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Abstract. A method of numerical analysis without conducting 3D wind tunnel model tests 
examined in our previous study for predicting vortex-induced oscillation of bridge girders with span
varying geometry. The aerodynamic damping forces measured for plural wind tunnel 2D models
used in the analysis. A further study was conducted to examine the precision of solution obtained 
method. First, the responses of vortex-induced oscillation of two rocking models and a taut-strip 
girder model with span-wise varying geometry were measured. Next, the responses of these mode
numerically analyzed by means of this method, and then a comparison was made between the 
Vr-A-δa contour diagram of each 3D model in the wind tunnel test and the diagram in the num
analysis. Since close correlations were observed between each two Vr-A-δa diagrams obtained in the
model test and in the analysis in cases where the 3D model did not have strong three-dimensiona
findings revealed that the predicted solution proved to be reasonably accurate.

Keywords: vortex-induced oscillation; bridge girders with span-wise varying geometry; 3D nume
analysis; precision of solution; wind tunnel model tests.

1. Introduction

In our previous paper (Yoshimura, et al. 2001), the amplitude of vortex-induced oscillation wa
predicted for a medium-span sine-curved hybrid cable-stayed bridge with span-wise v
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geometry. 3D wind tunnel model studies are generally conducted in order to examin
aerodynamic behavior of such bridges as they have a 3D geometrical shape. However, th
tunnel available for our study had a working section of only a 1.5 m square cross-section, 
was not sufficiently wide to conduct 3D model tests. Therefore, it was necessary to develo
following alternative method for predicting the amplitude of oscillation of the full-scale bridge: 
the aerodynamic damping forces were measured for plural 2D models in the wind tunnel; n
linearized method for a 3D numerical analysis was prepared, and then applied to pred
amplitude of oscillation for this bridge.

Another reason why 2D models were used was that our study was conducted at its preli
design stage when the cheaper 2D model tests were preferable to the more expensive 3D
tests. However, once the precision of the solution obtained by means of this alternative an
method is proved to be sufficiently high to predict vortex-induced oscillation of full-scale brid
this method can be applicable to their detailed wind resistant design by using a small-size
tunnel. Based on this consideration, further studies were conducted to examine the precision
predicted solution. The results of these findings were partially reported at AWAS’02 Confe
(Harada, et al. 2002), but complete details of these results are reported in this paper.

2. Abstract of previous study

An abstract of our previous study (Yoshimura, et al. 2001) on vortex-induced oscillation of th
hybrid cable-stayed bridge shown in Fig. 1 is described in this section. The transverse incli
and the width of the girder respectively vary from -9 to +9 % and from 23.7 to 25.6 m alon
bridge axis as its horizontal alignment has a sine curve with a maximum radius of curvature of 280

First, the aerodynamic damping forces were measured for seven kinds of 1:40 scale 2D 
denoted by <1> to <7> in Fig. 1(b) where the arrow denotes the wind direction. Fig. 2 show
amplitude dependent aerodynamic damping coefficients, H1

* (z), obtained at one of the wind speed
tested. H1

* (z) between <1> and <2>, ..., and <6> and <7> were obtained by linear interpola
Next, the lowest natural mode and frequency in vertical bending shown in Fig. 3(b) were ob
by the eigenvalue analysis using the finite element analytical model shown in Fig. 3(a)
aerodynamic damping forces were input to the nodal points of the analytical model, and the

Fig. 1 Sine-curved hybrid cable-stayed bridge. Elevation and plane figure (a); cross-sections of girde
transverse inclinations of +9, +6, ... -6 and -9% (b); and one of triangular fairings examined (c)
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history response at this wind speed was analyzed. From the results analyzed in the rage 
speed of 5 to 40 m/s, so-called V-A-δa contour diagrams shown in Figs. 4(a) and (b) were obtai
(δa: the aerodynamic damping in logarithm; Figs. (a) and (b): the results for the girder with
without one of the triangular fairings shown in Fig. 1(c)). The findings in these figures reveale
the triangular fairings examined was able to suppress the excitation perfectly for the deck w
structural damping of 0.02 in logarithm as can be seen in Fig. 4. Based on these findings,
decided that the bridge girder with this fairing had to be included in the detailed design.

