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Abstract. The response of tall buildings to gust buffeting is usually evaluated assuming that the
structural damping is of a viscous nature. In addition, when dampers are incorporated in the design to
mitigate the response, their effect is allowed for increasing the building modal damping ratios by a
guantity corresponding to the additional energy dissipation arising from the presence of the devices. Even
though straightforward, this procedure has some degree of inaccuracy due to the existence of a memon
effect, associated with the damping mechanism, which is neglected by a viscous model. In this paper a
more realistic viscoelastic model is used to evaluate the response to gust buffeting of tall buildings
provided with energy dissipation devices. Both cases of viscous and hysteretic inherent damping are
considered, while for the dampers a generic viscoelastic behaviour is assumed. The Laguerre Polynomial
Approximation is used to write the equations of motion and find the frequency response functions. The
procedure is applied to a 25-story building to quantify the memory effects, and the inaccuracy arising
when the latter is neglected.
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1. Introduction

For wind engineering applications, it is customary to model flexible structures as linear dynamic
systems provided with viscous damping. In the case in which Energy Dissipation Devices (EDDs)
are added, it is often assumed that the viscous behaviour of the system is not changed. The effect
of the dampers are, then, accounted for increasing each modal damping ratio by a quantity termec
effective dampingThe latter represents the additional viscous modal damping to be provided to the
plain structure in order to make it experience the same steady state response, under a giver
excitation, as the structure with the dampers would.

For the above approach to be consistent, two conditions have to be met: (a) the structure inheren
damping has to be viscous, and (b) the devices have to be viscous dashpots rigidly connected to the
main structural system. In real life, however, both conditions quite often fail to be satisfied.
Structural systems in many cases exhibit a damping mechanism which, even though linear for small
amplitude oscillations, proves to be weakly dependent on frequency (Nashif, Jones and Henderson
1985, Sun and Lu 1995). A linear hysteretic model (viscoelastic), therefore, provides a more
accurate description of their behaviour than a viscous model. On the other hand, dampers exhibit a
variety of types of behaviour, which in many cases are far away from being of a linear viscous
nature. For the mitigation of the wind induced response viscoelastic dampers are usually adopted
(Soong and Dargush 1997), as their damping capacities, even though of a lower magnitude with
respect to metal yielding dampers used in seismic applications, do not suffer from fatigue damage.
Moreover, also in the case in which viscous dashpots are used, their global behaviour turns out to
be viscoelastic, when not rigidly connected to the main structure (e.g., in the case in which flexible
braces are used for their connection). Based on the two above observations, it is clear that a
viscoelastic model, rather than a viscous one, would be adequate to describe the behaviour of winc
exposed flexible structures provided with damping devices.

One of the principal characteristics of a viscoelastic system is that of having a memory behaviour.
This means that knowledge of displacement and velocity at a particular time instant, together with the
external excitation, does not allow prediction of the system evolution. Indeed, knowledge of the whole
previous displacement history is required, meaning that displacement and velocity do not fully
describe the state of the system. When a viscous approximation is used to model a system featuring
a viscoelastic behaviour, the memory effect is lost, and this affects the accuracy of the analyses, anc
the loss of accuracy depends on the characteristics of the viscoelastic memory and of the excitation.

In this paper a procedure is presented for the analysis of tall buildings subjected to gust buffeting,
including the viscoelastic memory of both main structure and additional dampers. The Laguerre
Polynomial Approximation method (Palmeet, al 2003, De Lucaet al 2002) will be applied to write
the equations of motions and derive the frequency response functions of the system. Finally, the
procedure is used for the analysis of the response of a 25-story moment resisting frame building, without
and with the addition of viscous dashpots connected to the main structure through elastic braces.

2. Equations of motion for buildings with viscoelastic behaviour including
viscoelastic dampers

2.1. Equations of motion in Lagrangian coordinates

The motion of buildings featuring linear viscous damping is described through the equation:
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MX'(t) + Cx(t) + Kx(t) = Lf(t) (1)

wherex (t)=[x.(t) ... X,(t)]" is the array listing the time histories of thé.agrangian coordinates of
the systemM, C andK are the mass, damping and stiffness matrices, respecfii@ky[ fi(t) ...
f.(t)]" is the array listing the time histories of thexternal loads, and; is its influence matrix.

