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Abstract. This paper presents some fundamental results on the dynamics of the periodic Karman wake
behind a circular cylinder. The wake is treated like a dynamical system. External forcing is then introduced and
its effect investigated. The main result obtained is the following. Perturbation of the wake, by controlled
cylinder oscillations in the flow direction at a frequency equal to the Karman vortex shedding frequency,
leads to instability of the Karman vortex structure. The resulting wake structure oscillates at half the
original Karman vortex shedding frequency. For higher frequency excitation the primary pattern involves
symmetry breaking of the initially shed symmetric vortex pairs. The Karman shedding phenomenon can
be modeled by a nonlinear oscillator. The symmetrical flow perturbations resulting from the periodic
cylinder excitation can also be similarly represented by a nonlinear oscillator. The oscillators represent two
flow modes. By considering these two nonlinear oscillators, one having inline shedding symmetry and the
other having the Karman wake spatio-temporal symmetry, the possible symmetries of subsequent flow
perturbations resulting from the modal interaction are determined. A theoretical analysis based on symmetry
(group) theory is presented. The analysis confirms the occurrence of a period-doubling instability, which is
responsible for the frequency halving phenomenon observed in the experiments. Finally it is remarked that
the present findings have important implications for vortex shedding control. Perturbations in the inflow
direction introduce ‘control’ of the Karman wake by inducing a bifurcation which forces the transfer of
energy to a lower frequency which is far from the original Karman frequency.

Keywords: vortex shedding; period-doubling; wake control; spatio-temporal symmetry; amplitude equations.

1. Introduction

Wind-induced vortex shedding remains an important problem for many engineering structures.
Structures susceptible to vortex-induced vibrations include industrial towers, tall buildings, free
standing pylons, cables in cable-stayed bridges, power transmission lines, slender marine structures,
offshore piles, undersea pipelines etc. A recent review of the role of aerodynamic analysis, over the
past five decades, for structural design has been presented by Shiraishi (2002). A review of
experimental work on cable aerodynamics of cable stayed bridges may be found in Matsumoto
(2002). In the paper, the difficulty associated with the extremely complex 3-dimensional flow field,
often compounded by rain, is discussed. An axial flow component for an inclined cable is reported.
It is also shown that the axial flow has an important effect on the inclined cable aerodynamics. A
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quasi-steady theory of the vibration mechanism is also discussed. It is clear that to develop effective
damping technology, a fundamental understanding of vortex-structure interaction is needed. Much
remains unknown regarding the fundamental wake flow dynamics in the presence of a moving bluff
body, particularly the coupled vortex-structure interaction problem.

A fundamental study of 3-dimensional effects in bluff body wakes has provided useful insights
into understanding vortex-structure interactions. Transition to 3D flow in a cylinder wake has been
experimentally investigated in the excellent body of experimental work by Williamson (1987, 1988,
1989, 1996). The transition is shown to be associated with two axial instability modes (labeled
modes A and B). Mode A is found to have a span wise wavelength of 3-4 diameters. Mode B, on
the other hand has a smaller wavelength of the order of one diameter. A theoretical study by
Barkley and Henderson (1996) has shown that the transition to 3D is the result of instabilities in the
flow associated with Modes A and B. The instability modes A and B appear to be closely linked to
the axial vortices reported by Matsumoto (2002) for inclined cables. 

The ‘simpler’ essentially 2D problem of vortex-structure interaction remains, at best only partly
understood. To model the coupled vortex-structure interaction, classical models were proposed by
Hartlen and Currie (1970), and Landl (1975), among others. All wake-oscillators models are based
on the observation that the Karman make closely approximates a sinusoidal oscillator for a fixed
structure. A van der Pol type nonlinear oscillator can thus be easily adapted to give the dynamical
behaviour in this case. Sarpkaya (1979) in a seminal review showed that despite the success of
wake oscillator models to predict the structural response amplitude, a closer investigation showed
that prediction of lift and drag forces as well as force-structure phase difference was generally poor.
Furthermore some of the hysteresis effects observed in experiments could not be predicted by the
oscillator models. Mureithi, et al. (2000, 2001) recently performed a model perturbation analysis in
parameter space. Based on a continuation analysis, it was shown that some of the hysteresis effects
could be obtained.