The findings in a further study revealed that the solutions with high precision could be obt
by using not seven but only three combinations of H1

* (z) for three 2D models.

3. Examination process

A better way of examining the precision of the predicted solutions is to make a compa
between the response of the cable-stayed bridge in Fig. 1 in the 3D wind tunnel model test a
response in the numerical analysis. However, the cross-section of wind tunnel working section
sufficiently wide to conduct 3D model tests of this bridge as described above. Therefore
examination was conducted by using different 3D wind tunnel models from this cable-stayed 

Fig. 2 Amplitude dependent aerodynamic damping
coefficients of girder, H1

* (z), with seven
transverse inclinations obtained in wind
tunnel 2D model tests

Fig. 3 Finite element model used in 3D numerical analys
(a); and natural mode and frequency in 1st mode 
vertical bending (b)

Fig. 4 V-A-δa contour diagrams for girders without and with one of triangular fairings examined, (a) and
obtained in 3D numerical analysis
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In general, bridge girders with span-wise varying geometry are characterized by varying

transverse inclination, depth and/or width. In this study, three kinds of 3D wind tunnel models
prepared for the examination: a rocking model whose ‘depth’ varied along the model
maintaining both the transverse inclination and width constant (Fig. 5); another rocking m
whose ‘width’ varied maintaining the other two constant (Fig. 6); and a taut-strip model w
‘transverse inclination’ varied maintaining the other two constant (Fig. 7). First, the respon
vortex-induced oscillation was measured for each 3D model in the wind tunnel by the free vib
method and Vr-A-δa contour diagram was obtained. Next, the response of each 3D model
numerically analyzed by means of the modal analysis used in our previous study (Yoshimuraet al.
2001). The non-linear aerodynamic damping coefficients, H1

* (z), measured for plural wind tunne
2D models (so called Vr-A-H1

* (z) contour diagrams: reduced wind speed -amplitude -H1
* (z)

diagrams) were used in the analysis. Then, a comparison was made between Vr-A-δa contour
diagram of each 3D model in the wind tunnel test and the diagram in the numerical analysis.

Fig. 5 Rocking bridge girder wind tunnel model
with span-wise varying ‘depth’

Fig. 6 Rocking bridge girder wind tunnel model
with span-wise varying ‘width’

Fig. 7 Taut-strip bridge girder wind tunnel model with varying transverse inclination
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4. Details of wind tunnel models 

4.1. Rocking models

One of the rocking bridge girder models shown in Fig. 5 had a constant deck width (B) of 450
mm with span-wise varying depth (D) from 37.5 to 75 mm: the side ratio of cross-section (D/B)
varied from 1/12 to 1/6. While, another rocking model shown in Fig. 6 had a constant depth 
mm with span-wise varying width from 600 to 300 mm: D/B also varied from 1/12 to 1/6. The
bottom plate width of these models (b) was half the deck width. In order to induce the rockin
motion in vertical bending, one of the model ends was suspended by helical springs, wh
motion of another model end was restrained by piano-wires. A viscous damper was install
vibration control in span-wise direction. The natural mode and frequency of one of the models
5) is shown in Fig. 8.

4.2. Taut-strip model

As shown in Fig. 7, the 475 mm wide, 58 mm deep and 140 mm long ten bridge girder m
segments were suspended by a pair of highly pre-stressed piano-wires. Each piano-wi
connected to a hard helical spring on its end, and viscous dampers were installed for vi
control in windward direction. Although these segments had the same cross-section, their tran
inclinations (the angle of attack), i, varied along the model axis from +2 to +8 deg. (from +3.5
14 %) in a windward direction as shown in Figs. 7 and 9(b). This taut-strip model had one of 
50 scale cross-sections of the cable-stayed bridge girder denoted by <4> in Fig. 1(b). For th
of simplicity, this model had no handrails, and the mass and the structural damping we
simulated (the model had much smaller Scruton number than the required value). The 2 m
between two adjoining segments was sealed with a 0.1 mm thick silicon elastic film. The l
natural mode and frequency in vertical bending are also shown in Fig. 9.

