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Aeroelastic forces on yawed circular cylinders: 
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Abstract. Quasi-steady approaches have been often adopted to model wind forces on moving cylinders
in cross-flow and to study instability conditions of rigid cylinders supported by visco-elastic devices.
Recently, much attention has been devoted to the experimental study of inclined and/or yawed circular
cylinders detecting dynamical phenomena such as galloping-like instability, but, at the present state-of-the-
art, no mathematical model is able to recognize or predict satisfactorily this behaviour. The present paper
presents a generalization of the quasi-steady approach for the definition of the flow-induced forces on
yawed and inclined circular cylinders. The proposed model is able to replicate experimental behaviour and
to predict the galloping instability observed during a series of recent wind-tunnel tests.
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1. Introduction

The development of mathematical models for simulating wind loads on moving structures is a

fundamental topic in wind engineering. The quasi-steady hypothesis has been often adopted due to

its simple derivation and application, mainly for the cases of flow perpendicular to the structural

span. A more general approach is desirable since structures (or structural elements) are often in a

very generic position with respect to the wind, with both incidence and yaw angles different than

zero. Unfortunately, the aerodynamics of yawed cylinders, having strongly three-dimensional

characteristics, is much more complicate than the usual case of cross-flow. Matsumoto, et al. (1990)

studying the wind-rain instability of (yawed) circular cylinders observed the existence of an intense

secondary axial flow whose sole presence could give rise to unstable oscillations even without water

rivulet. Recently a wide experimental campaign on cable models has been carried out at the

National Research Council of Canada (NRC), in collaboration with Rowan Williams Davies and

Irwin Inc. (RWDI) and the University of Ottawa (Cheng, et al. 2003a, Cheng, et al. 2003b, Larose,

et al. 2003). The aerodynamic behaviour of dry, non-iced, smooth cables against skew wind has

been examined by a series of dynamic and static experiments recognizing cases of divergent

oscillations for some combinations of cable inclination and yaw angle.
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A force model for yawed cylinders, inclusive of buffeting terms as well as basic terms pertinent to

galloping and divergence instability, has been proposed by Strømmen and Hjorth-Hansen (1995) on

the base of the classical quasi-steady linearized formulation modified by projecting the wind

velocity through the “cosine rule”. Although such formulation is believed reliable, at least for small

yaw angles, since it is derived from the traditional quasi- steady approach, it is unable to predict the

instability of circular cylinders.

The open problem concerns with providing a theoretical explanation of the divergent oscillations

observed in the wind-tunnel tests and defining a criterion for their prediction. In Cheng, et al.

(2003a) a modified Den Hartog criterion is proposed to evaluate the critical condition for dry

inclined cables, using the derivative of the lift coefficient with respect to the yaw angle (in place of

the angle of attack). However, unlike the traditional galloping theory, the proposed criterion is based

on only experimental observations. Macdonald and Larose (2004) propose a general expression for

the quasi-steady aerodynamic damping of a dry inclined cylinder, but limited to a 1 degree-of-

freedom (dof) motion.

The present paper proposes a generalization of the quasi-steady formulation for the definition of

the flow-induced forces involving fluid-structure interaction terms acting on yawed and inclined

circular cylinders. The objective is to propose a consistent 2 degree-of-freedom theoretical model

suitable for representing experimental tests, as those presented in Cheng, et al. (2003a, 2003b) and

Larose, et al. (2003), in which the three-dimensionality of the flow cannot be neglected. Such

model makes possible a reliable prediction of the aerodynamic instability of yawed circular

cylinders. For this purpose, in the treatment that follows, the expression of the forces is limited to

the first-order (linearized forces), though the approach could be extended to include an arbitrary

cross-section and a wide class of nonlinear terms deriving from the fluid-structure interaction.

Numerical applications, based on the static aerodynamic coefficients measured by Cheng, et al.

(2003a), illustrates the potentiality of the proposed model in predicting the critical conditions of

yawed circular cylinders. The unstable oscillations observed during the dynamical tests (Cheng, et al.