In the case in which the building is provided with EDDs, the damping matrix in Eq. (1) is the
sum of two terms, one accounting for the inherent damping, the other accounting foritioeaddd
damping arising from the presence of the EDDs.

Eqg. (1) can be solved in the frequency domain as:

X(w)=H(w)F(w)
H(w)=[K-wM+jwC]™ Ly (2)

where X (w) andF(w) are the Fourier transforms of the resporég and of the excitatiorf (t),
respectively, andH(w) is the nxr frequency response matrix of the system in Lagrangian
coordinates.

In Eq. (1) the displacemend(t) together with the velocity(t) fully define the state of the
system; as a consequence, the memory effect is neglected. The system described through Eq. (1) |
of Kelvin-Voigt type, and is the only viscoelastic system without memory.

More generally, the equations of motion for a building featuring a linear viscoelastic behaviour
including memory can be written as (Fig. 1(a)):
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Fig. 1 Schematic of building with viscoelastic dampers (a) and decoupled modal representation (b)
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HMX () +r(t) + L, p(t) = L, £(t)

t) =K (t—1)x(1)d
r(t) JO' (t-nx(1)dr 3

OOOoOoOogooo

p(t) = [G(t-1)VX(7)dT
0

wherer (t)=[ry(t) ... ro(t)]" is the array listing the internal viscoelastic forqe@)=[pa(t) ... pi(t)]"
is the array of the viscoelastic reactions of the additional EBI$) and G(t) are the relaxation
matrices of the structure and of théEDDs, respectivelyV is the |l xn matrix associating the
relative disphcements at the EDDs to the building displacements, Lands the nx | matrix
associating the building displacements to the relative displacements at the EDDs. Eqgs. (3) hold for
t=0, and it is assumed that the structure is at rest a0

The internal viscoelastic forces can be expressed as the sunerofis, each associated with one
particular Degree of Freedom (DoF) of the building. Therefore the second of Egs. (3) takes the
expression:

ri(t) = i_[ki]j(t—r)xj(r)dr i=1,...,n 4)

=10

in which k; ;(t) = k; i(t) is the time history of the viscoelastic force inithie DoF, associated with
a unit step displacement in th¢h DoF att=0.

The function k; j(t) is termed aelaxation function and can be expressed as the sum of a
constant portiorki; = k;j(«) , representing the purely elastic part of the viscoelastic reaction, and
a time-varying portiork;; (t) = ki ;(t) =k , which takes into account the viscoelastic memory. Eq.
(4) becomes:

n nt
ri(t) = z kfjxj(t)+ ZIk{j(t—r)Xj(r)dr i=1,...,n (5)
i=1 j'=10
or, in a matrix form:
() = K®+K (1) (6)
where:
ki1 Kpo = Kin ki, 1(1) Ky o(t) .. Ky n(1)
K® = kgz kgn : K*(t) - K3 (1) - Ko n (1) 7)
sym ¢ ¢ sym '

ke K (1)
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which brings the second of Egs. (3) to be rewritten as:
t *
r(t) = K°°x(t)+_|’K (t—1)x(7)dr1 (8)
0

In Eq. (7),K” is the long term stiffness matrix of the plain building, playing the same role as the
stiffness matrixk in Eq. (1).

Following the same approach, the viscoelastic reactions of the additional EDDs can be expressec
as the sum of terms, each associated with one DoF of the building. The third of Egs. (3) takes the
expression (similar to Eqg. (5)):

n nt
pi(t) = z grVix(t) + z_[g;(t—r)vi,jxj(r)dr i=1, ..l 9
j=1 j= 10
g~ and g’ (t) being the constant and the time-varying parts of the relaxation function ieththe
viscoelastic EDD.
In a matrix form (similar to Eq. (6)):
G(t) = G"+G (1) (10)
where G = diag{g/(t); i=1,... 1} andG*(t) = diag{g'(t); i=1,..,1} are matrices listing

the constant and the time-varying parts of the relaxation functions of the viscoelastic EDDs. Finally,
the third of Egs. (3) can then be rewritten as (similar to Eq. (8)):

p(t) = GVx(t) +}G*(t— T)VX(1)dT (11)
0

2.2. Equations of motion in modal coordinates

Egs. (3) can be expressed in modal coordinates, defined through the transformation:

m
x(t) = @q(t) = 5 aa() (12)
i=1
where ®=[@ ... @] is the modal matrix of the plain building evaluated for. o (that is,
accounting only for the long term stiffness matrix) whose columns are thenfish structural

modes, and where(t)=[q,(t) ... gqn(t)]" is the array of the modal coordinates.
Substitution of Eqgs. (8) and (11) into Egs. (3) provides the equations of motion in modal
coordinates:
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O

