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A parametric analysis of the flutter instability 
for long span suspension bridges
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Abstract. A simplified analysis able to point out the most relevant geometrical and aerodynamic
parameters that can influence the flutter of long span modern bridges is the aim of the paper. With this
goal, by using a continuous model of the suspension bridge and by a quasi stationary approach, a simple
formula of the combined vertical/torsional flutter wind speed is given. A good agreement is obtained
comparing the predictions from the proposed formula with the flutter speeds of three modern suspension
or cable stayed bridges: the Great Belt East Bridge, the Akashi and Normandie bridges. The paper ends
with some comments and comparisons with the well known Selberg formula.
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1. Introduction

Performance and reliability of long span bridges are strongly influenced by aerodynamic loads. As
the span increases, wind actions become more critical and for the longest spans flutter becomes the
most relevant technical limit (Bruno, et al. 2001). Among the various aerodynamic instabilities, the
combined flutter, originated by the interaction between the wind and the vertical-torsion oscillations,
is the most complex. In spite of the wide numerical-experimental results at disposal, there is still
today a lack of simple results able to grasp the problem pointing out the different roles played by
the numerous mechanical and aerodynamic parameters involved and give useful suggestions for
more accurate studies. In this framework, after the first pioneering studies of Bleich (1948) that
used the thin airfoil theory, only the semi-empirical Selberg formula (1961) seems able to give some
immediate indications on the order of magnitude of the flutter wind speed of a suspension bridge
once that its inertial and dynamical parameters are defined. On the other hand, to apply the Selberg
formula the aerodynamic properties of the deck section can be taken into account only by using
further empirical corrective factors. In this framework aim of the paper is to give a contribution to a
simpler description of the bridge flutter problem. 

The aerodynamic loads acting on the bridge will be evaluated by means of the so called Scanlan
(1971) aerodynamic derivatives Ai

*, Hi
* (i =1, 2, 3) that describe the self - excited forces acting on

the deck section oscillating in the wind. The Scanlan derivatives are strongly dependent on the
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bridge deck section shape and can be evaluated or testing the single girder cross section by wind
tunnels techniques or by numerical computations.

For a modern long span bridge the flutter will occur at large wind speeds. Thus, to obtain a
simple description of the flutter, as it will be shown, an asymptotic expansion of the flutter
derivatives in the range of large values of the reduced velocity UR can be very useful.

2. Vertical / torsional flutter of long span bridges

Let us consider a long span bridge deck oscillating in an air stream. The wind speed, acting in
transversal direction to the girder axis, is U. The deck oscillating motion, according to the given
mode, has circular frequency ω and vertical and torsional components v(z, t) and θ (z, t), where t
represents the time and z the girder axis. The equations of the elastic combined vertical/torsional
oscillation motion in the wind of the suspension bridge are well known: they can be written in a
simplified version

(1)

(2)

where:
− EI, C1, C2 and EA are the flexural, warping, torsional and extensional stiffnesses of the girder;
− qg and µg are the unit length weight and mass of the bridge, inclusive of the unit length mass µc

of the cables and of the hangers;
− Hc the tension force of the cables due to the dead loads qg,
− I0, the polar moment of inertia of the girder section, included the mass of the cables and of the

hangers, is given by

(3)
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Fig. 1 The examined scheme of suspension bridge



A parametric analysis of the flutter instability for long span suspension bridges 3

    with I0G the polar moment of inertia of the girder section;
−  the distance between the curtains of hangers and cables;
− b = /2 the semidistance between the cables;
− Lse , Mse are the lift and the moment for unit girder length of the self - excited forces. 

These last, according to Scanlan (1971) are given by

(4)

(4a)

Quantities Hi
*, Ai

*(i = 1, 2, 3) in Eqs. (4) and (4a), the so called aerodynamic derivatives of Scanlan
(1971) referred to the whole girder section width B, are functions of the reduced frequency 

(5)

or of the reduced velocity 

(5a)

Eqs. (1) and (2) are simplified forms of the full equations of motion, which include the horizontal
motions of the deck, and as many as eighteen different aeroelastic derivatives, corresponding to all
possible motion-induced forces. Many of these terms are small, however, and can be neglected. In
Eqs. (4), (4a) ρa is the air density (at the atmospheric pressure and at the temperature of 0°C) and in
Eq. (5) and in Eq. (5a) ω is the circular frequency, T the period and n the frequency of the motion. 