Fig. 8 Natural mode of rocking model (a) with
span-wise varying depth (b)

Fig. 9 Natural mode of taut-strip model (a) with
span-wise varying transverse inclination (b)
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* (z) contour diagrams for numerical analyses

5.1. Rocking models

Since the side ratio of cross-section (D/B) for two rocking models varied along the model ax
from 1/12 to 1/6 as described above, five 2D models with D/B=1/12, 1/10, 1/8, 1/7 and 1/6 were
made to obtain five Vr-A-H1

* (z) contour diagrams which were used in the numerical analyses. 

Fig. 10 Vr-A-H1
* (z) contour diagrams of five 2D models with different side ratios

Fig. 11 H1
* (z) curves based on strip theory, so interpolated that they have to be denoted by lines b

measured five H1
* (z) curves



Precision of predicted 3D numerical solutions of vortex-induced oscillation 19

 the
ent, 

e lines
deck width (B) of these models has a constant value of 450 mm and the deck depth (D) varied 37.5,
45, ... and 75 mm. The non-dimensional aerodynamic damping coefficient H1

* (z) was obtained by
means of the free vibration method and was defined by H1

* (z)=−µδa/π , where µ= m/( ρaλ2) is the
reduced mass, m the mass per unit length, ρa the air density, and λ =B for 3D model with constant
B (Fig. 5) or λ =D for the one with constant D (Fig. 6).

Fig. 10 shows Vr-A-H1
* (z) contour diagrams obtained for these five 2D models. In the figure,

ordinate and the abscissa respectively represent the non-dimensional amplitude of displacemη=
y/B, and the reduced wind speed, Vr=V/( fB), where y is the amplitude of displacement, V the wind
speed and f the frequency. Vr-A-H1

* (z) contour diagrams for 2D deck models with D/B between 1/
12 and 1/10, ..., and 1/7 and 1/6 were obtained by linear interpolation. For example, H1

* (z) curves at
the reduced wind speed of 2.24 were so interpolated that they had to be denoted by th
between the measured five H1

* (z) curves shown in Fig. 11.

Fig. 12 Vr-A-H1
* (z) contour diagrams of four 2D models with different transverse inclinations

Fig. 13 Six H1
* (z) curves obtained by linear interpolation together with four H1

* (z) curves measured at
Vr=2.08
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5.2. Taut-strip model

Since the transverse inclination (wind angle of attack) of the ten segments in the taut-strip 
varied along the model axis from +2 to +8 deg. as described above, ten Vr-A-H1

* (z) contour
diagrams were necessary for the numerical analysis. Ten segments of the taut-strip mode
connected tightly to each other to form a ‘2D taut-strip model’ with transverse inclination of 0
The wind angles of attack of the 2D taut-strip model tested were +2, +4, +6 and +8 deg
corresponded to the transverse inclinations of the segments <1>, <4>, <7> and <10> in Fig.

Fig. 12 shows Vr-A-H1
* (z) contour diagrams for the segments <1>, <4>, <7> and <10>. Vr-A-H1

* (z)
contour diagrams for other six segments were obtained by linear interpolation. For examp
interpolated six H1

* (z) curves together with the measured four H1
* (z) curves at the reduced wind

speed of 2.08 are shown in Fig. 13.

6. Outline of method for 3D numerical analyses

The rocking model used in the numerical analysis is shown in Fig. 14(a). The model spa
divided into forty elements with equal length of ∆sj. The nodal point ‘j’ was located at each elemen
center and the equivalent lumped mass, m, was connected at the spring-mounted model end. In 
figure, zj (t) is the displacement of the nodal point ‘j’ at time ‘t’ and Lj (t) the aerodynamic damping
force acting on the element. While, each segment of the taut-strip model was divided into
elements and a lumped mass mj of the element was located at its nodal point (Fig. 14(b)).

Consider the analytical taut-strip or rocking model oscillating in wind. Although Lj (t) is non-
linear, dependent on the amplitude zj of the displacement zj (t), an approximate solution can b
obtained under the following conditions: in each half of the cycle, only the fundamental harmon
component of the aerodynamic damping force with the amplitude proportional to H1

* (zj)  is taken
into account ( : the amplitude of velocity at the nodal point j ). Under this piece-wise linearized
condition, the modal analysis can be applied by using the finite element analytical model (Fig

z·j

z·j

Fig. 14 Rocking model (a) and taut-strip-model (b) used in numerical analysis
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and according to Scanlan (1978) and Simiu and Scanlan (1978), the aerodynamic dampin
input to the nodal point ‘j ’ is expressed by

(1)

In this study, only vortex-induced oscillation in vertical bending in 1st mode was examined
is, other higher modes in vertical bending and torsional modes were not considered. Therefo
superposition of modes was not necessary, and the equation of motion and the displacemen
{ z( t)} are respectively expressed by Eqs. (2) and (3).