2003a, Larose, et al. 2003) are correctly recognized and can be interpreted as a galloping instability.

The conclusions summarise the results achieved and discuss the role of the leading parameters in

the rise of unstable motions.

2. Model of wind forces on inclined circular cylinders

The present Section introduces the problem of modelling the wind force acting on inclined

circular cylinders. The respective directions of wind velocity and cylinder axis are identified through

a suitable pair of angles. A model for the definition of the aerodynamic forces is proposed referring

first to the case of fixed cylinder in uniform flow and then generalizing the treatment to the case of

moving cylinder in turbulent flow. Finally, the influence of the Reynolds number on the

instantaneous quantities governing the motion is discussed.

2.1. Reference angles

The formulation of a model of wind forces on inclined cylinders requires, first of all, the

identification of a suitable couple of angles defining the attitude of the cylinder towards the wind

(Fig. 1). To simplify the discussion, let us consider the practical case of a cable-stayed bridge yawed

with respect to the wind direction. Let us consider an orthogonal reference system X1, X2, X3
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defined orienting X1 along the bridge axis, and the axis X3 vertically directed upwards (Fig. 1). Let

us consider a cable laying in the plane X1, X3 whose axis forms the angle φ with X1 (i.e. with the

deck of the bridge). The wind velocity is contained in the horizontal plane and its direction is

identified by the unit-vector n at an angle θ with respect to the axis X2. The angles φ and θ here

defined are referred to as inclination and yaw angles; the case θ = 0o represents the usual case of

bridge in cross-flow conditions, while φ = 0o and φ = 90o represent, respectively, the ideal limit cases

of horizontal and vertical cable.

In order to simplify the modelling of the wind force acting on the cable it is convenient to

introduce the local reference system x1, x2, x3 defined letting x3 be aligned with the cylinder axis and

x1 parallel to X2. In this way, x1 and x2 identify, respectively, the so-called out-of-plane and in-plane

directions for the cable displacement. For the purpose of studying the wind action on the cable, the

configuration determined by the angles φ and θ can be equivalently defined through the angle α

between the axis x1 and the projection  of n onto the plane x1, x2, and the angle β between  and

n (Fig. 1). The couples of angles φ, θ and α, β are related by the equations (the proof is given in

Appendix A):

tan α = sin φ tan θ

sin β = cos φ sin θ (1)

Similar expressions have been presented in Larose, et al. (2003), but referring to a different

definition of the angles.

2.2. Fixed cylinder in uniform flow

Let us consider the circular cylinder previously described and showed in Fig. 2 together with the

local reference system x1, x2, x3. With respect to such reference system the unit-vector n

representing the direction of the wind velocity is expressed as:

 = [ cos α cos β   sin α cos β   −sin β ]T (2)

ñ ñ

n
U

U
------------=

Fig. 1 Identification of the reference angles and of the reference systems
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where ||U || is the Euclidean norm of the wind velocity vector U; the angles α and β describe,

respectively, a rotation around x3 (i.e. in the A-plane represented in Fig. 2) and a rotation around the

axis η (i.e. in the B-plane represented in Fig. 2).

The aerodynamic force per unit length acting on the cylinder can be expressed as :

(3)

where ρ is the air density, b is a reference size of the cylinder (e.g. the diameter); CD and CL are the

drag and lift force coefficients evaluated experimentally measuring the aerodynamic forces or

pressures on a fixed cylinder by a wind-tunnel test realized, for example, likewise described by

Cheng, et al. (2003a); d and l are unit-vectors in the plane x1, x2 representing the drag and lift

directions, defined as:

 ;      (4)

n1 and n2 being the projections of n along x1 and x2, respectively. The force defined by Eq. (3) is

f
1

2
----ρb U

2
CDd CLl+( )=

d
cosα

sinα

0⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

1

cosβ
-------------

n1

n2

0⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

= = l
sin– α

cosα

0⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

1

cosβ
-------------

n– 2

n1

0⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

= =

Fig. 2 Three-dimensional representation of the fixed cylinder in uniform flow
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parallel to the plane x1, x2, i.e., is orthogonal to the cylinder axis. Actually, the aerodynamic force

does have also an axial component, but it is disregarded since it is generally small compared to the

others; moreover, its structural effects are usually negligible and its evaluation by a wind-tunnel test

is very difficult and uncertain.

