another possibility consists in solving a particular set of equations (the moment equations)

derived from the Fokker-Planck-Kolmogorov equations (Di Paola 1990). The main disadvantage

of this method is that the force must be represented by a Markov chain; but when this condition

is fulfilled, this second method is much faster that the first one since probabilistic characteristics

of the response can be estimated by solving a simple set of algebraic equations.

Amongst both of them, this paper is based on the first one. The theoretical basis of this method is

not presented in the paper but can be found in the literature (see e.g. Gurley, et al. 1997).

The method is here applied to an interesting academic application: the study of a single degree of

freedom system subjected to the simplest quadratic loading:

(13)

where ξ and ϖ represent the structural characteristics, γ=ρCDB/2 is supposed to be constant and u(t)

represents a zero-mean Gaussian and Ornstein-Uhlenbeck process whose PSD is given by:

(14)

where  is the variance of the process, Iu is the turbulence intensity and a is a frequency-

shaping parameter.

This academic application is worthy of note because it can be used to estimate the effects of the

non linearity of the quadratic loading in a 2-D flow (Eq. (8)). This is discussed in the next section.

3.1. Second order response

Even if the loading is non linear and hence non Gaussian, its PSD (SF(ω)) can be expressed in

terms of the PSD of the turbulence (Su(ω)) (e.g. Floris 2002). After multiplication by the transfer

function of the system, the PSD of the response (Su(ω)) can be obtained and finally, after integration

along the frequencies, the variance of the displacement  can be obtained. This is the “exact”

variance. As a comparison, the variance of the response  obtained by neglecting the non-

linear terms of the loading can also be computed.

The ratio between these two variances is a measure of the influence of the quadratic term of the

loading on the second order characterization of the structural motion. An approached (because it is

valid for small turbulence intensities, namely smaller than 20%) expression of this ratio is given by

(Appendix A):
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Fig. 8 illustrates this ratio of variances in the most realistic case (which appears to be also the

worst case), namely when ϖ/a is much larger than unity.

This figure shows that the non linear term of the loading produces a more significant influence

when the response of the structure is essentially dynamic and not quasi-static (i.e. when Ψ= 0). It

can be seen that for usual values of the wind intensity (  to ), the quadratic term

of the loading doesn’t affect significantly the variance of the response. This observation should

however be mitigated if the coefficient of u2(t) in the loading was larger than the coefficient of U 2.

This figure shows also that the ratio of the variance of the response for Ψ= 0 and Ψ= 1 is equal

to . Furthermore, for any Ψ this ratio could be estimated by:

(16)

This shows that the exact variance of the response under quadratic loading  can be

estimated by multiplying the quasi-static contribution of the variance by a simple function of Ψ and

Iu. Note that the function given in Eq. (16) is valid for an Orstein-Uhlenbeck loading process only.

In practical applications, the turbulence can very rarely be considered as an Orstein-Uhlenbeck

process; but let us suppose that the statistical moments of the loading have been computed

following the developments of this section. This computation implies simple algebraic operations

only.

If the structure is very stiff, its response is mainly quasi-static and, in this case, the variance of the

structure is obtained by dividing the variance of the loading by the squared stiffness. In practical

applications, the response is divided into quasi-static and dynamic components. In this more general

case, Eq. (16) can be used to give an estimation of the complete variance. Indeed, the response

including these two components can be estimated from the knowledge of the quasi-static

counterpart only (under quadratic loading). Although the function given in Eq. (16) is valid for an

Ornstein-Uhlenbeck process, it could be applied in good approximation to most usual PSD function
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Fig. 8 Influence of the quadratic term of the loading on the variance of the displacement (as a function of the
dispatching of energy between quasi-static and dynamic contributions)
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of wind turbulence (Harris, Scanlan, Davenport, Eurocode 1), (Denoel 2005). This approximation

presents the advantage to give very fast results.

3.2. Third order analysis

Several authors (Soize 1978, Gurley, et al. 1997) have shown that the extreme values of non

Gaussian processes depend of their higher order statistical characteristics, namely their skewness

and kurtosis defined by:

(17)

where  represents the nth centred moment of the process x.

Gurley, et al. (1997) propose to compute the extreme values as if the process was Gaussian and

then to multiply this first estimation by a correcting factor that accounts for the non Gaussianity

(see Fig. 9). This factor is expressed as a function of the mean crossing rate (ν) and of the duration

of the observation T. The correcting factor is of course equal to unity for a Gaussian process, for

which γ3= 0 and γ4= 3.

