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Abstract.  Flutter stability is one of major concerns on the design of long-span cable-stayed bridges.

Considering the geometric nonlinearity of cable-stayed bridges and the effects due to the nonlinear wind-
structure interactions, a nonlinear method is proposed to analyze the flutter stability of cable-stayed
bridges, and a computer program NFAB is also developed. Taking the Jingsha bridge over the Yangtze
River as example, parametric analyses on flutter stability of the bridge are carried out, and some
important design parameters that affect the flutter stability of cable-stayed bridges are pointed out.
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1. Instruction

Modern cable-stayed bridges, which were introduced in the mid 1950s and have been rapidly
developed over the recent 30 years, are becoming very popular all over the world. The progress car
be mainly owed to the development in the fields of computer technology, high strength steel cables,
orthotropic steel deck and construction technology. Today, the cable-stayed bridge is considered as
the most suitable solution for highway bridges with spans ranging from 200 m to about 1000 m
because ofits aesthetic appeal, economic grounds and ease of erection. Currently, the world’s
longest cable-stayed bridge is the Tatara bridge in Japan with a central span of 890 m. In recent
years, many projects crossing the straits are being planned around the world, and a lot of long-spar
especially super long-span cable-stayed bridges or suspension bridges are proposed in thes
engineering projects. The increase in span length combined with the trend to more shallow or
slender stiffening girders in cable-stayed bridges has raised concern about their behaviors under bott
service and environmental dynamic loadings such as traffic, wind and earthquake loadings. Among
them, the wind stability is one of the major concerns for the designers. Generally, there are two
important types of the wind instability for cable-stayed bridges including the aerostatic instabilities
due to the static wind action and the aerodynamic instability due to the dynamic wind actions. The
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flutter instability is the most important type of the aerodynamic instability, whereas the torsional
divergence and the lateral buckling are the main types of aerostatic instability. However, the critical
wind speed of flutter stability is generally less than that of aerostatic stability, and therefore as far as
the wind stability is concerned, the flutter stability plays an important role in the wind-resistant
design of cable-stayed bridges.

Comprehensive investigations have been made on the static behavior of cable-stayed bridges
under the dead loads, traffic and static wind loading. The effects of some design parameters on the
static characteristics such as the ratios of side span to main span and the tower’s height to mair
span length, the tower’s lateral configuration, and the subsidiary piers in side spans etc have beer
investigated. Besides the static characteristics, the dynamic characteristics and further the flutter
stability are both inevitably affected by theses parameters. But until now, few investigations have
been made concerning the influence of these parameters on flutter stability of cable-stayed bridges,
and the roles of these effects in flutter stability need to be further investigated.

In previous flutter analysis, the linear method is usually used, which is based on the undeformed
initial structural configuration in wind flow, the geometric nonlinearity of bridge structures and the
effects due to the nonlinear wind-structure interaction are neglected (Agar 1989, Scanlan and Jones
1990, Jairet al 1996, Namini 1992, Ge and Tanaka 2000, Tareikal 1992). But for long-span
cable-stayed bridge, they will be greatly deformed under the static wind action due to their great
flexibility. The large deformation, on the one hand, will affect structural stiffness and further the
dynamic characteristics. On the other hand, the aerodynamic shape of deck section will be
remarkably changed, which leads to the significant variation and non-uniform distribution of the
wind forces acting on the bridge (Boonyapimstoal 1994, Cheret al 2002, Zhanget al 2000 and
2002). These effects will finally affect the aerodynamic response of the bridge under the dynamic
wind action. Therefore, flutter analysis should be performed on the deformed structure under the
static wind action to consider these effects.

In this paper, a method of three-dimensional nonlinear flutter analysis is presented, and a
computer program NFAB is also developed. Taking the Jingsha bridge over the Yangtze River as
example, parametric analyses on flutter stability of the bridge are carried out by NFAB, and some
important design parameters that affect the flutter stability of cable-stayed bridges are pointed
out.

2. Method of nonlinear flutter analysis

For long-span cable-stayed bridges, the geometric nonlinearity is strong due to the large
deformation, cable sag and beam-column effects under the wind loading. In addition, the aerostatic
and aerodynamic forces, which are two important types of the wind forces acting on the bridges, are
displacement-dependent and the wind-structure interaction is nonlinear. Therefore, flutter analysis
should be based on the equilibrium position under the static wind action. In general, flutter analysis
is to find out the critical condition of flutter stability by gradually increasing the wind speed. In
order to consider the effects due to the nonlinear wind-structure interaction, at every wind speed
increment, the following two steps will be performed: (1) nonlinear aerostatic analysis to predicate
the deformed equilibrium position under the static wind action; (2) aerodynamic response analysis
on the deformed bridge structures under the static wind action to predicate the dynamic response
under the dynamic wind action.
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2.1. Three-dimensional nonlinear aerostatic analysis

The aerostatic effect is usually treated as an action of 3 aerostatic components of wind forces on
bridge structures, namely the drag fofeg lift force Fyand twist momenMy, as shown in Fig. 1.
However, the aerostatic forces change with the deformation of bridge structures and can be
described as a function of the effective attack anglbetween the wind flow and deformed bridge
deck as shown in Fig. 1, which is the sum of initial wind attack afigénd the torsional anglé
caused by the static wind action. Meanwhile, the torsional angles vary along the bridge axis, and
therefore the aerostatic forces are distributed un-uniformly along the bridge axis.