Parameter functions K2H3
*  and K2A3

*  represent aerodynamic stiffnesses while KH1
* , KH2

* , KA1
* ,

KA2
*  are aerodynamic dampings. Generally, according to Scanlan (1971), the vertical damping

coefficient H1
*  for bridge decks is, as a rule, negative and decreasing with UR; A2

*  is negative but,
in some cases, can change sign by varying UR; the torsional stiffness A3

*  is, as a rule, positive and
increasing with UR. Particularly, for modern bridge sections, in the neighborhood of the critical
value of UR, corresponding to the incipient flutter and where the reduced velocity takes values of
the order of magnitude of 101, | Ai

* |<| Hi
* |. It is further important to observe that structural damping

is neglected in the formulation corresponding to Eqs. (1) and (2). The influence of the structural
damping in the evaluation of the flutter speed is usually not relevant. This approximation allows to
develop a simple analytical model that gives a lower bound for the flutter speed.

Solutions of Eqs. (1) and (2) represent the vertical and torsional oscillations of the bridge in the
wind stream. They can be obtained by separating the variables with the positions

,   (6)

where A and D are arbitrary constants,  and  suitable functions satisfying the boundary
conditions and approximating the oscillation modes of the bridge. These functions can be
represented by the vertical and the torsional components of the considered oscillation mode in still
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air. In Eq. (6) s is the characteristic exponent of the motion, as a rule, taking the complex form 

s = α + iω (7) 

with α and ω its real and imaginary parts, both functions of the wind speed U. The circular
frequency ω of the motion, together with the deck width B and the wind speed U, define the
reduced frequency (5). With a vanishing wind speed U the solutions (6) overlap the corresponding
oscillation modes of the bridge in still air: for instance, the first symmetric or the first antisymmetric
vertical-torsional mode. When , in fact, Eqs. (1) and (2) decouple and describe the free
vertical and torsional oscillations of the bridge in still air. In this case the exponent s takes the form

s = iω0v ,   s = iω0θ (8)

where ω0v and ω0θ are the corresponding circular vertical and torsional frequencies. The functions
 and  will satisfy these decoupled equations together with the boundary conditions at the

sections z = 0 and z = L of the girder: for instance the conditions

,      ,    (9)

are typical of the girder with hinged end sections. Thus, if we consider the first symmetric or the
first antisymmetric oscillation mode, we can assume

,    

or 

,    (10)

The frequency equation of the oscillations of the bridge in the wind stream can be properly obtained
by using the Galerkin procedure. We obtain (Como 2002)

(11)

where 

(12)

Thus the modal shapes affect the characteristic equation by means of the non dimensional parameters
σ, Ω, Φ. The geometrical, inertial, structural and the aerodynamical properties of the bridge are thus
represented by the parameters β, γ, ωov, ωoθ and Ai

* , Hi
* (i =1, 2, 3). It is not difficult to show (Como

2002) that Eq. (11) can control the flutter response as of suspension as of cable-stayed bridges.
The frequency Eq. (11) can be strongly simplified taking into account the order of magnitude as

of the derivatives Ai
*, Hi

*  as of the parameters β, γ, Φ2 and Ω2. The mass parameter β is very small,
of the order of 10−2 and the parameter γ is as large as 101 so that the product βγ is of the order of
magnitude of 10−1: this estimate is consistent, for instance, with the numerical values of β and γ
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corresponding to the girder sections of the bridges of Table 1; the quantity Ω 2, on the other hand, is
as large as Φ2, i.e., much larger than 1. In the factors of σ 2 and σ, included in the Eq. (11), terms as
βγΩ2(A3

* H1
*−A1

* H3
* ) and β(A2

* H1
*−A1

* H2
* ) can be thus neglected with respect to (Φ2H1

*+γA2
* ) and

A3
* , as it has been possible to verify, by numerical computations for numerous bridges girder

sections. Thus Eq. (11) simplifies and becomes

(13)

3. Stability

At the incipient flutter the characteristic exponent of the motion takes the form

,     (14)

if ωc indicates the circular frequency at the flutter. Substitution of position (14) into the Eq. (13)
yields the following two algebraic equations in the non dimensional critical frequency Ωc that have
to be simultaneously satisfied 

(15)

(16)

where the aerodynamic derivatives A2
*  and A3

*  are evaluated at the critical reduced velocity URC.
Now the Eq. (15) admits the two frequency solutions

,      (17)

while the Eq. (16) gives

(18)

Since at the flutter both Eqs. (15) and (16) have to be satisfied, each of the two solutions (17) has
to be coupled to the solution (18). Thus we get the two different conditions 

(19)

or

(20)

By assuming , if , i.e., non considering the vertical flutter, Eq. (19) does not admit
solution. If, on the contrary , the Eq. (19) has a solution for any value of the reduced
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velocity. From conditions (18) and (20), on the contrary, we get the critical frequency Ωc

(21)

and the combined vertical/torsional flutter equation 

(22)

Numerical solution of Eq. (22) yields the reduced flutter velocity URC and, by using the critical
flutter frequency, the flutter velocity of the wind. 