D t

0 G(t) + Qq(t) + [F(t—1)G(1)dT + D L p(t) = 'L f(1)

a 0

O (13)

O to

E] p(t) = G"Vaq(t) +[G (t-1)Veq(r)dr

0 0
where Q=diag{w ; i=1,...m}, w;<..<w, is the matrix containing the natural circular
frequencies of the plain building, obtained as solutions of the eigenprdblegn= M @ w? , and

where I'(t) is the matrix containing the time-varying parts of the building modal relaxation
functions:

rt)=o'K () (14)
The equation governing theéh modal coordinate is:

m t

Gi(1) + awpai(t) + 5 [W;(t=DG(DdT+u(t) = wi(t) (15)

J:]_O

where wi(t) = @lL f(t) is thei-th modal excitation,u;(t) = @TL, p(t) is the projected EDD
reaction on the-th mode, and wherg; ;(t) = @[l (t)g =y ,(t) is the projected time-varying part
of the structure relaxation functions on thh mode, i.e. the time history of théh modal force
due to a unit step displacement in it mode.

For buildings with viscous damping, it is often assumed that the eigenvectors are orthogonal with
respect not only to the mass and stiffness matrices, but also with respect to the damping matrix; as
consequence the equations of motion in modal coordinates are decoupled (Fig. 1(b)). This result car
be extended to the case of viscoelastic damping, assuming that at any time instant the eigenvector
are orthogonal with respect to the time-varying part of the relaxation mifiix). As a
consequence Eq. (14) becomes:

r(t)=diag{y(t) ; i=1, ....m} (16)

where for simplicityy; i(t) has been written ag(t). Under this hypothesis, Eq. (15) becomes:

t

Gi(t) + wrai(t) + [y(t-n)g(ndr +ui(t) = wi(t) i=1..m (17)
0

where the only coupling derives from the viscoelastic forces exerted by the EDDs:

0 o, M mt ., _ O
u(t) = cpiTLpE]]G VZ @a;(t) + ZIG (t—r)V(qu(r)drE]] (18)

j=1 i=10
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In the following section, Eq. (17) will be written for the particular cases of buildings with either
linear viscous damping or linear hysteretic damping.

3. Equations of motion for buildings with viscous or hysteretic inherent damping
3.1. Buildings with viscous inherent damping
The case in which the structural damping is of a viscous nature (i.e., without memory) can now

be seen as a particular case of Eqg. (17). iHferelaxation functiony’(t) of the building with
viscous damping is (Lockett 1972):

v(t) = 24w o(t) (19)

where, ¢ is thei-th viscous damping ratio, and whed&) is the Dirac delta function. Substitution
of Eq. (19) into Eq. (17) brings:

gi(t) + w2qgi(t) + 24w gi(t) +ui(t) = wi(t) i=1 ., m (20)

Egs. (20) are a set ah equations coupled by the terrngt), which in a matrix form can be
written:

G(t) +=Vq(1) + (Q°+ 'L ,G"V)q(t)

+O'L, [G'(t-1)VPG(1)dT = DL f(t) (21)
0

where:
=V = 2diag{ ¢ ;i=1, ... m} (22)
The frequency domain solution of Eq. (21) is:
Q(w) = H'(@)P'LF(w) (23)

Q(w) being the Fourier transform of the modal respoq¢®, and HY () being the modal
frequency response matrix of the building with viscous inherent damping and viscoelastic EDDs:

AY(w) = {(Q%+ Q%) — el +jw[= + ()]} (24)

wherel, is the identity matrix of ordem, and where the overbar indicates the terms related to the
viscoelastic behaviour of the EDDs:

to)

= 0'L,GVO

(W) = 'L, FIG ()IVO (25)



96 A. Palmeri, F. Ricciardelli, G. Muscolino and A. De Luca

in which F -0 stands for the Fourier transform operator. The elements of the m‘ﬂﬂi(t)[] are
related to the dynamic stiffness of the EDDs, which can be directly measured by means of
sinusoidal tests on the dampers.