The coefficients CD and CL depend on the wind direction n (i.e. on the angles α and β ) as well as

on the Reynolds number. However, in the present case of circular cylinder, CD and CL must be

independent of α because of the cross-section symmetry. This simplifies very much the experimental

measurements as well as the theoretical formulation leading to the following expression of the

force:

(5)

where

(6)

2.3. Moving cylinder in turbulent flow

The quasi-steady theory assumes that the flow-induced forces acting on a moving cylinder can be

predicted adopting the expression pertinent to a fixed cylinder in which the asymptotic flow velocity

is substituted with the flow-cylinder relative velocity. From a physical point of view this means that

the forces are determined only by the instantaneous geometry and the instantaneous velocity field of

the flow around the cylinder, and that any memory effect is negligible. Such a hypothesis may be

satisfied if the characteristic fluid-dynamic time scale of the velocity fluctuations in the wake of the

cylinder is much faster than the characteristic time scale of the cylinder oscillation. An explicit

expression of this concept may be stated comparing the cylinder oscillation frequency fc and the

vortex-shedding frequency fw:

(7)

where St is the Strouhal number. Following analogous considerations it is possible to take into

account also the effect of turbulence in the incoming flow, idealized as a quasi-static perturbation of

the asymptotic velocity.

Accepting the validity of the aforementioned hypotheses, the aerodynamic forces acting on a

moving cylinder in turbulent flow can be expressed by the model derived for the case of fixed

cylinder in uniform flow, substituting the steady wind velocity U with the instantaneous (function of

the time t) flow-cylinder relative velocity U*(t) (Fig. 3) defined as:

(8)

where the vectors u(t) and  collect, respectively, the components of the wind turbulence and of

the cylinder velocities along x1, x2 and x3; z = (u− ) / ||U || represents the nondimensional

f
1

2
----ρb U

2
C β( )n 1

cosβ
-------------=

C β( )
CD β( ) CL β( )– 0

CL β( ) CD β( ) 0

0 0 0

=

fc fw«
St U

b
----------------=

U
*

t( ) U u t( ) q· t( )–+ U n z t( )+( )= =

q· t( )
q·
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instantaneous fluctuation of the relative velocity. The direction of the instantaneous relative velocity

is identified by the unit-vector n* that is provided by Eq. (2) in which α and β are substituted with

the instantaneous angles α * (Fig. 3(a)) and β * (Fig. 3(b)).

The instantaneous wind force f* is obtained from Eq. (5), substituting U, n, β with their

instantaneous counterparts U*, n*, β *:

(9)

where

(10)

(11)

(12)

f
* 1

2
----ρb U

* 2

C β
*( )n* 1

cosβ
*

---------------=

U
*

U n z+=

n*
U

*

U
*

-----------
n z+( )
n z+

--------------------= =

β
* n3 z3+

n z+
------------------⎝ ⎠

⎛ ⎞asin–=

Fig. 3 Moving cylinder in turbulent flow: sections on A-plane (a) and B-plane (b)
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in which n3 and z3 represents, respectively, the projection of n and z along the axis x3. Substituting

Eqs. (10) and (11) into Eq. (9), the instantaneous force can be expressed as:

(13)

where:

(14)

From the inspection of Eqs. (13), (14) and (12) it can be noted that the instantaneous velocity f*

depends on time only through vector z. Such a vector, because of its definition, has small modulus,

thus f * may be represented by the McLaurin series expansion:

(15)

where  and the symbol  represents the Kronecker product (Di

Paola, et al. 1992). Analogous expansions can be operated for the functions g(z) and β*(z) leading

to the expressions:

(16)

(17)

where the quantities g0, g1, β0 and β1 are obtained differentiating Eqs. (14) and (12) :

    

(18)

         

The matrix of the aerodynamic coefficients C(β*) is expanded in a Taylor series around the static

configuration (β* = β ) resulting :

(19)

where C ' = dC /dβ . Substituting Eqs. (15)-(19) into Eq. (13) and equating the terms of the same

order it yields:

(20)

f
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2
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It is worth noting that the zero-order term of f* corresponds to the force f given in Eq. (5) for the

fixed cylinder in uniform flow, while f1z represents its linear correction due to the instantaneous

nondimensional relative velocity z.