It is clear from the foregoing that the full 3D problem and even the simpler 2D coupled vortex-
structure interaction problem remains poorly understood. To this end, the simpler intermediate 2D
problem of controlled (forced) cylinder motion in flow has been considered. By having the cylinder
execute controlled motion, the coupled fluid-structure problem is partially simplified. It becomes
possible to investigate in some detail the direct effect of structural motion on the flow, without the
added complication introduced by the feedback mechanism where the flow in turn affects the
structural motion.

A number of important reviews on controlled wake dynamics exist. These include Bearman
(1984), Griffin and Hall (1991) and Rockwell (1998). Classical works on forced cylinder excitation
include Den Hartog (1934), Bishop and Hassan (1964), Koopman (1967), Griffin (1971) and
Stansby (1976). Recent work based on transverse cylinder excitation includes, among others,
Ongoren and Rockwell (1988), Williamson and Roshko (1988), Blackburn and Henderson (1999),
Hover, et al. (1998). Rather than mechanical excitation, direct flow excitation (suction and blowing)
was employed by Williams, et al. (1992) and Park, et al. (1994). Rotational oscillations were
employed by Baek, et al. (1998, 2000, 2001), as well as Tokumaru and Dimotakis (1991).

The earliest work reported was primarily concerned with the dynamics of the cylinder wake under
harmonic forcing. The test cylinder was oscillated transverse to the flow at or near the vortex
shedding frequency; this corresponds to the lock-in frequency band. Bishop and Hassan (1964) for
instance reported a significant increase in the vortex-induced fluid force suggesting enhanced
vortex-structure coupling for forced motion. In later works, the excitation frequency range was
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expanded beyond the primary lock-in region to include forcing at subharmonics and superharmonics
of the shedding frequency. Stansby (1976) for instance reported the occurrence of lock-in or
synchronization for fK / fK0= 2/1 and fK / fK0= 3/1 besides the commonly known fundamental harmonic
lock-in at fK / fK0= 1/1; here fK0 is the stationary cylinder shedding frequency while fK is the cross-
flow forcing frequency. Interestingly, ‘stronger’ resonance was found to occur for higher order fK /fK0

= 3/1 forcing compared to the fK /fK0= 2/1 forcing. This lack of 2/1 and its cousin 1/2
synchronization would be later reported in work by Williamson and Roshko (1988). The latter put
forward symmetry arguments showing that fK / fK0= 2/1 or 1/2 synchronization could not occur in a
‘steady state’. A more mathematical approach to the same problem was put forward by the author
(Mureithi, et al. 2003). A symmetry group analysis of the interacting flow ‘modes’ indicated
incompatibility (hence lack of synchronization) when the forcing mode was at half or double the
Karman shedding mode.

The observation of multiple lock-in regimes, both superharmonic and subharmonic is the hallmark
of wake dynamics during forced cylinder excitation. Complex symmetrical patterns are observed in
the excited wake; observation of clearly defined patterns, with a finite number of vortices shed per
cycle of cylinder oscillation have led to mode names such as the 2S and 2P modes (S- single
vortex, P- pair of vortices), the P+S modes, the 2S+2P mode etc; these identifications were
proposed by Williamson and Roshko (1988) and adopted by Krishnamoorthy, et al. (2001) among
others. These complex patterns exist not just for transverse cylinder excitation but also for excitation
in the flow direction. In Williams, et al.’s experiments, excitation of the boundary layer was
achieved by the unsteady bleed technique introducing perturbations at  from the forward
stagnation line. Reflection-symmetric (inflow) forcing was found to significantly affect the mean
velocity profile in the wake. Modes corresponding to frequency sum and differences were observed.
There is significantly less work reported for inflow excitation compared to cross-flow excitation.
The work of Williams et al. and Ongoren and Rockwell suggests that in some sense, possibly due to
the inherent instability of the symmetrical wake (induced by inline excitation), symmetrical forcing
in the flow direction may lead to an even more complex problem. Indeed this is the case for
flexible structure case. While a single lock-in frequency is commonly identified for cross-flow
problem, the dynamics are much more complex for coupling between the symmetrical shedding and
the inflow vibration of the structure. This complexity is clearly captured in the following description
(of the dynamics) by King (1977), “.... the ratio of cylinder (to flow periodicity) frequency
apparently slips into convenient numbers, 7:2, 3:1, 7:3, 13:6 ...”. This suggests significantly more
complex fluid-structure interaction in the inflow direction compared to the cross-flow direction
where the 1:1 lock-in is dominant.

