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Abstract. For estimating the vortex excited vibrations of overhead transmission lines, the Energy
Balance Principle (EBP) is well established for spans damped near the ends. Although it involves radical
simplifications, the method is known to give useful estimates of the maximum vibration levels. For very
long spans, there often is the need for a large number of in-span fittings, such as in-span Stockbridge
dampers, aircraft warning spheres etc. This adds complexity to the problem and makes the energy balance
principle in its original form unsuitable. In this paper, a modified version of EBP is described taking into
account in-span damping and in particular also aircraft warning spheres. In the first step the complex
transcendental eigenvalue problem is solved for the conductor with in-span fittings. With the thus
determined complex eigenvalues and eigenfunctions a modified energy balance principle is then used for
scaling the amplitudes of vibrations at each resonance frequency. Bending strains are then estimated at the
critical points of the conductor. The approach has been used by the authors for studying the influence of
in-span Stockbridge dampers and aircraft warning spheres; and for optimizing their positions in the span.
The modeling of the aircraft warning sphere is also described in some detail.

Keywords: energy balance principle; overhead transmission lines; Stockbridge damper; warning sphere;
transcendental eigenvalue problem.

1. Introduction

In this paper we are concerned exclusively with the vibrations in the frequency range of 3 to 50
Hz due to von Kármán vortex shedding in a wide range of wind speeds (1−7 m/sec) (EPRI 1979).
Although such vibrations are barely perceptible due to their low amplitudes (less than a conductor
diameter), they can however be extremely important since they may lead to material fatigue at
points of high conductor curvature.

Dampers of the Stockbridge type or other designs are often placed near the suspension clamps
to suppress these vibrations. The dynamic characteristics of the Stockbridge dampers are often
described by its complex impedance, which is a function of frequency and of the amplitude of
motion of the damper clamp. Particularly in long spans dampers are also mounted in groups (2 to
5 dampers in each group) not only near the ends of the span but also in-span. This is the case
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whenever geographical conditions (e.g. Fjord or river crossings etc.) force engineers to lay the
transmission lines of fairly big span lengths, which may fall in the range of few thousand meters,
and hence, are installed with a large number of Stockbridge dampers and aircraft warning
spheres. The location of the dampers in the span as well as their dynamic characteristics are of
importance and have to be modeled with sufficient detail. The problem was studied by means of
the Ritz-Galerkin and the finite element method (Dhotarad, et al. 1978, Allnut and Rowbottom
1974), in which the conductor was modeled by the wave equation. The frequencies of interest
(typically 3-50 Hz) lie in the range from the 500th to the 1000th eigenfrequency for a long span
transmission line. A large number of shape functions (in the case of Ritz-Galerkin method) or the
elements (in the case of finite element method) has therefore to be considered in these
computations in order to obtain sufficiently good results.

In the case of a conductor with damping near the span-ends only, the problem is simplified in the
usual EBP calculations. Since the eigenfrequencies for a typical transmission lines are closely
spaced (in the order of 0.1 Hz), the discrete spectrum, being relatively dense, can be approximated
by the continuous spectrum of an infinite or semi-infinite conductor (Schäfer 1981). Energy balance
is then carried out for all the frequencies of the range of interest and very simple expressions can be
obtained for an average free-field vibration amplitude for each wind speed (Hagedorn 1980, 1982,
Hagedorn, et al. 2002). Also, approximate expressions are obtained for the bending strains and
simple conditions for the optimal tuning of the damper and its location near the span end can be
derived. The approach gives fairly good results. For long spans with in-span damping and aircraft
warning spheres this simple approach is no longer feasible, since the relative positions of the fittings
become important and the vibrations can no longer be represented by a single average free-field
amplitude. The vibration levels may now differ considerably along the span and this is reflected in
the vibration modes.