The Eqs. (15) and (20) provide the expression of the linearized force acting on a circular cylinder

moving with velocity  in a turbulent wind flow. In the case of moving cylinder in smooth flow

Eqs. (15) and (20) remain valid letting z = − / ||U ||.

2.4. Effects due to the instantaneous fluctuation of the relative velocity

In Eq. (13) it is implicitly assumed that the matrix of the aerodynamic coefficients C changes

with the time due to the instantaneous fluctuation of flow-cylinder relative velocity z. Such a

variation is obtained by substituting the static angle β between the flow velocity and the cylinder

axis with the instantaneous angle β* (Fig. 3). The model, on the contrary, does not take into account

that the velocity fluctuation (and the corresponding Reynolds number fluctuation) may produce a

variation of the aerodynamic coefficients as suggested by Macdonald and Larose (2004) for the

expression of the aerodynamic damping of a dry inclined cable.

The implementation in the force model of the Reynolds dependency does not produce any

mathematical difficulty, indeed it is sufficient to substitute the steady Reynolds number Re with the

instantaneous Reynolds number Re*, corresponding to the velocity fluctuation z, and generalizing

Eq. (19) with a bi-variate Taylor series expansion including the derivatives of the aerodynamic

coefficients with respect to Re. Actually, while the substitution of β with β* may be justified

fulfilling the condition (7), the substitution of Re with Re* is supported by a much weaker

motivation and can lead to results far from the experimental evidence (Freda 2005). The variation of

the aerodynamic coefficients with Re is important only in the critical regime in which CD has a

strongly negative slope. In such condition, however, the dependency between CD and Re is very

complicate and uncertain. In particular, Schewe (1983, 2001), during a wide experimental campaign

on fixed circular cylinders in uniform flow, observed a hysteretic behaviour of the drag force with

respect to small fluctuations of Re around its critical value. This phenomenon can lead to two

consequences that modify significantly the dynamics predicted through the quasi-steady assumption:

for small fluctuations of Re (due to the cylinder motion) the drag force may not have any significant

variation; the hysteretic behaviour of the drag force produces an additional component of

aerodynamic damping of the cylinder.

3. Dynamic instability of an elastic-supported cylinder

Let us consider a rigid circular cylinder oriented with respect to the wind according to the angles

α and β, supported at its ends by linear visco-elastic devices oriented along the axes x1 and x2. The

incoming flow is laminar and homogeneous over the entire length of the cylinder. The cylinder is allowed

having only transversal vibrations, i.e., all the points of the cylinder move on planes orthogonal to the

cylinder axis (parallel to the plane x1, x2); no rotations are allowed. The configuration of the

cylinder can be represented by the displacement components q1 and q2 of any of its points along the

axes x1 and x2, respectively. The dynamic equilibrium condition can be written in the form:

(21)

q·

q·

q̂ t( ) Γq̂ t( ) Ωq̂ t( )+ +
1

m
------ f̂

*
t( )=

.. .
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where = {q1, q2}
T is the displacement vector reduced to the plane x1, x2; Ω = diag (ω1, ω2) and

Γ = 2diag (ξ1ω1, ξ2ω2), ωj and ξj being the circular frequency and damping ratio corresponding to

the motion in the direction j = 1, 2; m is the mass-per-unit-length of the cylinder; = { f 1
* , f 2

* }T is

the vector of the instantaneous force-per-unit-length given by Eqs. (13), reduced to the plane x1, x2.