In general, neither matrices defined through Eqgs. (25) are diagonal, which brings the frequency
response matrixi () to be sparse. Nevertheless, if the distribution of the EDDs in the structure is
almost homogeneous, then it is expected that the off-diagonal terms of (o matrix are
negligible. In the latter case, Egs. (25) become:

Q° Odiag{ @f; i = 1, ..., m}
=(w) Odiag{ Fy ()3 i = 1, ..., m} (26)
with:
o’ = gL,G"Vg
V(1) = gL,G (HVq (27)

Egs. (26) decouple Egs. (20), which become:

Gi(t) = (P + @) ai(t) + 2&wdi(1) + [ (t-1)G(T)dT = wi(t)
0
i=1,..,m  (28)

Then, the solution of Eq. (28) in the frequency domain is:
Q(w) = H(WW(w) i=1, ... m (29)

where Q;(w) = FIg;(t)0 andW;(w) = FOw;(t)d= ¢'L FOI ()0 , while:
HY(w) = {wf+ & - +ja[2gw+ FOR (O} (30)

3.2. Buildings with hysteretic inherent damping

If compared to the viscous model, in many cases the linear hysteretic model has been found to
provide a better description of the real damping of buildings (Nashif, Jones and Henderson 1985,
Sun and Lu 1995), as for a wide range of structural materials the energy loss per cycle appears tc
be almost frequency independent. The analytical model commonly used to describe the linear
hysteretic damping in the time domain involves the Hilbert transform operator (Bracewell 1986).
This was proved to be a pathologic model (Inaudi and Kelly 1995, Inaudi and Makris 1996)
because it does not meet the causality requirement. In two recent papers, Makris and Zhang (2001
and Spanos and Tsavachidis (2001) suggested that the Biot model (Biot 1958) be used to
approximate linear hysteretic damping. This model is causal and physically realisable, and brings a
closed form time domain representation. Using the Biot model, the time-varying relaxation function
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in thei-th mode of a building with hysteretic damping, i.e., itile term in Eqg. (16) is written as:
2 .

Wit = —TwfniEi(-&t) (31)

where n); is the loss factorg is a parameter to be calibrated based on the natural frequency of the
structure and on the frequency content of the excitation, and whepei€the exponential integral
function defined as (Gradshteyn and Ryzhik 1994):

Ei(x) = }egdé x<0 (32)

Substitution of Eq. (31) into Eq. (17) gives the equation of motion in-thenode for a building
with inherent hysteretic damping:

61 + 2 ()~ 2L [Eil-g(t-D]G(DATE+u() = w() i=L..m  (33)
0 T3 0

which plays the same role as Eq. (20) does for buildings with viscous damping. In a matrix form
(corresponding to Eg. (21)):

G(t) = [r(t-0d(r)dr+[Q°+ 'L, G, VP]q(t)
0
+O'L, [G'(t-T)VdG(1)dT = O'L, f(t) (34)
0
in which:
r() = —IgTdiag{ W?nEi(-&t); i=1, .., m (35)

The modal frequency response matrix has an expression similar to that found for structures with
viscous damping (Eq. (24)):

A = {(Q2+ Q) - I+ = () + Z(@)]} (36)

where;:

=H(w) = Foieo

= 2 g O_in 1+07 2 .
= nwdlag%]w,zni[arctar%:m jIn 1+El€i[]} i=1 .., mE]] (37)
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and whereQ” ané(w) have been defined through Egs. (25).
Finally, under the hypothesis of homogeneously distributed EDDs, Egs. (33) become:

Gi(t) + (w? + @) ai(t) +_[D—El[ —&(t-1)] + V(t—T)EFI (Ddr = wi(t)

i=1.,m (38)

and thei-th modal frequency response function is:

-1
M) = B+ 02— i 4 2 4+ O 4 i
Hi (w) = E]]w,z+w. ) +nw,217 [In 1+&D+Jarctar%:m}+1wfm(t)E§ (39)

4. The Laguerre Polynomial Approximation for linear viscoelastic systems

In section 3 the decoupled modal integrodifferential equations of motion have been derived for
buildings featuring either viscous or hysteretic damping, and provided with an homogeneous
distribution of EDDs. The equations can be directly solved in the frequency domain, and it has been
shown that the building response is the superposition of the respormeeSOafF modal oscillators,
featuring a linear viscoelastic memory (Fig. 1). For each oscillator, the modal relaxation function
yi (t) fully defines the memory behaviour.

The solution of Egs. (28) and (38), however, is not an easy task, and approximated models are
usually adopted to handle the viscoelastic memory. Common models are the generalized Maxwell
model and generalized Kelvin-Voigt model (Bland 1960), both based on a spring-dashpot
representation of the system. Recently, Palmedl (2003) proposed a new method to evaluate the
dynamic response of a linear viscoelastic SDoF oscillator. The method is based on an approximatec
form of the relaxation function, in which a linear combination of Laguerre polynomials is used to
modulate the relaxation function of a Maxwell element. This approach, termed Laguerre Polynomial
Approximation (LPA), brings the introduction of a number of Additional Internal Variables to
account for the memory of the system. The LPA method proves to be computationally effective, and
its parameters can be directly evaluated from relaxation tests. This approximation was originally
developed to be applied in time domain analyses; however, for frequency domain analyses it has the
advantage of providing a closed form expression for the dynamic stiffags8)(t)C appearing in
the Frequency Response Function (FRF). In the following the main features of the LPA method will
be briefly outlined.

The equation of motion for a SDoF oscillator made of a rivhssnnected to a linear viscoelastic
support (Fig. 2), with relaxation functidg(t), at rest fort<0, is:

t

MX(t) + [K(t = T)X(T)dT = (1) (40)
0

wherex(t) is the displacement of the mass d(ij the external excitation. If the elastic portikn
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Fig. 2 SDoF viscoelastic system (a) and relaxation function (b)
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and the viscous portio@d(t) of the reaction are removed from the relaxation function, then Eq.
(40) becomes:

t

X(t) + 2o (1) + wBX(1) + [Y(t = )X(T)dT = % f(t) (41)
0

where w, = JM™K is the natural circular frequenéy=M "'C/(2w,) is the viscous damping ratio
and whergy(t) is the memory kernel, such tha(t)=K+Ca(t)+My(t).

Eq. (41) coincides with Egs. (28) or (38) if one s&is./w? + &, x(t)=g(t), f(t)=Mwi(t), and
either o=/ wp and y(t)=yi (t), or {,=0 andy(t)=2ni/MEi(-gt)+y: (1) .
The memory kernel is expressed in the approximated form:

t
(D) = expry [Pu(t) (42)

in which py(t) is an N-1)-order polynomial and, is a characteristic relaxation time, to be chosen
based on a linear regression of experimental data (Pakheili,2003).

The role of the polynomigby(t) is that of modulating the exponential function exptg), which
is the relaxation function of a Maxwell element with unit stiffness. The polynomigl is
conveniently expressed as a linear combination of theNitsiguerre polynomials (Gradshteyn and
Ryzhik 1994):

Pa(t) = Z a||—| Dt D (43)
where the Laguerre polynomiaj( can be evaluated through the formulae:
Lo()=1
L1(§)=1-¢

Lia(® = BEEESL (O - 2Ly (8) =2, N-2, . (44)
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Substitution of Eq. (43) into Eq. (42) brings:

Nilai 6i(t)

i=0

wi(t)

6.(t) emDEEE%Eizow”N—l (45)

wherey, (t) is theN-order approximation of the relaxation functigft) (y(t) -» Yt) asN - o) .
Upon substitution of Eq. (45) into Eq. (41), one obtains:

N-1

X(t) + 245X (t) + cwix(t) + z aA) = = f(t) (46)

where g and Ai(t) are termed théth Laguerre stiffness and theh Laguerre strain, respectively.
The Laguerre stiffnesses can be evaluated from the memory kernel as:

_ L0 L ot
a = ¢ [MOLig it (47)
while thei-th Laguerre strain are defined as:
t
Ai(t) = [6(t-T)x(7)dT (48)
0
By differencing Eq. (48) one obtains the state equations for the Laguerre strains:
. 1
Ai(t) = x(t)—= z}\i(t) i=0,.,N=-1 (49)
to /&

Egs. (49) and (46) form a set of linear differential equation that approximate the original
integrodifferential equation of motion. The solution in the time domain can be computed using any
standard numerical technique. As an alternative, the solution of Egs. (46) and (49) can be obtained
in the frequency domain as:

+1
én(w) = 2oy + z aiDO—D (50)

where X(w)=F X(t)d and F(w)=F 0 (t)0, while Hy(w) is the approximated FRF. The functions
én(w) describe the frequency-dependent damping properties of the system. Particular cases are the
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undamped oscillator, for whichéy(w)=0, the oscillator with viscous damping, for which
En(w)=2ywn, and the oscillator with hysteretic damping, for whi{(w) — nwy/ |

5. Numerical example

The procedure presented in the previous sections was implemented in a Matfef@t{d®99)
code to investigate the effects of viscoelastic memory on the alongwind buffeting response of a 25-
story building.

The building (Fig. 3(a)), with a rectangular plan4zf.20 mx 32.00 m , 103 m high (Netval
1995, Hatadagt al 2000) has a mass of abdl0 x 14 kg. The analyses were carried out on a 2-
dimensional model of the longitudinal frames, and the DoFs considered in the analyses are the story
drifts. The first three natural circular frequencies axe1.87, w,=5.61 andw;=9.77 rad/s. The
inherent damping is assumed to be of Rayleigh type, §#0.02 and{;=0.10.

In a first stage, the response of the plain building (i.e., without additional dampers) in the two
cases of viscous and hysteretic inherent damping, are compared. In particular, the hysteretic
damping is approximated using the Biot model, witF2¢ and §=w/10 (Makris and Zhang
2000). In Fig. 4 the modulub—li(w)| and the phi £Hi(w) of the first three modal FRFs are
presented, as evaluated through Eq. (30) and Eq. (39), respectively. The figure shows that globally
the difference between the models increases with increasing modal damping. In particular, the
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Fig. 3 25-story building with viscous damping devices (a) and schematic representation of the spring-dashpot
medel (b)
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Fig. 4 Comparison between the Frequency Response Function of the building with viscous and hysteretic
damping

resonant peak for the hysteretic damping case is at higher frequencies than that of the viscous
damping case.

To increase the system damping capacity, at each level viscous damper are installed, connected t
the structure through inverted V-shaped brace. Due to the brace axial dédftymie final
behaviour of each device is that of a dashpot in series with a spring (Maxwell element), and some
memory effect is expected (Fig. 3(b)). The relaxation function ofi-theEDD is g; (t)=K;exp[-t/

(Bt)], wherekK; is the stiffness of theth spring (axial stiffness of the bracg)is the time constant

of thei-th EDD, andf is a parameter used to simultaneously control the relaxation times of all the
devices.Ci(B)=pKit; is the viscous coefficient of theth dashpot. Different values of the time
constantst; in the range of 0.181 s to 0.251 s were selected at the different levels. In addition,
values of thef3 parameter in the range of O to 10 were considered, which allowed to assess the
influence on the response of the ratio of the average relaxation time to the system first natural
period. For3=0, the system is without memory, and therefore behaves as a Kelvin-Voigt system.
For B=10, the ratio of the average relaxation time to the system first natural period is about 2/3.
The Fourier transform of the relaxation functionAg.g;(t)) =K;/[( B;)+]jw], then one can use Eq.