In the present paper, therefore the EBP is presented in a form in which first a transcendental
eigenvalue problem is formulated for the conductor with in-span fittings, analogous to Hagedorn,
et al. (2002), Verma, et al. (2003), and then applying EBP to the individual complex vibration
modes. The numerical difficulties associated to the solution of the transcendental eigenvalue
problem were overcome by normalizing the basic variables and by adopting appropriate method for
solving the eigenvalue problem. The modeling of the aircraft warning spheres is also discussed and
an realistic example is solved and discussed.

2. Modeling of a long span with in-span fittings

Fig. 1 shows a typical single conductor transmission line equipped with N conductor fittings (i.e.
Stockbridge dampers and/or warning spheres). The span length L, i.e., the distance between the
towers, can be of the order of few thousand meters, while the conductor’s sag is of the order of just
a few percent of the span length. On the other hand, the frequencies under consideration (i.e. 3-50
Hz) correspond to wave lengths of a few meters only, so that for the purpose of the present study
the sag can be disregarded, the conductor being modeled as a taut string (with some bending
stiffness). In a first approximation the conductor vibrations can be assumed to occur mainly in the
vertical direction. The vibrations in the nth sub-span are then described by the partial differential
equation
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(1)

where EI is the bending stiffness of the conductor, T is the tension, ρA is the mass per unit length,
wn (xn, t) is the transverse displacement of the conductor at the location xn and at time t, fw (xn, t) is
the wind force per unit length due to vortex shedding and fc(wn, , t) represents the conductor’s
self damping. The primes stand for the partial differentiation with respect to the space coordinate xn

and the dots indicate the partial differentiation with respect to the time t. In the span, the points of
attachment of the fittings are given by x = l1, l2, l3, ..., lN, and hence, the conductor can be divided
into (N+1) number of sub-spans with the span lengths ∆ln = (ln −ln−1); where n = 1, 2, 3, ..., N+1;
with l0 = 0 and lN+1 = L. Eq. (1) is valid for , but . At the point xn = ∆ln the
fitting-clamp forces have to be taken into consideration.

The bending stiffness EI of the conductor in Eq. (1) is essential for the calculation of the bending
stresses (in “bending boundary layers”), which are the primary reason for material fatigue. The
bending stiffness is however small compared to the other parameters, i.e., . Its
influence on the eigenfrequencies and eigenfunctions of the free vibrations ( fw(xn, t) = fc(wn, , t)
= 0) can therefore be neglected (Claren and Diana 1966). The overall vibration levels are thus first
estimated without paying any attention to the bending stiffness. The bending strains are determined
afterwards, using the computed vibration amplitudes and singular perturbations. Neglecting the
stiffness EI in Eq. (1) as well as omitting the right hand side, gives the wave equation

     for    n = 1, 2, 3, ..., N + 1 (2)

The eigenvalue problem described by Eq. (2) combined with the boundary conditions at the span
ends as well as at the location of the in-span fittings will give the complex eigenmodes needed for
the EBP. Before formulating the boundary conditions it is convenient to re-scale the basic variables.
This improves the numerical behavior of the eigenvalue problem which is otherwise very poorly
conditioned. We first normalize the time t with respect to the fundamental frequency of the system
and the space coordinates for each sub span xn with respect to its length as

,      (3)

From Eq. (2) we obtain the equation of motion for the free vibrations in terms of the normalized
coordinates for the nth sub-span as

(4)
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Fig. 1 Schematic view of a typical long span transmission line
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Here = wn /D is the normalized displacement, c is the wave velocity given by c =  and
D is the diameter of conductor. Separation of variables in Eq. (4) and introducing the unknown
complex parameters  leads to

(5)

From Eq. (4) the solution for  can be written as

(6)

The parameter  = s (L /πc) is actually the normalized eigenvalue of the system with respect to
the fundamental frequency of the string; the imaginary part of s represents a frequency, the real part
a decay coefficient. Assuming that the clamps at the ends of the span remain fixed gives the
boundary conditions

w1(0, t) = 0 and wN +1(∆lN+1, t) = 0 (7)

which, in normalized coordinates is written as

  and  (8)