The equation of motion (21) is nonlinear since the wind force  depends on the flow-cylinder

relative velocity z and, therefore, of the cylinder response . The study of the instability critical

conditions, however, can be performed considering a linearized model of the flow-induced forces

disregarding the terms identified as O(||z ||2) in Eq. (15).

Moreover, thanks to the linearity of the left-hand-side of Eq. (21), also the constant term f0 can be

omitted for the evaluation of the critical conditions, leading to the equation:

(22)

where  is the reduction to the plane x1, x2 of the matrix f1 given by Eq. (20). Eq. (22) can be

rearranged into a state-space formulation, resulting:

(23)

where

    (24)

in which 0 and I are the zero and identity matrix of order 2×2, respectively.

The dynamical system represented by Eq. (23) is asymptotically stable if and only if all the

eigenvalues λj ( j = 1, ..., 4) of the matrix A lay in the left-half complex plane. A parametric study

of the cylinder stability can be therefore performed through a numerical evaluation of the evolution

of such eigenvalues with respect to the incoming wind velocity ||U || (i.e. the Reynolds number) and

the angles α and β.

4. Numerical results

The first objective of this Section is to verify the reliability of the proposed model replicating an

experimental dynamical test performed in wind-tunnel. Afterwards, the model permits an exploration of

the possible critical conditions in the parameter plane, with particular attention to the detuning

parameter and the angle α.

4.1. Replication of a wind-tunnel test

The effectiveness of the model here formulated is verified replicating the dynamical wind-tunnel

test described by Cheng, et al. (2003a) and Larose, et al. (2003), performed in uniform-flow

condition. In particular, the setup configurations referred to as 2A and 2C, corresponding,

respectively, to the angle pairs α = 90o, β = 30o and α = 35.3o, β = 30o are considered; configuration

2A has been found stable, while configuration 2C experienced galloping-like oscillations at the

q̂

f̂*

f̂
*

q·

q̂ t( ) Γq̂ t( ) Ωq̂ t( )+ +
1

m U
---------------– f̂1q̂ t( )=

. ...

f̂1

y· Ay=

y
q̂

q̂
= A

0 I

Ω– Γ
1

m U
--------------- f̂1–⎝ ⎠

⎛ ⎞–
=
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velocity  m/s (Larose, et al. 2003), corresponding in such a test to Re .

According to the experimental conditions, it is assumed b = 0.16 m, m = 60.8 kg/m, ξ = 0.08%; the

natural circular frequencies are ω1 = 8.796 rad/s, ω2 = 8.891 rad/s with a detuning σ = ω2/ω1−1 =

1.08%.

In this case, the condition of Eq. (7) for the application of the quasi-steady approach is well

fulfilled since  Hz and Hz, having assumed St 0.2−0.5. Drag and lift

coefficients are deduced from the results of the static test described in Cheng, et al. (2003a)

applying the relationships of Eq. (1) to take into account the different reference system adopted for

the angles.

Fig. 4 show the experimental values for the aerodynamic coefficients as presented in Cheng, et al.

(2003a) together with their polynomial approximation of 6th-order (the drag coefficient is a

function of Re and parametric in β , Fig. 4(a); the lift coefficient is a function of β and parametric in

U 32≅ ≅ 3.4 10
5⋅

fc 1.40≅ fw 40 100–≅ ≅

Fig. 4 Experimental values for the aerodynamic coefficients

Fig. 5 Regular three-dimensional representation of the aerodynamic coefficients
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Re, Fig. 4(b)). In order to use the expressions proposed in Section 2, the aerodynamic coefficients

have been represented as regular three-dimensional functions of the β and Re interpolating the

Fig. 6 Drag coefficient and its prime derivative with respect to β (β = 30o)

Fig. 7 Lift coefficient and its prime derivative with respect to β (β = 30o)

Fig. 8 Critical eigenvalues in the setup configurations 2A (continuous line) and 2C (dashed line)
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experimental data as shown in Fig. 5. In this way it is easy to deduce the aerodynamic coefficients

and their prime derivative with respect to β for β = 30o and  (CD Fig. 6,

CL Fig. 7). All the numerical results in the sequel are developed keeping constant the angle β (equal

to 30o) coherently with the condition of the experimental dynamic test.