(2)

(3)

In the above equations, q( t) represents the modal coordinate; hs= δs/(2π) the modal damping ratio
obtained in the experiment (depending on the amplitude of displacement); ω the natural circular
frequency (experimental value in Figs. 8 and 9);  the modal mass; [M] the
mass matrix;  the modal aerodynamic damping force; {L(t)} the
aerodynamic damping force vector with ‘j ’ component, Lj( t), given by Eq. (1); [ϕ ] the mode vector
(experimental value, Figs. 8 and 9). All the components in [M ] are zero except (n, n) component of
‘m’ for the rocking model. Substitution of the velocity vector, { }, expressed by Eq. (4) 
{ L(t)} gives Eq. (5).

(4)

(5)

Thus, the term on the right in Eq. (2) is rewritten as 

(6)

where ha is the modal ‘aerodynamic’ damping ratio and is expressed by Eq. (7).

(7)

By using Eqs. (6) and (7), Eq. (2) is rewritten as 

(8)

Lj t( ) ρa Bj
2 ω H1

* zj( ) ∆sj⋅ ⋅ ⋅ ⋅( ) z·j t( )⋅=

q·· t( ) 2hs ω q· t( ) ω2 q t( )⋅+⋅ ⋅+
L t( )
M

-----------=

z t( ){ } ϕ{ }1 ... ϕ{ }K ... ϕ{ }N, , , ,[ ] 0 ... 0 qK t( ) 0 ... 0, , , , , ,( )T⋅ ϕ{ }K qK t( )⋅ ϕ{ } q t( )⋅≡= =

M ϕ{ }T M[ ] ϕ{ }⋅ ⋅=
L t( ) ϕ{ }T L t( ){ }⋅=

z· t( )

z· t( ){ } ϕ{ } q· t( )⋅=

L t( ) ρa ω Bj
2

j
∑ H1

* zj( ) ϕj
2 ∆sj⋅ ⋅ ⋅ ⋅ q· t( )⋅=

L t( ) M⁄ ϕ{ }T L t( ){ }⋅ M⁄ 2 ha ω q· t( )⋅ ⋅ ⋅= =

ha

1
2
--- ρa Bj

2

j
∑ H1

* zj( ) ϕj
2 ∆sj ⋅ ⋅ ⋅ ⋅

Mij ϕi ϕ j⋅ ⋅
j

∑
i

∑
-----------------------------------------------------------------------

δa

2π
--------–= =

q·· t( ) 2 hs ha–( ) ω q· t( ) ω2 q t( )⋅+⋅ ⋅ ⋅+ 0=
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There are two ways to obtain the solution at a given wind speed. One is the way where the
linear’ Eq. (8) with ‘non-linear’ aerodynamic damping ratio, ha, is solved by means of the
Newmark beta method and the time-history response, that is, the ‘divergent’, ‘converge
‘steady-amplitude’ oscillation can be obtained. Another is the way where δa at a given amplitude of
q(t) can directly be obtained by using Eq. (7) in only ‘steady-amplitude’ oscillation. It was ver
that the solutions obtained by both ways could result in the same solution in ‘steady-amp
oscillation.

7. Comparison of results in wind tunnel 3D model tests and those in numerical
analyses

7.1. Rocking models

Vr-A-δa contour diagrams of the rocking models obtained in the wind tunnel 3D model test
the diagrams in the numerical analyses are shown in Figs. 15-18 where Figs. (a) a
respectively illustrate the experimental and the analytical results. In these figures, the numb
each contour represent the aerodynamic damping in logarithm (δa) and the shadowed area th
negative damping region where the excitation was observed. Very close correlations c
observed between the experimental and the analytical results for the model with span-wise v
‘depth’ in both cases where the model end with shallow deck was spring-mounted (or moving

Fig. 16 Vr-A-δa contour diagrams of rocking model with span-wise varying ‘depth’ and with ‘deep d
moving’ obtained in wind tunnel (a) and diagram in numerical analysis (b)

Fig. 15 Vr-A-δa contour diagrams of rocking model with span-wise varying ‘depth’ and with ‘shallow d
moving’ obtained in wind tunnel (a) and diagram in numerical analysis (b)
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15) and the one with deep deck moving (Fig. 16). On the other hand, different res
characteristics were observed between the experimental and the analytical results for the 
model with span-wise varying ‘width’ (Figs. 17 and 18).