Substituting into the expressions for  from Eq. (5) and Eq. (6) yields

(9)

and

(10)

2.1. Compatibility conditions

2.1.1. For the Stockbridge damper

Now we formulate compatibility conditions at the points of attachment of the fittings. Fig. 2
shows the forces and the displacements at the damper clamp. For compatibility of the displacements
w (t) has to be continuous at xn = ∆ln, that is
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Fig. 2 Forces at the damper clamp
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wn(∆ln, t) = wn+1(0, t) (11)

which, in terms of normalized variables can be written as

(12)

Substituting into the expressions for  from Eq. (5) and Eq. (6) leads to

(13)

At the point of attachment of a Stockbridge damper to the conductor (xD), the damper clamp
exerts a force ( fD) on the conductor, the complex amplitude of this force being given by

(14)

where  and  are the complex amplitudes respectively of the force and of the velocity at the
damper clamp. The complex impedance Z(s) of the Stockbridge damper is known from laboratory
experiments, which is a function of velocity and the frequency of the vibration of the damper
clamp. At this degree of modeling, the rotation of the damper clamp and its length are disregarded,
although they can be taken into account in more detailed models. On the other hand, the damper
force is given by (refer Fig. 2)

(15)

Expressing the damper force amplitude through the impedance, and using Eq. (5), Eq. (6) and Eq.
(15)

(16)

where the normalized impedance ={Z(s)c /T} was introduced.

2.1.2. For the aircraft warning sphere

In long span transmission lines, specially those near to the air fields, it often is required to attach
aircraft warning spheres to the transmission lines to warn aircraft pilots. These spheres can either be
hung to the line at single points or be attached as two halves, with the conductor passing through it.
In the first case they can again be modeled by their impedance, which will simply be an imaginary
quantity (same as impedance for a pure mass). In the following part of current section, we shall deal
with the second case and assume that the spheres are attached via two clamps rigidly fixed at the
spheres, modeled as rigid bodies.

Fig. 3 shows a rigid body representing a warning sphere attached to the conductor. The transverse
force components acting on the body at points 1 and 2 satisfy the equation

(17)
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The mass matrix M for the warning sphere corresponding to the shown coordinate system is

(18)

where m11 = m22 = {(M /4)+(J/d2)} and m12 = m21 = {(M/4) −(J/d2)}. M represents the mass of the
warning sphere included with clamp-masses, J the mass moment of inertia of the sphere with
clamps and d represents the diameter of the sphere.

Since the transverse force components are produced by the conductor tension, we have

  and  (19)

where θ = {( y2−y1) /d}, y1 = wn(∆ln, t) and y2 = wn+1(0, t). Substituting into the expressions for w,
F1n and F2n from Eq. (5), Eq. (6) and Eq. (17), we ultimately get the following equations

(20)

and

(21)

3. The eigenvalue problem and its solution

Eq. (9), Eq. (10), Eq. (13), Eq. (16), Eq. (20) and Eq. (21) together give a transcendental set of
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Fig. 3 Forces on the warning sphere as a rigid body
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2(N+1) linear homogeneous equations, which can be written as

J( )a = 0 (22)

In this equation one has

=

(23)

and

(24)

where

  for  n = 1, 2, 3, ..., N +1
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The values of the variables  and  in Eq. (23) depend on whether
the corresponding fitting is a Stockbridge damper or a warning sphere. In Table 1, values of these
variables are given.

Since the matrix J( ) contains the system parameters we will refer to it as the system matrix. It
can be seen that the elements of the system matrix are transcendental functions of the parameter .
The matrix equation constitutes an eigenvalue problem having infinitely many eigenvalues. Note
that the eigenvalues of the original system are the values of the parameter  multiplied with the
fundamental frequency of the string (i.e. (πc /L)).