If it is desired to estimate the effects of the non linearity of the loading on the extreme values of

the displacement, it is thus necessary to compute higher order statistical characteristics of the

response. Exactly as the variance can be obtained by integration of the PSD, the third centred

moment can be estimated by integration of another mathematical quantity: the bispectrum. Since, in

our developments, the loading (Eq. 8) is considered as a polynomial form of a Gaussian process

u(t), the bispectra of the loading and of the response can be determined in an analytical way.

If the non linear term of the loading was neglected, the response would be Gaussian and the

skewness coefficient would be equal to zero. The ratio  similar to the ratio used in the

previous paragraph is thus meaningless.

Instead of this ratio it is thus chosen to evaluate the ratio of the skewness coefficient of the
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damping coefficient, the circular frequencies and the parameter a. These curves have been obtained

in closed form (by analytical integration of the bispectrum of the response) without any other

hypothesis. The resulting (heavy) relations are not provided in this paper but can be found in the

literature (Denoel 2005). This figure points out the convenient possibility to determine the skewness

of the response as a function of the skewness of the loading.

It can be observed that:

• the skewness of the response is always smaller than the skewness of the loading;

• the skewness of the response is small for lightly damped or soft structures;

These observations can be justified by considering that the response of the structure is composed

of two contributions: (i) the quasi-static contribution, shaped like the applied force and thus

characterized by the same skewness coefficient, and (ii) the dynamic component, rather shaped like

a Gaussian process. It seems thus obvious to obtain an intermediate skewness coefficient for the

response, this coefficient being smaller for structures having an important dynamic contribution, i.e.

for lightly damped and soft structures.

The analytical relations used to draw Fig. 10 can be useful in several applications. Let us imagine

for instance that the actual PSD of the turbulence could be approached by an Ornstein-Uhlenbeck

process (e.g. by fitting parameter a). Several authors (Muscolino 1995, Floris 2002) have proposed

some formulations for this equivalence which consists in replacing the actual PSD by an Ornstein-

Uhlenbeck one.

In the context of a fast estimation of the non Gaussianty of the response, Fig. 10 shows that the

skewness coefficient of the loading could be used as a boundary value for the design of the

structure. If the dynamic component of the response is important, its skewness coefficient can be

significantly reduced and Fig. 10 can help giving a better approximation of it. This value can be

simply estimated by the knowledge of:

• the skewness coefficient of the loading,

• the damping coefficient of the structure,

Fig. 10 Importance of the skewness of the response as a function of the skewness of the loading, the
damping coefficient and the eigen frequency (closed form)
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• the eigen frequency of the structure,

• an equivalent shaping factor a

which is clearly much simpler than computing and integrating the exact bispectrum.

4. Conclusions

This paper has presented two important features in the analysis of structures subjected to non

Gaussian loadings.

The first one consists in the determination of the statistical characteristics of the loading. They are

commonly established by supposing that the aerodynamic coefficients can be linearized. This

linearization can lead to a significant inaccuracy on the statistical characteristics. The developments

presented in this paper were limited to the second order derivative of the aerodynamic coefficients

with respect to the angle of attack but the same reasoning could be easily extended to higher order

polynomial approximations.

As a second step, it has been shown how the statistical characteristics of the loading could be

used to estimate the statistical characteristics of the response. In this part, the heavy rigorous

analysis method has been avoided and a simpler approach, based on simple and fast computations,

has been retained. This effortless method can give estimations of the response that could be used,

for instance, for a pre-design of a structure.
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Appendix

Under the loading conditions of Eqs. (13) and (14) the PSD of the non linear loading force is

given by:

(A.1)

where the first and second terms in the brackets respectively come from the linear and the non

linear counterparts of the loading. The traditional white noise approximation (Davenport 1962)

prescribes the estimation of the response as the sum of the background and the resonant

components. This method can be applied to determine the response to the linear loading on the one

hand and to the non linear one on the other hand. Their ratio is given by:

(A.2)

which is now a function of the quasi-static and dynamic contributions under the linear and non

linear loading. Recalling that the quasi-static response is obtained by dividing the variance of the

loading by the stiffness and that the dynamic response is expressed as a function of the PSD of the

loading at the natural frequency, it is possible to write:
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(A.3)

(A.4)

The introduction of Eqs. (A.3) and (A.4) into (A.2) is equivalent to Eq. (15). This relation is

approached because it is based on the white noise approximation. A deeper investigation into this

problem (Denoel 2005) shows that this approximation is however suitable if the turbulence intensity

is smaller than 20%, which results in discrepancies smaller than 5%.
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