7.2. Taut-strip model

The experimental and the analytical results of the taut-strip model with span-wise va
transverse inclination from +2 to +8 deg. together with the ones with a constant value of +6
are respectively illustrated in Figs. 19 and 20. The wind tunnel model responses in the ra
reduced wind speed (Vr) above 2.6 are not shown in these figures as the transition of mode 
vertical bending to torsion was observed at about Vr =2.7. Furthermore, it was difficult to obtain th
free vibration records with sufficiently high precision in this wind speed range as plural uns
limit-cycles were observed. Fairly close correlations are observed in these figures betwe
experimental and the analytical results.

A supplementary examination was conducted for the 2D taut-strip model. In the num
analysis, the mode vector {ϕ}={1} was substituted into Eq. (3). Much closer correlations can 
observed between Figs. 21 (a) and (b).

Fig. 17 Vr-A-δa contour diagrams of rocking model with span-wise varying ‘width’ and with ‘shallow d
moving’ obtained in wind tunnel (a) and diagram in numerical analysis (b)

Fig. 18 16 Vr-A-δa contour diagrams of rocking model with span-wise varying ‘width’ and with ‘deep d
moving’ obtained in wind tunnel (a) and diagram in numerical analysis (b)
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Fig. 19 Vr-A-δa contour diagram of taut-strip model with span-wise varying transverse inclination obtained in
wind tunnel (a) and diagram in numerical analysis (b)

Fig. 20 Vr-A-δa contour diagram of taut-strip model with constant transverse inclination obtained in wind
tunnel (a) and diagram in numerical analysis (b)

Fig. 21 Vr-A-δa contour diagram of 2D taut-strip model obtained in wind tunnel (a) and diagram in numerical
analysis (b)
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8. Precision of numerically predicted solutions and discussion

8.1. Precision of solutions

In the previous section, ‘qualitative’ comparisons were made between Vr-A-δa contour diagrams
obtained in the wind tunnel tests and the diagrams in the numerical analyses. In order to disc
precision of numerically predicted solutions shown in Figs. 15-21, ‘quantitative’ comparisons h
be made except Figs. 17 and 18 where different response characteristics were observed betw
experimental and the analytical results. In this study, the error of solutions were estimated 
following procedures: first, the ratio of the analytical to the experimental values on the follo
three terms was estimated on each contour with the same value of δa: the ‘maximum amplitude’, the
‘critical wind speed’ where the excitation started (on-set) and the ‘super-critical wind speed’ w
the excitation ended. Then, the mean value was calculated for each term. In the error estima
the maximum amplitude, the weighted mean value was calculated. For example, the weight
was taken into account in the case where the maximum amplitude on a contour was one-fifth
absolute maximum amplitude.

The findings for the rocking model with span-wise varying depth and the taut-strip mode
respectively summarized in Figs. 22 and 23 in terms of error (positive: over-estimated). In
figures, ‘low-speed excitation’ represents the small amplitude excitation observed in lower re
wind speed range centered at around 0.9 and ‘high-speed excitation’ the large amplitude ex
in higher speed range centered at around 1.8. 

Of all the cases, the error in the critical and the super-critical wind speeds denoted by 
triangle and an ‘x’, respectively was smaller than that in the maximum amplitude denoted by
circle. As for the rocking model, the findings revealed that the maximum errors were about 
10% in the cases of shallow deck moving ((a) in Fig. 22) and deep deck moving ((b) in Fig

Fig. 22 Errors of predicted numerical solutions in maximum amplitude, critical wind speed and super-c
wind speed for rocking model with span-wise varying depth
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respectively. On the other hand, in the cases of the 3D and 2D taut-strip models, the ma
errors were about 20% and 10%, respectively ((a, b) and (c) in Fig. 23).