3.1. Solution of the eigenvalue problem

One technique of solving the transcendental eigenvalue problem is by the determinant search
method, where one searches for values of  for which det(J( )) becomes zero (Hagedorn, et al.
2002). This is only possible for relatively small system matrices. Due to the poor numerical
behavior of the system matrix J( ), it is easy to miss many values of  for which actually the
determinant of J( ) is zero. Though normalization of the basic variables leads to a better
conditioned system matrix, however, difficulties were faced by the authors when trying to find the
eigenvalues of very big system with the determinant search method. The prime reasons for these
difficulties are large differences in the order of numerical values of the elements of system matrix,
which, together with the large number of algebraic operations involved in calculating the
determinant lead to numerical problems. Moreover, the two dimensional search domain (i.e.
complex domain) adds up the difficulties.

To overcome these difficulties an alternate approach was used by the authors, in which the
homogeneous set of 2N +2 simultaneous equations, given by Eq. (22), is first transformed into a
non-homogeneous system by using the first 2N+1 equations. A simple and better conditioned
optimization criterion is then defined for the last equation. The steps are described in more details in
the following lines:

1. Let A1 = 1.
2. Substitute the value of A1 into the first 2N+1 homogeneous equations of Eq. (22) will

transform them into a set of non-homogeneous equations. Determine B1, A2, B2, A3, B3, ...,
AN+1, BN+1 by solving these 2N+1 equations.

3. Substitute the values of B1, A2, B2, A3, B3, ..., AN+1, BN+1 into 2N+2nd equation. Since these are
not the correct values, these will not satisfy this equation and will result in an error ε as given by

J (2N+2), 1 ( )+B1J(2N+2), 2 ( ) +A2J (2N+2), 3 ( )+B2J(2N+2), 4 ( ) + ...
+AN+1J(2N+2),(2N+1) ( ) + BN+1J (2N+2), (2N+2) ( ) = ε (25)

4. Minimize the error ε with respect to the eigenvalue .

This procedure resulted in a rapidly converging method. Hence, one can always be sure that the
value of  one is finding after minimizing ε, is an eigenvalue of the system in Eq. (22). In the
present work this approach has been adopted, which ultimately resulted in finding most if not all of
the first thousand or so eigenvalues  of the normalized system. The entire coding was done in
MATLAB 6.5, and for minimizing the ε , among others the in-built function “fsolve” was used.

After finding the eigenvalues  of the system matrix, the corresponding eigenvectors were found
by solving an equivalent algebraic matrix eigenvalue problem of the form

P1 n,
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[J( ) −λI ]a = 0 (26)

The eigenvector corresponding to any eigenvalue  of the transcendental eigenvalue problem (22)
is obtained by finding the eigenvector associated to λ = 0 in the equivalent algebraic eigenvalue
problem of Eq. (26), where  has been determined beforehand.

4. Application of the energy balance principle

In Eq. (1) the parameters on the right hand side are not known in detail. Due to this fact in the
EBP the problem is simplified further. First, the wind speed is assumed to change slowly with
respect to the conductor’s oscillations in the frequency range of 3 to 50 Hz, so that stationary
oscillations can be assumed. For a given constant speed of transverse wind a lift force then acts on
the conductor in first approximation as a harmonic time function of frequency fs proportional to the
wind speed, as given by the Strouhal’s relation,

(27)

where U is the wind speed, D the conductor diameter and S ( ) is the Strouhal’s number, and
the conductor is assumed to oscillate with frequency fs (lock-in frequency).