The problem of inflow wake excitation is the primary subject of this work. The secondary subject
is the general problem of wake response to forced excitation.

We report on both experimental tests and a theoretical analysis of forced wake excitation. In the
experiments both hot-wire measurements and flow visualization of a cylinder wake are presented.
The cylinder is mechanically forced in flow at rational frequency ratios of the shedding frequency.
Inflow cylinder oscillations are considered. Theoretically, the structure of the expected modal
amplitude equations is presented based on a group theoretic analysis. Next, a stability analysis of
one modal amplitude equation is performed with the second mode as a control parameter. The
relation between the theoretically predicted stability behavior and actual test results provides a
litmus test for the analysis. The main results here were presented at AWAS 2002, (Mureithi 2002).
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2. Experimental tests

2.1. Test setup

Tests were conducted in a miniature wind tunnel test section 0.55 m long and  in
cross-section, Fig. 1. Tests were usually conducted at a fixed flow velocity and . The test
cylinder having diameter D =20 mm could be mechanically oscillated at the desired amplitude and
frequency. The cylinder aspect ratio was 1:5; the cylinder spanned the complete test section
eliminating 3D end effects. The blockage ratio in the wind tunnel is approximately 20%. A few
tests (at higher Reynolds number) were also done with a D =10 mm cylinder; corresponding to a
50% decrease in blockage to 10%. These tests gave results similar to those obtained with the larger
cylinder; hence, the period-doubling instability (see below) was also obtained. Hence, although
blockage effects certainly alter the local characteristics of the flow, the global dynamics are not
significantly changed. The steady drag is also higher due to blockage; however, this is a steady
quantity, which does not affect the dynamic wake stability. As shown in the results below,
dynamical quantities such as the Strouhal number ( ) are close to values found for the case of
no blockage. This should clearly be the case since the symmetry of the system is unchanged. Thus,
basic (symmetry dependent) results, which are of primary interest here, should not change significantly. 

The cylinder is visible within the test section in Fig. 1. Cylinder excitation was in the direction
parallel to the flow achieved by means of a shaker seen in the figure. A hot-wire probe, located
2.25D downstream of the test cylinder and offset 0.5D from the centerline, was used to measure
local wake flow velocity fluctuations. Flow visualization tests were also done. An oil coated nickel-
chromium wire at the test section entrance, on heating, introduced smoke streaks into the test
section. Regular vegetable oil was used for smoke generation. 

2.2. Test results

Fig. 2 shows the typical wake structure behind the stationary cylinder. The natural vortex

0.1 0.1 m×
Re 2000≈

S 0.2≈

Fig. 1 (a) Schematic showing single cylinder in wind-tunnel subjected to transverse flow and (b) the actual
test cylinder in the wind-tunnel test section; the shaker is also visible.
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shedding frequency for a stationary cylinder is fK0 =15 Hz. The Reynolds number is 1918. In Fig. 3
sample power spectra for U=1.45 m/s are presented. The cylinder is mechanically forced to oscillate at

Fig. 2 Wake structure behind a stationary cylinder (Re=1918).

Fig. 3 Wake velocity spectra for fS=fK0 forcing. Dimensionless forcing amplitudes are shown. The important
frequencies shown are, fko: shedding frequency for stationary cylinder ; fs: cylinder oscillation
frequency, fk: dominant wake frequency during cylinder oscillations.
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fS = fK0=15 Hz in the inflow direction. In all test results, the cylinder displacement is given by X0,
which is the cylinder oscillation amplitude non-dimensionalized by the cylinder diameter. For
X0=0.030, a second smaller peak appears near fS. This new frequency is the modified shedding
frequency fK. As X0 increases, fK drifts away from the forcing frequency fS. At high enough values
of X0, the shedding frequency locks into half the forcing frequency. This suggests the occurrence of
a subharmonic instability, a nonlinear phenomenon where the original wake now oscillates at half
the cylinder forcing frequency, fK = fS/2=fK0 /2. This instability is also referred to as a period-
doubling instability in the field of nonlinear dynamics. It is one of the fundamental instabilities or
bifurcations found to occur in nonlinear systems. The subharmonic response at fK = fS/2 is found to
persist for higher forcing amplitudes X0 >0.036. For  the subharmonic response is
dominant.