8.2. Discussion

8.2.1. Rocking models

The error of 10% for the rocking model with ‘varying depth’ and with ‘deep deck moving’ ((b
Fig. 22) was twice the value for the one with ‘shallow deck moving’ ((a) in Fig. 22). The secon
flow formed on the model close to the end-plate is thought to be one of the possible causes
larger error as the ratios of the end-plate height of 30 cm to the model depth of 7.5 and 3.8 
these two cases were 4 and 8, respectively: the former was not sufficiently large (end-pla
effects). One of the causes of the error of 100% in the 2D rectangular model shown in Fig.
which was reported by Utsunomiya (1984), was probably due to be the end-plate size effects.

As for the rocking model with varying ‘width’ (Figs. 17 and 18), the secondary flow due
strong three-dimensionality is thought to be one of the possible causes of the different re
characteristics. The reason for this was that the taper angle of this model deck width was 1
considerably larger than that of the deck depth of 1.5 deg. for the model with varying ‘depth’.

Fig. 23 Errors of predicted numerical solutions in maximum amplitude, critical wind speed and super-c
wind speed for taut-strip model
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8.2.2. Taut-strip models

The error of 20% observed in the 3D taut-strip model ((a) and (b) in Fig. 23) is most likely d
the following causes: the end-plate size effects; the secondary flow due to 3D geometrical 
the transition of mode which is characteristic of multi-degree-of-freedom systems; the existence of 
few unstable limit-cycles1; and the technical problem to introduce very high tensile force in a 
of piano-wires. The error of 80% in the taut-strip model tests shown in Fig. 23(e), which
reported by Utsunomiya (1984), was probably due to the same causes.

8.2.3. Precision of solution presented in our previous study

In short, the solution obtained by means of the linearized method examined in our previous
(Yoshimura, et al. 2001) proved to be reasonably accurate in predicting the response of v
induced oscillation for bridge girders with span-wise varying geometry in cases where the g
did not have strong three-dimensionality and where the size of the end-plate of 2D mode
measuring the aerodynamic damping force was sufficiently large compared to the model depth

9. Conclusions

In order to examine the precision of solution, which was obtained by the linearized m
provided in our previous study for predicting vortex-induced oscillation of bridge girders with s
wise varying geometry, the responses of vortex-induced oscillation of two rocking and a tau
bridge girder models were measured first in the wind tunnel. The depth, the width or the tran
inclination of each model varied along its axis maintaining the other two constant so as to for
3D geometrical shapes. From these 3D model test results, Vr-A-δa contour diagram was obtained
for each model. In the next stage, the response of each model was numerically analyzed by
of this method. Vr-A-H1

* (z) contour diagrams obtained in 2D wind tunnel model tests were use
the analyses. Then, comparisons were made between the obtained Vr-A-δa contour diagram of each
3D model in the wind tunnel test and the diagram in the numerical analysis. In order to estim
precision of solutions quantitatively, the ratio of the analytical to the experimental values o
following three terms was calculated on each contour: the ‘maximum amplitude’, the ‘critical 
speed’ and the ‘super-critical wind speed’ where the excitation ended, and then the mean v
the ratios, that is, the error was calculated for each term.

Our findings revealed that the errors of 5-10% were observed in one of the rocking models
2D taut-strip model, and that the error of 20% was observed in the 3D taut-strip model. Als
error could hardly be estimated in another rocking model which had strong three-dimensiona
different response characteristics were observed between the experimental and analytical 
The axial secondary flow formed on the model due to 3D geometrical shape as well as insu
size of the end-plate are thought to be one of the possible causes of the error above 10%. In
taut-strip model, the error is most likely due to the following causes: the transition of mode wh
characteristic of multi-degree-of-freedom systems; the existence of a few unstable limit-cycles; 

1An initial amplitude of velocity was imposed to the 2D model not by an actuator but by hands in th
vibration method. Since the model had a little high natural frequency of about 6 Hz, there was a diffic
finding out the amplitude of a few unstable limit-cycles exactly.
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the technical problem of introducing very high tensile force in a pair of piano-wires.
Findings of our study revealed that the solutions were reasonably accurate in predictin

response of vortex-induced oscillation for bridge girders with span-wise varying geometry in 
where the girders did not have strong three-dimensionality and where the size of the end-pla
sufficiently large compared to the model depth.
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