(30) to evaluate theth modal FRFH" (w) for the case of viscous inherent damping and assuming that
the EDDs are almost homogeneously distributed in the structure. For the purpose of comparison, the
FRF of an equivalent Kelvin-Voigt SDoF oscillator (without memory) was also considered:

AV Y (@) = [(@+Aw) — o + 2j( + AZ) (0 + Aw)] (51)

where the quantitiedieg and AZ; are computed such that the moduli ¥ ( ) andHef<Y (w)
have the same zero- and second-order moments:
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Fig. 5 Aw andA(; parameters for the calibration of the equivalent Kelvin-Voigt system

Aa}l = lﬁa_'_a)l
N Ho, i

R | S 4
46 = Awr doym, © (52)
being:
Wi = £|ﬁ¥(w)|ai'dw (53)

The values obtained foficy and A¢j, such that the variance of the displacement and velocity
response to a white noise are the same for the two systems, are related to the relaxation time, an
therefore depend of8. As an example the variation dfw, and A{; is shown in Fig. 5Aw,
monotonically increases in the whole rangeBptvhile A{; has a peak fof 011.7

To check the inaccuracy associated with the use of an equivalent Kelvin-Voigt model, in Fig. 6
the real and imaginary parts of the first modal dynamic stiffikaS@o) , together with the modulus
and phase of the first modal FRAY (w) are shown, and compared with those obtained on the
equivalent Kelvin-Voigt model. The real part of the dynamic stiffnessrgge modulysof the
system with memory increases with increasing frequency, and intersects the constant value
pertaining to the Kelvin-Voigt model at the natural frequency of the system with memory, evaluated
for t - o (indicated with a dot-dashed line). Also the imaginary part of the dynamic stiffasss (
modulug intersects the value (linear withy) pertaining to the Kelvin-Voigt model, and the
frequency of intersection is the natural frequency of the system with memory, evaluated r
Comparison of the FRFs in Fig. 6 suggests that the memory effect in the EDDs is not negligible in
the case of wind excitation, as large discrepancies are found between the FRF of the system with
memory and that of the equivalent Kelvin-Voigt system, both at the background and resonant
frequencies. In Fig. 6 the agreement between the results obtained through Eq. (30) and through &
LPA of order 2 (Eq. (50)) is shown, which proves quite satisfactory.
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Fig. 6 Dynacim stiffness and Frequency Response Funciton for the building including memory and for the
equivalent Kelvin-Voigt model

Finally, the building alongwind buffeting response was calculated assuming a logarithmic mean
velocity profile with a roughness length of 0.50 m and a reference wind speed of 15 m/s at 10 m of
elevation. The longitudinal component of turbulence was modelled using the Kaimal spectrum,
together with the Davenport coherence function with a vertical decay coefficjent 10 . A drag
coefficient C, = 1.3 was used, for a mean wind direction orthogonal to 44.20 m face of the
building. The air density was set equal to 1.25 Kgm )

In Fig. 7 the spectra of the building tip displacem¥nand accelerationy are shown in a
logarithmic scale. Three different cases are considered: (a) three coupled modes including memory,
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Fig. 7 Tip displacement and acceleration spectra for
Kelvin-Voigt model
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Fig. 8 RMS tip displacement (a) and percentage error (b) for the building including memory and for the

equivalent Kelvin-Voigt model

(b) three uncoupled modes including memory, and (c) three uncoupled modes neglecting memory.
Comparison of cases (a) and (b) tells that the use of coupled equations of motion is unjustified, as it
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brings the same result as would be obtained using uncoupled equations of motion. Comparison of
cases (b) and (c) shows that the use of a viscous model allows a rather accurate evaluation of th
building accelerations, but brings an inaccurate estimate of the building displacements.

To globally quantify the effect of the viscoelastic memory on the building response, in Fig. 8(a)
the RMS tip displacement and in Fig 8(b) percent error in the prediction of the tip displacement
associated with the use of a Kelvin-Voigt model, are plotted as a functin &A§ expected, the
error increases with increasing the relaxation time, and is larger than 4Q%%& tor

6. Conclusions

In this paper a mathematical model for the evaluation of the buffeting response of buildings
including memory effects associated with viscoelastic memory, has been presented. The model has
been implemented using an approximated procedure called Laguerre Polynomial Approximation, which
allows writing the system equation of motion in differential, rather than integrodifferential, form.

An application to a 25-story building has shown the magnitude of the errors associated with the
use of an equivalent model featuring viscous damping (Kelvin-\Voigt). In particular it was shown that,
while a Kelvin-Voigt model almost accurately predicts the building accelerations, it tends to
underestimate the displacements. The error depends on the relaxation time, and can be as high as 40%.
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