The results for two tests with fS= fK0=15 Hz and fS= 2fK0=30 Hz, respectively, are summarized in
Figs. 4 and 5. In these figures the variation of the rms flow velocity perturbation component v at fK
is plotted versus the cylinder amplitude X0. These figures represent the wake dynamic response at
the dominant frequency fK. Note that the dominant frequency fK is, however, amplitude dependent,
approaching fS/2 for higher amplitudes.

Further tests were conducted in the frequency range 1<fS/ fK0<3. The subharmonic instability was
found to persist in all cases. Wake/forcing frequency ratios fK / fS plotted versus fS/fK0 in Fig. 6
confirm this finding. In this figure, the results of a second test are also plotted. Period-doubling is
clearly evident in the range . The wake consistently oscillates at only half the
forcing frequency. For fS /fK0>1.75, the subharmonic frequency drops further. Thus 
near fS /fK0= 2.25 while  for . The ratio  appears to be a
transition state. Hence, while for one of the tests clear period-doubling occurs, the frequency ratio
drops to closer to 1/3 in the second test. 

The frequency results above were supported by flow visualization results. The wake structure for
 forcing in Fig. 7, Re=1918, can be contrasted to the stationary cylinder wake structure

in Fig. 2. It takes one cylinder cycle for the lower vortex to be shed. Consequently, wake velocity
perturbations occur at half the cylinder frequency. 

Fig. 8 shows the wake structure for forcing at double the shedding frequency fS / fK0= 2; shots are
taken one cylinder cycle apart (twice the vortex shedding frequency). The near wake is clearly

X0 0.046≥

1 fS fK0⁄ 1.75≤ ≤
fK fS⁄ 1 3⁄≈

fK fS⁄ 1 4⁄≈ fS fK0⁄ 2.75= fS fK0⁄ 2=

fS fK0⁄ 1=

Fig. 4 Variation of local fluctuating wake velocity v
with X0 for fS/fK0=1

Fig. 5 Variation of local fluctuating wake velocity v
with X0 for fS/fK0=2
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approximately reflection symmetric. This symmetry is, however, broken further downstream and
accompanied by vortex merging. The result of vortex merging is an alternating wake, which

Fig. 6 Wake/forcing frequency ratio versus forcing/natural shedding ratio

Fig. 7 Wake structure behind a moving cylinder for fS/fK0=1 and X0=0.05; shots 1/30s apart

Fig. 8 Wake structure behind a moving cylinder for fS / fK0=2 and X0=0.05
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oscillates at close to the natural shedding frequency. We remark, however, that although this far
wake has the same frequency as that of the wake behind a stationary cylinder, the form or structure
of the wake is significantly different. Furthermore, the forced wake has characteristics of a traveling
wave when viewed on video.

3. Flow symmetry considerations

3.1. The amplitude equations

In this section, we attempt a theoretical interpretation of the experimental results presented above.
In particular, we wish to explain the mechanism by which the wake oscillations at half the normal
Karman shedding frequency appear, when the cylinder is mechanically forced in the flow direction.
The approach we take is based on the following observation. Flow symmetry plays an important
role in the resulting wake dynamics; this is a finding commonly reported in most work on forced
cylinder excitation as discussed in the introduction. 

The global wake dynamics can be studied by investigating the symmetry changes that occur. This
is a geometrical approach, as opposed to an analytical approach which would start with the Navier-
Stokes equations. For external perturbations, the relation between the symmetry of these perturbations
and the symmetry of the existing Karman wake pattern is key to the resulting wake behaviour. 