A concise formula of the flutter velocity on the other hand can be obtained from Eqs. (21) and
(22) in the framework of the quasi-steady assumption, as it will show in the next Section. 

4. Asymptotic expansion of the flutter derivatives in the range of large values
of the reduced velocity UR

At the sharp corners of the girder section the flow separates and creates vortices that depend on
the reduced frequency and the magnitude of the oscillations of the section. At large wind speeds,
with the usual values of the frequency n and the girder width B, the corresponding values of the
reduced velocity UR are >> 1. Thus the distance covered by the air particles during the oscillation
period T is large compared to the girder width B. The flow thus is not influenced by the girder
oscillations and follows the section in its motion remaining almost the same as the flow
corresponding to the fixed section. Thus at large wind speeds the aerodynamic loads produced on
the section with a good approximation can be represented by the steady flow loads that do not
depend on the reduced frequency K. Consequently according to Eq. (4) and (4a), for large values of
UR the derivatives Ai

* (K), Hi
* (K)(i = 1, 2) become proportional to UR, while the derivatives A3

*  and
H3

*  become proportional to UR
2  and we can write

;       ;

(23)

The quantities h1, a2, a3, positive constants, will be evaluated by inspection of the diagrams of the
aerodynamic functions H1

* , A2
* , A3

*  obtained by wind tunnel tests or, as pointed out by Cremona,
et al. (2002), by using the same steady state lift and moment coefficients CL(α) and CM(α) as
functions of the angle of attack α of the wind flow. 

Damping derivatives A2
*  and H1

*  directly proportional to UR can be observed in the aerodynamic
behaviour of many girder sections of modern bridges for sufficiently large values of the reduced
velocity UR. Figs. 2, 3 and 4 show the good agreement between the derivatives A2

* , A3
* , H1

*  and
their linear and quadratic expansions A2lin, A3quad, H1lin given by Eq. (23), for three important long
span bridges.
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5. The flutter wind speed

The above defined asymptotic expansion of the aerodynamic derivatives is now applied to the

Fig. 2 The A2lin , A3quad, H1lin derivatives of the Normandie Bridge girder section

Fig. 3 The A2lin, A3quad, H1lin derivatives of the Great Belt East Bridge girder section

Fig. 4 The A2lin, A3quad, H1lin derivatives of the Akashi Bridge girder section
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evaluation of the flutter wind speed of long span bridges. By means of the third of the positions
(23) the flutter Eq. (22) gives

(24)

and the following first expression of the reduced velocity URC at the flutter yields

(25)

Further information on the critical speed UF can be obtained by considering the first and the second
of the positions (23), i.e., the linear approximations of the torsional and vertical damping
coefficients A2

*  and H1
* . Thus substitution of these positions into the Eq. (25) gives

(26)

On the other hand, taking into account that the critical reduced flutter velocity can be expressed as

(27)

where

(21a)

is the frequency of the bridge at the flutter and Ωc is the non dimensional circular frequency at
flutter given by Eq. (21), the flutter speed can be written as

(28)

Thus substituting Eq. (21) into (28) and using Eq. (26) we obtain the following formula of the
flutter wind speed UF

(29)

Expression (29) shows the dependence of UF on :
− the mechanical parameters β and γ, representative of the geometry and the mass distribution of

the bridge;
− the dynamical parameter Φ, the ratio between the torsional and vertical frequencies of the

considered mode of the bridge oscillating in still air; 
− the aerodynamic torsional stiffness coefficient a3 and the ratio h1 /a2 between the aerodynamic

vertical and torsional damping coefficients.
A more explicit expression of the flutter wind speed can be obtained for long span bridges. By

increasing the central span length L, in fact, the cable stiffness prevails on the girder stiffness. For
instance, with reference to the first antisymmetric mode, the period Toθ can be approximately
evaluated as
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  where  (30)

is the tension cable under the action of the dead loads qg = µgg, with g the gravity acceleration, f the
cables sag, Io the central moment of inertia of the girder section, given by Eq. (3) and inclusive of
the contribution of the mass of the cables and of the vertical suspenders. Hence

(31)

and the flutter speed for long span bridges takes the following form

(32)

The geometrical ratio L/f is nearly constant for suspension bridges. Thus Eq. (32) shows the strict
dependence of the flutter speed also on the ratio qg /4ρaL.