Fig. 8 show the evolution of the critical eigenvalue (the one with maximum real part) as a

function of Re in the range − . In the case of α = 35.3o (solid line) the critical

eigenvalue crosses the imaginary axis at a Reynolds number slightly larger than  (Fig. 8(a))

predicting a galloping-like instable behaviour in excellent accord with the experimentation

(Re = ); the eigenvalue returns in the left-half complex plane for Re . In the

case of α = 90o, in which no instability was observed (dashed line) all the eigenvalues remain in the

left-half complex plane. The Fig. 8(b) shows the evolution of the real and imaginary parts of the

critical eigenvalues; the oscillation frequencies slightly change when unstable motion appears.

Fig. 9 show trajectories of the cylinder (in the plane x1, x2) for the case α = 35.3o, β = 30o,

Re = . The motion is characterized by elliptical orbits involving displacements along both

the axes x1 and x2, with a prevalent direction of motion inclined of approximately 7o with respect to

the axis x2. Again, the behaviour predicted by the theoretical model (Fig. 9(a)) is very close to the

experimental results presented in Cheng, et al. (2003b) (Fig. 9(b)).

4.2. Effects of detuning and α -angle on critical conditions

Passing to investigating the critical conditions when the reference angle α is varying, Fig. 10

shows a contour plot of the real part of the critical eigenvalue in the plane α-Re for the case β = 30o

keeping constant the detuning σ. It can be note that, in such condition, instability can occur within a

range of α between 10o and 75o, approximately. Moreover, all this kind of bifurcations appear as

confined since the system can regain stability (i.e. the real part of the critical eigenvalue becomes

negative) for a sufficiently high value of the Reynolds number (transient instability).

The influence of detuning is highlighted by Fig. 11, where the trajectories of the cylinder,

Re 2.6 10
5⋅  3.8 10

5⋅,[ ]∈

2.8 10
5⋅ 3.8 10

5⋅
3.3 10

5⋅

3.4 10
5⋅ ≅ 3.75 10

5⋅

3.4 10
5⋅

Fig. 9 Galloping-like motions (Re = 3.4 . 105). Numerical results (a), experimental results presented by Cheng,
et al. (2003b) (b = 0.16 m) (b)
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evaluated for the case α = 35.3o, β = 30o at Re = , are shown for different values of the

detuning (σ = 0.5%, 1%, 5%, 10%). It can be noted that, for small detuning the motion involves

both the two dof’s producing wide orbits with the characteristic inclination observed in the

experimental tests (see Fig. 9); for large detuning, instead, instability involves only one dof (in the

present case q2, but it depends on the angles α and β, Freda 2005), the orbit becomes thinner and

oriented along one of the principal axes of the stiffness matrix (i.e. the directions of the spring

supports, assumed orthogonal each other). In such a case, a single-dof modelling of the dynamics

may lead to a correct evaluation of the critical velocity, even if no criterion is available to predict, a

priori, which one of the two dof’s is going to experience instability.

Fig. 12 shows the value of the Reynolds number for which the critical eigenvalue crosses the

imaginary axis versus the detuning σ for the case α = 35.3o, β = 30o. For low detuning (|σ |< 0.2%)

instability does not occur due to the coupling between the two dof’s. A similar phenomenon has

3.57 10
5⋅

Fig. 10 Influence of the angle α on critical conditions

Fig. 11 Influence of detuning parameter σ on galloping motion (Re = 3.57 . 105)
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been found in classic galloping cases, where it can be proved that cross-sections that are unstable in

a single vertical dof schematization, possibly become stable if the horizontal dof is introduced in the

model (Luongo and Piccardo 2005). For |σ | > 2−4% the instability critical velocity is substantially

independent of σ since instability virtually involves only one dof. In intermediate conditions the

instability critical velocity is quite influenced by the detuning, which governs the coupling between

the two oscillation modes.