In order to theoretically study the wake dynamics, the wake flow is described as a combination of
two wake modes. One of the modes is the natural Karman shedding mode. The second is the
externally imposed symmetrical mode due to forced cylinder motion. The problem now reduces to a
mode interaction problem in the cylinder wake. The governing dynamics will be the solutions of the
mode interaction amplitude equations. The amplitude equations may be derived in one of two ways.
The aditional approach is to directly introduce the selected flow modes into the Navier-Stokes
equations which then reduce to a 2-mode amplitude interaction set of equations. An alternative
approach is to bypass the Navier-Stokes equations; instead, the amplitude equations can be derived
(in polynomial form) based purely on the known symmetries of the interacting modes. It is this
latter approach which is adopted in this work. The symmetry based approach has an important
advantage. Since it is based on series expansions, low order models, which are easier to
understand, can be derived. Higher order models can be derived later as the problem is better
understood.

The symmetry approach, although not well known in engineering, is often implicitly used.
Consider the basic problem of the buckling of a beam due to an axial load. The buckling instability
is an example of a symmetry breaking instability. The straight beam has initial reflection symmetry
(called Z2(κ), symmetry). According to equivariant bifurcation theory (the theory of bifurcations in
the presence of symmetry), the Z2(κ)-symmetry breaking problem can be reduced to the solution of
a single cubic equation. The solution of this equation gives the new beam equilibrium position after
buckling. This is exactly the result obtained by starting with the beam equation, introducing a
compressive load and calculating the buckling load.

We start by defining the wake symmetry properties which are important for the present study. The
near wake flow is idealized as follows. Prior to the initial Hopf bifurcation (which leads to the onset
of Karman vortex shedding near ), the flow has reflection symmetry, about the x-axis
(directed in the flow direction). At some distance downstream of the cylinder the wake is also x-
translation invariant, Fig. 9. Let the local flow velocities in the x- and y-directions be u(x, y, t) and
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v(x, y, t) respectively. The 2D flow symmetries above mean the following relations hold:

u(x, y, t) =u(x+l, y, t)
u(x, y, t) =u(x, −y, t)
v(x, y, t) = 0 (1)

In symmetry theory terms, the reflection symmetry is represented as Z2(κ), while the translation
symmetry is SO(2). The overall symmetry is therefore Γ =Z2(κ) ×SO(2). Γ is therefore simply the
orthogonal group, O(2). Fig. 10 shows the lattice of isotropy subgroups of the base symmetry Γ.
Instability and transition from a flow state with symmetry Γ to a state with ‘less’ symmetry involves
symmetry breaking; the resulting flow symmetry must be a subgroup down the isotropy lattice.
When symmetry is broken multiple solutions of lower order symmetries appear such that the
summation of all the lower order symmetries, at any level of the lattice, adds up to the original base
symmetry; thus ‘overall’ symmetry is conserved via distribution over several solutions. From Fig.
10 then, we can immediately predict, qualitatively, the types of solutions to be expected.

The symmetry subgroups Dm and Z2(κ, π) in Fig. 10 are special. They are the so called maximal
isotropy subgroups. Maximal isotropy subgroups have the unique property that they are the

Fig. 9 Idealized wake flow with symmetry Γ =Z2(κ)×SO(2)=O(2) in the rectangle

Fig. 10 Lattice of isotropy subgroups
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symmetries most likely to appear following instability from the symmetry Γ. The Z2(κ, π)
symmetry is precisely the symmetry of the Karman wake mode. It is no surprise therefore that
Karman shedding is ubiquitous for all bluff bodies in cross-flow. The subgroup Dm also does appear.
Indeed the symmetries Z2(κ, π) and Dm (with m=2) are the symmetries of the well known sinuous
and cosinuous ‘unstable’ modes found in the wake of a bluff body.