Using this simplified model (Bahtovska 2000, Hadulla 2000) and assuming that the shape of the
conductor vibration is given by the eigenfunction associated to the corresponding resonance
frequency, the conductor vibration amplitudes can be approximately computed as a function of the
wind speed perpendicular to the conductor using energy balance in the form

PW = PD+PC (28)

In Eq. (28) PW is the power input of the aerodynamic forces in steady state, PD is the mechanical
energy dissipated by the conductor fittings and PC is the power dissipated by the structural damping
in the conductor. While of course all these powers are functions of time, the expressions in Eq. (28)
are the time averages. Each of these terms is then a function of both, the frequency and of the
amplitude of the conductor oscillations. For a given wind speed, or frequency, Eq. (28) is a
nonlinear algebraic equation in the amplitude of conductor oscillations only.

4.1. Power dissipated by the fittings

The power dissipated in the Stockbridge damper is a function of the motion of the damper clamp.
For a linear damper model it is related to its complex impedance. But also in the case of a
“nonlinear damper” the experimental determination of the dependence of PD on the clamp motion in
first approximation poses no problem, at least as long as the the clamp motion is harmonic. The
measurement of the complex impedance of a Stockbridge damper is routinely done in vibration
laboratories. The impedance Zv (v = 1, 2, 3, ..., N) of the vth damper, the power dissipated in the
damper is given by Hadulla (2000)

(29)

s̃

s̃

s̃

fs S
U
D
----=

0.2≈

PD v,
ω2

2
------� q̂cl v,

* Zv
*q̂cl v,[ ]=



98 Himanshu Verma and Peter Hagedorn

Since warning sphere is modeled as a pure mass, impedance value for it is a completely
imaginary quantity, and hence, it dissipates no power. The sum of the terms in Eq. (29) for all the
Stockbridge dampers gives the total power dissipated by the conductor fittings PD. It will of course
be a function of the frequency and local vibration amplitudes, which, up to a scaling factor, are
given by the corresponding complex eigenmode.

4.2. Wind power input

The situation is quite different for the wind power input PW. It is not very difficult to measure the
transversally pulsating force acting on a fixed rigid cylinder immersed in a wind tunnel under
stationary laminar flow, and these experiments have been carried out by several authors, e.g., Bishop
and Hassan (1964). The situation is more complicated for a vibrating rigid cylinder, e.g., Diana and
Falco (1971), Staubli (1979), Chen (1987) or a flexible cylinder, e.g., Rawlins (1983), Brika and
Laneville 1995) in harmonic transversal motion, where the forces not only depend on the vibration
amplitudes but also on the ratio between the oscillation frequency and the Strouhal frequency. The
power becomes particularly large if the two frequencies are approximately equal. Moreover, for a
forced harmonic motion of the cylinder with a frequency in the neighborhood of fs, the vortices will
be generated with the driving frequency instead of the Strouhal frequency (viz. lock-in
phenomenon). The force remains no longer harmonic, particularly for very small vibration
amplitudes, where both the frequencies, the driving frequency and the Strouhal frequency, are
present on the oscillating forces. The dependence of the force on the amplitude A is very important
for the large amplitudes. It is not surprising that for very large amplitudes the power PW becomes
even negative, the cylinder then imparts energy back to the fluid. For the reasonably large vibration
amplitudes the aerodynamic forces can be assumed to be harmonic with the same frequency as the
oscillation, the wind power input being given by

(30)

the function �(A /D) being obtained experimentally. Experimental data on the wind power input are
given and compared with each other for example in Belloli, et al. (2003). Often such functions are
approximated by polynomials and for the present computations the following expression for � (A/D) has
been used

         

(31)

This particular polynomial corresponds to the data published in Rawlins (1983). In Eq. (30) and
Eq. (31) the variable A is the local vibration amplitude of the conductor undergoing harmonic
oscillation. For a conductor vibrating in a shape corresponding to a [complex] eigenfunction, the
wind power is obtained by integration over the span, as explained for the case of bundled
conductors in Hagedorn, et al. (2002). The wind power input of course depends on the degree of
turbulence of the wind flow, but only few attempts have so far been made to measure the vibration
levels and wind data in the actual conductor of transmission lines under real working conditions.
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4.3. Structural damping