5. Conclusions

In this paper a theoretical quasi-steady model able to reproduce the flow-induced forces on yawed

dry circular cylinders is proposed. This formulation presents some differences with respect to the

literature, where the problem has been treated in a simplified way and solutions are proposed for the

case of one dof only. The following conclusions can be drawn.

(1) The model of forces is developed in vector notation, using concepts derived from the

Kronecker algebra, which permit to obtain concise expression (for non linear components of

forces too) and to easily use symbolic manipulation software.

(2) The proposed theoretical model seems able to reproduce the actual instability behaviours, as

those found during wind tunnel tests. It appears that circular cylinder instability occurs for

particular combinations of the angles β (angle between the wind direction and the normal to

the cylinder axis) and α (rotation of the cylinder around its own axis), within certain ranges

of the Reynolds number.

(3) The implementation in the force model of the Reynolds dependency does not involve any

mathematical difficulty, but requires further investigation under the physical point of view.

(4) The angle α is meaningful only if the mechanical characteristics of the support devices

present differences, even though very small. This confirms the extreme sensitivity recognized

in former experiments where the phenomenon “occur or fails to occur with even slight

differences in support conditions” (Saito, et al. 1994).

(5) The numerical results highlights the existence of a region in the plane α-Re in which the

Fig. 12 Influence of detuning parameter σ on critical conditions
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bifurcation phenomenon occurs; this results could be act as a guide for new experimental

tests. It should be noted that all the bifurcations are of transient type (i.e. the system regains

stability when wind velocity increases).

(6) The detuning parameter appears as fundamental in order to obtain the instability phenomenon.

This aspect has been already found in classic galloping cases, where the aerodynamic

coefficients are constant with respect to the Reynolds number. The presence of a small

detuning can significantly differ from the case of large detuning (i.e. predominance of a sole

dof).

(7) The (initial) trajectories on the configuration plane are elliptical spirals, more or less flat

depending on the detuning parameter σ. For small detuning the motion involves both the two

degree-of-freedom producing wider orbits in excellent agreement with those observed during

the experimental tests.

(8) The proposed model is specifically oriented to the simulation of inclined cables for which the

detuning parameter is usually small. In such a case, single-dof modelling appears inadequate

since instability is governed by the dof’s coupling. In the described example the single-dof

model provides a lower bound for the critical velocity, but fails in the case of very-low

detuning predicting an instability that does not occur.

(9) The proposed model has been applied only in cases of uniform flow, even if it has been

consistently derived including turbulent flow components. The validation of the model in

turbulent-flow condition, however, is not automatically assured, since the fluid-dynamic

phenomena giving rise to instability could deeply change with high turbulence intensity.

Experimental investigations in this field seems necessary to proceed further with the

theoretical modelling.
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Appendix A – Relationships between reference angles

The present Appendix provides a proof for the relationships given in Eqs. (1) between the two couples of
reference angles φ, θ and α, β shown in Fig. 1 representing the wind direction with respect to the global
reference system X1, X2, X3 and the cylinder reference system x1, x2, x3, respectively. The axes of such
reference systems are identified, respectively, by the unit-vectors e1, e2, e3 and f1, f2, f3. By inspecting Fig. 1
the following relationships can be easily proved:

f1 = e2

f2 = −sinφe1 + cosφe3 (25)
f3 = cosφe1 + sinφe3

The unit-vector n representing the flow direction and its projection ñ on the plane x1, x2 are given by the
relationships:

n = −sin θ e1 + cosθ e2

ñ = n−(n . f3)f3 (26)
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where · represents the inner product in 3.
The first of Eqs. (1) can be proved noting that the vectors f1, f2 and ñ are coplanar and that the tangent of

the angle α can be expressed by the formula:

tan α = (27)

that can be expressed in the form of Eqs. (1) through the substitution of Eqs. (25) and (26). Analogously, the
second of Eqs. (1) can be proved noting that the vectors n, ñ and f3 are coplanar and that the sine of the angle
β is given by the formula:

sin β = −n . f3 (28)

that can be expressed in the form of Eqs. (1) by using the third one of Eqs. (25) and the first one of Eqs.
(26).
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