The equilibrium state (steady flow), Fig. 9, undergoes a Hopf bifurcation leading to mode S and/
or K , having symmetry ΓS and ΓK, respectively. These modes are depicted in Fig. 11. The mode S
velocity field satisfies the relations

u(x, y, t) =u( x, −y, t) =u(x+λS, y, t) =u(x, y, t +τS)
v(x, y, t) =−v(x, −y, t) =−v(x+λS, y, t) =−v(x, y, t+τS) (2)

For the anti-symmetric K  mode, on the other hand

u(x, y, t) =u(x, −y, t+τA/2) =u(x+λK /2, −y, t)
v(x, y, t) =−v(x, −y, t+τA/2) =−v(x+λK /2, −y, t) (3)

The appropriate wavelength and period are represented by λ and τ, respectively. Mode S therefore
has purely spatial symmetry ΓS. Mode K  on the other hand is seen to possess a mixed spatio-
temporal symmetry ΓK. The symmetries may be compactly expressed as

(4)

where ‘m’ is the wavelength ratio λK /λS. The symmetries ΓS and ΓK must be subgroups of the base
symmetry . Note that the circular S1 symmetry appears as a consequence of of the periodicity
associated with the Hopf bifurcation.

ΓS Dm κ 2π
m
------, 

  S
1×=

ΓK Z2 κ π,( ) S
1×=

Γ S
1×

Fig. 11 The S and K  wake flow modes
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In the work reported here, we consider the effect of external perturbations to the Karman shedding
mode. To model the resulting dynamics, Karman shedding is represented by the mode K . On the
other hand, the external perturbations are represented by the reflection-symmetric S mode. Our
primary goal then is to study the resulting interaction between modes S and K . As a first
approximation we describe the interaction in terms of the respective modal amplitudes. Assuming
that all other modes are stable, the x-direction velocity perturbations, for instance, may be expressed
as

U(x, y, t)=S(t)ψS( y)ei(λSx+ωst)+K(t)ψK(y)ei(λKx+ωKt)+complex conjugate (5)

where S(t) and K(t) are the mode amplitudes for mode S and K , respectively. Suppose that modes S
and K destabilize via a Hopf bifurcation. We introduce a Poincare map reduction of the resulting
periodic base state. The Poincare map is a simple technique for eliminating the additional dimension
associated with periodic oscillations in time (or S1 symmetry). When both modes destabilize
simultaneously ωS=ωK =ω this leads to a discrete mapping in time steps of the basic modal period
(here τ =1/Im(ω)). The evolution of the fluid state may then be represented by a mapping of the
form

(6)

Eq. (6) is a very compact representation of the fact the flow state Un+1 at time tn+1 is given by some
function Φ [ .] of the present state Un. Note that the subscript ‘n’ refers to discrete time in cycles.
The function Φ [ .] clearly represents all the complexity of the Navier-Stokes equations. Armed with
our knowledge of the symmetry of the flow modes interacting in our experiments, we can
significantly simplify the form of the function Φ [ .]. The resulting simplified function governs the
dynamics of the restricted case of interaction between the S and K  modes. The resulting equations
are called amplitude equations since they give the relationship between the two modal amplitudes Sn

and Kn. Substituting the coupled mode flow field (5) into (6) yields the following mode interaction
amplitude equations

Sn+1=ΦS(Sn, Kn)
Kn+1=Φk(Kn, Sn) (7)

where external parameter dependence (e.g., flow velocity dependence) has been suppressed. The
functional forms of the mappings ΦS, Φk are determined based on (i) satisfaction of conditions set
by the underlying system symmetry (ii) knowledge of the existence of the initial Hopf bifurcations.
Qualitatively we may describe the connection as follows. For a system having a given symmetry it
is clear that the governing equations must also incorporate the same symmetry. Reflection symmetry
provides a simple example. A reflection symmetric physical phenomenon is governed by an odd
function satisfying the relation f(x) =−f(−x). Knowing the underlying symmetry then one can derive
the basic form of the governing equations. This approach is formalized by the Hilbert-Weyl theorem
(see Golubitsky, et al. 1988, theorem 4.2). For the problem of S,K -mode interaction the authors
(Mureithi, et al. 2002) have derived the appropriate forms of the functionsΦS and Φk in Eq. (7).
The resulting functions are given in the following proposition.

Un 1+ x y tn 1+, ,( ) Φ Un x y tn, ,( )[ ]=
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Proposition: Every  - equivariant map Φ :  has the form

 for m=2k,

(8)

 for m=2k−1

where p, q, r, s are real polynomial functions of the  invariants ,
, ,  and m/n corresponds to the wavelength ratio λK /λS of the two modes.