The power dissipated by structural damping in the conductor is sometimes measured by conductor
manufacturers and also in other vibration laboratories. It is a function not only of the amplitude and
of the frequency but also of the tension in the conductor. For higher tension the structural damping
usually decreases. PC has been investigated by several authors like Noiseux (1992). Different
laboratories use distinct empirical formulas obtained from experiments with particular conductors.
For the present computations the following empirical expression, obtained by the personal
communication from RIBE Elektroarmaturen GmbH & Co. KG Schwabach, has been used

(32)

where C, Nf, Nb and Nt are constants. It is usually assumed that Nf, Nb and Nt are constant for all
conductors and that C characterizes the damping properties of the particular conductor being
considered. The variable B is the vibration angle in radians {= ( π/180)β = (π/180)(ω/c)A} and P
is the rated tensile strength of the conductor. As defined in Eq. (30) and Eq. (31), A is the local
vibration amplitude of the conductor and ω is the circular frequency corresponding to the
eigenvalue under consideration.

The numerical solution of Eq. (28) is a relatively simple task and the results shown in Section 6
(Figs. 5, 6, 7, 8, 9, 10, 11 and 12), are obtained in this manner. For a conductor without a
Stockbridge damper, the term PD vanishes and the amplitude is then simply obtained from PW = PC.
If however dampers are attached, they dissipate much more power than does the conductor’s self
damping, i.e., . In such a case, the amplitudes can simply be obtained by PW = PD. Once
the vibration amplitudes are known as a function of the frequency or wind speed, bending strains
can be computed via singular perturbation as shown in Hagedorn (1980) and Cole (1968).

5. Example problem

This example problem shows, how the appropriate placement of the dampers can be helpful in

PC 2160f
Nf 180

π
---------B 

 
Nb P

T Nt
------- 

  LC=

PD PC»

Fig. 4 Example problem (all dimensions in meter)
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increasing the life of transmission line by keeping its critical strains and amplitudes within the safe
limits. As shown in Fig. 4, a very long transmission line span of 3350 m has been considered,
carrying nine warning spheres, which are attached respectively at 180 m, 500 m, 860 m, 1220 m,
1580 m, 1940 m, 2300 m, 2660 m and 3020 m from the left end. Groups of two Stockbridge
dampers are attached at both the span-ends, and in proximity of the warning spheres. The diameter
of the conductor is 33.95 mm, its mass per unit length is 2.95 kg/m and the conductor tension is
121.7 kN. All warning spheres and Stockbridge dampers are taken of the same type. The diameter
of one warning sphere is 1.8 m, its mass is 45.6 kg and its mass moment of inertia is 17.5 kg m2.

From the span length L, conductor tension T and its unit mass ρA the wave velocity (i.e.
c = ), fundamental frequency of conductor without any fitting on it (i.e. ω0 = πc /L) and the
minimum possible wavelength (i.e. λ min = c/fmax) can be calculated; where fmax is the maximum
frequency under consideration in Hz. For efficient damping two consequent dampers in a damper-
group should always be placed so that both of them must never fall on the nodes at the same time,
for any vibration frequency of the conductor under the considered frequency range. For fulfilling
this criterion it is taken as a thumb-rule by the practice engineers, to provide two consequent
dampers in a damper-group with an approximate maximum spacing of 0.22λmin to 0.25λmin. The
same is true for the spacing of the last dampers from the span-ends, so that they do not fall on the
nodes for any of the vibration frequencies of conductor.