6. Sensitivity analysis of the combined vertical- torsion flutter speed

A sensitivity analysis of the critical speed on the various involved parameters is now developed.
Formula (29) shows the influence of these parameters on the flutter speed: all the mechanical
parameters are represented by the quantities β, γ and Φ while that aerodynamic ones by a3 and the
ratio h1 /a2. All these parameters can be considered varying into suitable intervals. More specifically,
the parameters β and γ are assumed to vary in the intervals

,   

The ratio Φ, larger than the unity, varies as

On the basis of the inspection of the behaviour of deck sections of numerous existing bridges
(Scanlan 1971), the aerodynamic parameters a3 and h1/a2 have been assumed to vary as

,    

Values of the non dimensional flutter speed vF obtained by varying the various parameters in the
above defined intervals, are plotted in Figs. 5(a),(b),(c) and (d). The numerical analysis shows the
strong dependence of vF on the ratio Φ : we remark that vF vanishes when Φ approaches to the
unity. Diagrams of Figs. 5 show that as β as a3 and h1/a2 play a relevant influence on the non
dimensional flutter wind speed
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Fig. 5 Values of vF versus Φ, β, γ, a3, h1/a2 
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7. Applications

The formula (29) has been applied to evaluate the flutter speed of some modern long span bridges.
Table 1 gives the geometrical and the aerodynamic properties of two suspension bridges, the Great Belt
East Bridge and the Akashi Bridge, according to the data quoted respectively by Larsen (1993) and
by Jones, Scanlan, et al. (Jones, et al. 1998), and of the cable stayed bridge, the Normandie bridge,
by Virlogeux (1992). For these bridges the flutter speeds are known: a good agreement is obtained
by comparing these speeds with the corresponding values predicted by the proposed formula (29). 

The flutter velocity UF, obtained by applying Eq. (29) to the Great Belt East Bridge, is UF = 73.1
m/s. This result is in good agreement with the flutter speed of the bridge that ranges between

 m/s, according to wind tunnel tests and numerical computations. 
Likewise, the value predicted by formula (29) for the flutter velocity of the Akashi bridge,

UF = 76.3 m/s, is only a bit lower than the values ranging between  m/s evaluated by
numerical analysis; higher values, ranging between  m/s were obtained by wind tunnel tests
(Jones, et al. 1998).

As far as the Normandie bridge is concerned, many studies have shown that flutter speed, even if
never exactly evaluated, is considered much larger than the reference wind velocity, established in
44 m/s (Virlogeux 1992). Eq. (29), applied to this bridge, gives UF = 78.9 m/s.

8. Comparisons with the Selberg formula

The semi-empirical formulation of the flutter speed, proposed by Selberg (1961), is given by

(33)

with
 

     (34)

70 75÷
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UF 0.44χB ωoθ
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2–( ) v
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-------=

v 8
r2
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2

-----= σ π
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Table 1 Data involved in the computation of the flutter velocity according to Eq. (29) for the Great Belt East
Bridge, the Akashi and the Normandie bridges

Bridge
Geometrical data

B
m

H
m

L
m

Io
tm2/m

Great Belt East Bridge 31 4.4 1624 2470
Akashi 35.5 14 1990 9826
Normandie 21.2 3 856 288.53

Bridge
Aerodynamic data

vF
UF

(m/s)Toθ
(sec)

Tov
(sec) Φ β γ a3 h1/a2

Great Belt East Bridge 3.6 10 2.78 0.055 8.84 0.011 11.25 8.46 73.1
Akashi 6.66 15.62 2.34 0.037 5.6 0.0035 25.2 14.31 76.3
Normandie 2 4.503 2.25 0.0447 9 0.014 14.15 7.44 78.9
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where r is the radius of gyration of the cross section inclusive of all the various masses, given by
I0 = µgr

2, and χ is an empirical factor depending on the aerodynamic and mass properties of the
girder section, that becomes equal to the unity when the girder section approaches the thin airfoil. 

Carrying back the Selberg parameters σ and v to the previous defined parameters β and γ from
Eq. (33) we obtain 

(35)

Expression (35) has a structure very similar to the formula (29) as far as the dependence of vF on
the parameters Φ and β is concerned. The empirical parameter χ includes both the effects of the
aerodynamic constant a3, h1, a2 and of the transversal mass distribution parameter γ.

9. Conclusions

The proposed formula predicts with good approximation the flutter velocity of long span bridges
in the framework of the quasi-stationary approach, i.e., in the range of large values of the reduced
velocity UR. The flutter speeds evaluated according to the proposed formula for three important
long span bridges as the Great Belt East Bridge, the Akashi Bridge and the Normandie bridge, fit
very well the values of the flutter speeds obtained for these bridges by wind tunnel techniques or by
numerical computations.
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