For m-odd, r3 above should be replaced by r4= .
In the present work we consider the case where the symmetrical mode, S, is “generated” or

“controlled” via forced oscillations of a cylinder in the flow direction. We then investigate the effect
on Mode K .

3.2. Theoretical model, Case 1: wavelength ratio λK/λS=m=1

For this case the Poincare mapping is

(9)

The amplitude mapping for the Karman mode K  (with symmetric mode S amplitude as a
controlled excitation ‘parameter’) is 

(10)

where only terms up to 3rd order are considered. This equation represents the dynamics of Karman
vortex shedding, subjected to external perturbations in the flow direction. Recall that we represented
x-direction velocity perturbations by U(x, y, t). For a stationary cylinder we can write U(x, y, t)
=K(t)ψK( y)ei(λKx+ωKt)+c.c., where c.c. stands for complex conjugate. Performing measurements at a
specific point  in the flow we would find that 

(11)

In fact we would find that the mode amplitude was constant, hence, K(t) = . The constant mode
amplitude  is the steady (periodic flow) state (or fixed point) solution of Eq. (10) when Sn=0 thus
satisfies the equation

(12)

Γ Z2 κ( ) SO 2( )×= C2 C2→

Φ S K,( ) ΦS

ΦK

p r1 r2 r3, ,( )S q r1 r2 r3, ,( )Sn 1–
Km+

r r 1 r 2 r 3, ,( )K s r1 r2 r3, ,( )Sn K
m 1–,+

= =

Φ S K,( ) ΦS

ΦK

p r1 r2 r4, ,( )S q r1 r2 r4, ,( )S2n 1–
K2m+

r r 1 r2 r4, ,( )K s r1 r2 r4, ,( )S2nK
2m 1–

+
= =

Γ Z2 κ( ) SO 2( )×= r1 S 2=
r2 K 2= r3 SnK

m
= r 3

SnK
m( )

2

ΦS

ΦK

pS qSK2+

rK sS
2
K+

=

Kn 1+ ΦK Sn Kn,( ) 1 γ0 γ1 Sn
2 γ2 Kn

2
...+ + + +( )Kn δ0 ...+( )Sn

2Kn+= =

x̂ ŷ,( )

U x̂ ŷ t, ,( ) KψK ŷ( )e
i λKx̂ ωKt+( )

c.c.+=

K
K

K 1 γ0 γ2 K
2

+ +( )K=
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Note that steady state solutions of the mapping (10) therefore correspond to periodic solutions for
the physical flow. Eq. (12) is the ‘famous’ amplitude equation derived by Landau to describe the
nonlinear Karman wake oscillator. The constant γ0 is related to the critical Reynolds number
( ) for the onset of Karman shedding. The amplitude growth rate is determined by the
Landau constant γ2. Since the onset of mode K  is via a supercritical Hopf bifurcation we know that
γ0> 0,γ2<0.

We turn now to an analysis of the forced excitation case, . Introducing the parameters

, µ = δ0S2, γ =γ2 (13)

Eq. (10) in polar form becomes

rn+1= (1+σ +µ cos2φn)rn+γ rn
3 = f (rn, φn)

φn+1=φn−µrn  sin 2φn (14)

with K=reiφ. By separating the amplitude and phase equations, a stability analysis can be easily
performed. First though we note that besides the zero fixed point, Eq. (14) has fixed points given by

(15)

Note that  is an infinite set of solutions parameterized by the phase
 relative to the S mode. The stability of the fixed points (which

correspond to periodic flow states) is dependent on the first derivative

(16)

since we have a 1-dimensional amplitude equation ; an advantage of separating the phase from the
amplitude equation via the polar transformation. Instability occurs when this derivative exits the unit
circle, i.e., . There are 3 possible instability scenarios. For , a pitchfork
bifurcation occurs. For , a period-doubling (or frequency halving) instability occurs.
Finally, a Hopf bifurcation occurs if  is a complex number and ; this latter
instability introduces a second frequency in the flow. 