The problem has been solved for two different damper spacings to show its influence on the
maximum strains and the maximum span amplitudes. In the first case the damper spacing has been
kept as 3.5 m and in the second case same has been taken as 1 m. The eigenvalue problem was
solved in the frequency domain of 3 to 50 Hz and the damping ratios of the different eigenvalues
are plotted in Fig. 5 for the first case and in Fig. 9 for the second case. These figures show the
effective damping corresponding to the natural frequencies of the system. Fig. 6 and Fig. 10 show

T ρA⁄

Fig. 5 Eigenvalues of the system (Case-1)
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the results of EBP: the maxima of the local vibration amplitudes (maxima with respect to the span)
are shown as a function of the frequency. Note that for each frequency these maxima will occur at
different locations of the conductor. After obtaining the actual amplitude, the strains at critical
points, i.e., clamped-ends and the damper-clamps, are calculated taking into account the bending

Fig. 6 Amax /D ratio (Case-1)

Fig. 7 Absolute maximum strains (Case-1)
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stiffness of the conductor. Fig. 7, Fig. 11 and Fig. 8, Fig. 12 correspondingly show the maximum
strains and the values of Amax

. f in the span for different natural frequencies, for both the cases
respectively.

In the case of present problem the maximum frequency under consideration is 50 Hz. The wave
velocity in the conductor is 203.13 m/sec and hence the possible minimum wavelength is 4.06 m

Fig. 8 Product of maximum span amplitudes by vibration frequency (Case-1)

Fig. 9 Eigenvalues of the system (Case-2)
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(i.e. ). This means that for the efficient damping two consequent dampers in a damper-
group should be kept at a maximum distance of approximately 1 m, which will make it sure that
both the dampers will never fall on nodes simultaneously, for any natural frequency of the system
under 50 Hz. In the first case when the dampers are at 3.5 m apart in each group, this fact can be

λmin 4 m≈

Fig. 10 Amax /D ratio (Case-2)

Fig. 11 Absolute maximum strains (Case-2)
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easily verified from Fig. 7 and Fig. 8 that, when the dampers are kept at the spacings in the range
of the possible minimum wavelength, maximum strains and amplitudes cross the permitted limiting
values (i.e. 150 µm/m for the maximum strain and 118 mm/sec for the Amax f value). The 0.5λ value
corresponding to the frequencies 25−30 Hz fall in the range of 4.06−3.39 m respectively. The
provided damper spacing for the first case falls in this range (i.e. 3.5 m). It can therefore be seen in
Fig. 7 and Fig. 8 that one gets peaks in the strain and the span amplitude curves in 25−30 Hz
range, because for this frequency range both the dampers in each group will fall on the node
simultaneously. Hence, they will not be able to damp out the vibrations of the frequencies 20−30
Hz. Whereas, with the same number of dampers when the placement of dampers is decided
intelligently, and they are kept in the range of 0.22λmin to 0.25λmin (i.e. ), it keeps the
maximum strains and the amplitudes within the permissible limits (Fig. 11 and Fig. 12). Because, if
one damper in the group now falls on the node, one can be sure that the second damper will never
be on the node, and hence, out of two dampers at least one will always work.

6. Conclusions

In this paper the energy balance principle was modified for a long span transmission line
equipped with Stockbridge dampers and aircraft warning spheres. The complex eigenvalue problem
is formulated and conditioned by normalizing the basic variables. It is then solved numerically with
a new approach by transforming the homogeneous set of transcendental simultaneous equations into
a non-homogeneous one, which results in a better conditioned optimization criterion than that in the
general determinant search method. The complex eigen-functions are taken into account in the EBP.
In addition of Stockbridge dampers, a simple model for aircraft warning spheres is also introduced,
taking into account their masses and moments of inertia. This approach is used to calculate the

1 m≈

Fig. 12 Product of maximum span amplitudes by vibration frequency (Case-2)
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vibration amplitudes via EBP and subsequently the bending strains are calculated by the formulae
obtained from singular perturbation. Since the impedances and the location of the dampers as well
as warning spheres are taken into account, the approach is a useful tool for the optimization of the
dampers and their locations. One practical example problem for a long span transmission line was
solved and results were discussed.
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