Experimental tests by Mureithi, et al. (2002) have shown that  in the physical wake
flow. Based on the parameters of Eq. (10), we see that for  we have stable periodic flow
states for large enough S. However, increasing S past some critical value the fixed points undergo a
period-doubling instability at . Physically this means that the Karman mode K
undergoes a period-doubling bifurcation for large enough symmetrical forcing. Physically, the
instability is manifested by the appearance of flow oscillations at half the cylinder forcing frequency
in the wake as observed in the experiments. Furthermore, the necessarily non-zero value of S breaks
the Karman mode symmetry, Z2(κ, π). This is clearly visible in Fig. 7. The frames, taken half a
cycle apart are not related by reflection symmetry.

Rec 48≈

Sn 0≠

σ γ0 γ1 S 2+( )=

r 2 σ– µ±
γ

----------------- 
 =

K r ei φ=
φ φ kπ=  k 1 2 ....., ,=,{ }∈

f,r r ( ) 1 2– σ µ±( )=

1 2 γ0 γ1 δ0±( ) S 2+( )–=

f,r r( ) 1> f,r r( ) + 1→
f,r r( ) 1–→

f,r r( ) f,r r( ) 1→

γ1 δ0± 0>
γ1 δ0± 0>

f,r r( ) 1–=
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3.3. Theoretical model, Case 2: wavelength ratios 1<λK / λS≤ 2

In this section we show that the period-doubling instability is persistent in the range
. Consider first the intermediate wavelength ratio . This corresponds

to forced cylinder oscillations at 1.5 times the vortex shedding frequency. The corresponding
amplitude equation for the Karman mode is

(17)

The last term on the rhs is of order (O(11)), clearly negligible. The equivalent polar form is similar
to Eq. (14) but with the factor µ=0. Thus we have

φn+1=φn (18)

Eq. (18) is in fact valid for all rational ratios 1<λK /λS< 2, since in this range µ = 0 for a third order
approximation of the amplitude equation. For λK / λS= 2 we have a second order term µ =δ0S. The
stability analysis of the Karman mode performed above hence remains essentially the same. It is
found that, just as in Case 1, the non-zero fixed points of map (10), or the intermediate map (17,18)
undergo a period-doubling bifurcation for 1<λK /λS≤ 2. We conclude therefore, that the primary
effect of mode S is to cause a period-doubling bifurcation of mode K  for a wide range of excitation
frequencies.

This conclusion is precisely the result found in the experiments. Period doubling was found for all
wavelength ratios 1<λK /λS≤2. For wavelength ratios , the cylinder wake has a distorted
wake which oscillates at half the forcing frequency. For  period doubling is manifested
as vortex merging. The merging phenomenon is clearly visible in Fig. 8. The merged vortex street
however differs from a standard Karman wake and appears to have a superposed traveling wave.

4. Conclusions

Dynamics in the wake of a solitary cylinder mechanically forced in the flow direction have been
investigated both experimentally and theoretically. Experimental tests showed that inflow cylinder
oscillations destabilize the alternating Karman wake leading to oscillations at half the excitation frequency.

A group theoretic analysis confirmed that interactions between modes with the present symmetries
does indeed lead to a period doubling bifurcation, which is responsible for the aforementioned
Karman wake instability. A remarkable result is the robustness of the period-doubling instability. It
is found to occur for all wavelength ratios . This result may have important
consequences for the problem of Karman wake control. Perturbations in the flow direction are
shown to destabilize the Karman wake. This could be used to eliminate the lock-in effect by
changing the wake frequency to a value lower than the structural frequency. We note here that the
symmetrical flow perturbations are not physically large. In the experiments here, the perturbations
are produced with a cylinder displacement less than 0.05D. In an actual control situation, flow
perturbations could be introduced via direct pressure pulsations as done in the tests by Williams et al.
(1992). This approach is currently under investigation.

1 λK λS⁄ 2≤< λK λS⁄ 3 2⁄=

Kn 1+ ΦK Sn Kn,( ) 1 γ0 γ1 Sn
2 γ2 Kn

2
...+ + + +( )Kn δ0 ...+( )Sn

4Kn
7+= =

rn 1+ 1 σ+( )rn γ rn
3 f rn φn,( )=+=

λK λS⁄ 1≈
λK λS⁄ 2=

1 λK λS⁄< 2≤
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