The static equilibrium equation of structural system under the static wind action can be expressed as:

[K(w){u} = P(Fy(ac), F,(ac), M(a.)) (1)

where [K(u)] is the nonlinear stiffness matrix including elastic stiffness matrix and geometric stiffness
matrix; {u} is the nodal displacement vectdP{F(a.), F,(ac), M(a.)) is the static wind load.

At a given wind speetl, Eq. (1) can be solved by the iteration method due to the non-linearities
of both the bridge structure and the aerostatic forces. The procedure of determining the equilibrium
position of the bridge under the static wind action can be summarized as follows:

1. Calculate the aerostatic loaBf at the initial wind attack angles, leF§{}={ Fo}.{ F1}={0}.

2. Calculate the aerostatic load incremefEI={ F,} —{F}, let { F{}={ F,}.

3. Predicate the deformed position under the incremental aerostatic load by three-dimensional

geometric nonlinear analysis.

4. Determine the effective wind attack angle of the deck, and recalculate the aerostati€;}oad {

5. Check if the Euclidean norm of aerostatic coefficients is less than the prescribed tolerance. The

Euclidean norm is expressed as (Boonyapiatyal 1994):
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Fig. 1 The effective attack angle
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where g is the prescribed convergence accurdgyijs the total number of the nodes subjected to
the wind force.

If satisfied, the iteration is convergent. Otherwise repeat steps (2)-(4) until Eq. (2) is satisfied or
the maximum number of iterations is reached.

2.2. Aerodynamic response analysis

On the deformed equilibrium position under the static wind action, aerodynamic response analysis
can be then performed. Under the self-excited aerodynamic loading, the equation of motion can be
expressed as:

[MI{u(x, O} +[DJ{u(x, )} +[K(WI{u(x, )}

= 2PUH ALK, al{u(x, O} + S[ALK, al{u(x 0} 3)

where M], [D], [K(u)] are the mass, damping and nonlinear stiffness matrices respectively;
u(x,t), u(x,t), u(x,t) are the displacement, velocity ancceleration vectors of the dynamic
response respectivelyp is the air density,U is the mean velocity at the bridge deck level;
[As(k, )], [Aq4k, a.)] are the aerodynamic stiffness and aerodynamic damping matrices, which
are assembled by the element's aerodynamic stiffness njadkK and aerodynamic damping
matrix [A4]° obtained from the well-known unsteady aerodynamic forces or self-excited forces
generally represented by the 18 experimentally determined flutter derivatives (Scanlan and Jones
1990).
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4)

whereB is the deck widthL is the element’s lengthK is the reduced frequend¢,=Bw/U, w is
the response angular frequencily’, A, P;(i=1~6) are the experiment determined flutter
derivatives, which are the functions of the reduced frequency and the effective wind attaak.angle
due to the static wind action.

The modal analysis method is used herein to solve Eq. (3). For a dynamic system, the response
can be separated into the spatial (natural mode) and time-dependent (generalized coordinate
components as

{u(x =l el E(0)} ®)

where Jg] is mode matrix obtained from the dynamic characteristics analysis on the deformed
bridge structure under the static wind actiog(t)} is the generalized coordinate vector, which can
be assumed as a damped harmonic form and represented in the complex plane as:

{E(0}={ Riexp(At) (6)

where {R} is the response amplitude vector, whose components reflect the participation of each
mode in flutter;A=(d+i)w; o is the response logarithmic decremegt;s the response angular
frequency;i = J-1 .

Substituting Egs. (5) and (6) into Eq. (3), then pre-multiplying the transpose of the mode matrix
[@], and considering the orthogonality between modes and existence of a nontrivial solution, a
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determinant can be yielded as

v 9T+ (0 s+ (161 - Spu (A0 + 2AgliK] | = o ™)
where, M9=[¢"[M][ ¢, [D°]=[¢"[D][¢@, [KY=[¢]"[K(u)][¢] are the generalized mass, damping
and stiffness matrices respectivelyAZ[=[ ¢ [As(k, ao)l[@], [AS1=[@ [Aak,ae)l[¢@] are the
generalized aerodynamic stiffness and damping matr&dg;o+i).

For a given wind speed, Eg. (7) can be solved by the PK-F method (Namini 1992). The value
S, which makes the determinant equal to zero, represents the actual response. The logarithmic
decrement and the angular frequency of response can be computed as:

_ Re(S) _uU
o= Im(S)’ w= BIm(S) (8)

where Re and Im are the real and imaginary parts of a complex variable respectively.

Depending on the sign of the logarithmic decrement, the response can be defined toOpe:
stable;d=0, neutrally stablep>0, unstable. The wind speed that produces the neutrally stable is
termed as flutter speddk, with the corresponding flutter frequenay.

3. Computer implementation

Based on the above method, a computer program of three-dimensional nonlinear flutter analysis
NFAB is developed to analyze the flutter stability of long-span bridges. The computational flow can
be summarized as follows:

(1) Input the bridge finite element model, flutter derivatives and aerostatic coefficients etc.

(2) Determine the equilibrium position under the dead load by three-dimensional geometric
nonlinear analysis.

(3) Calculate the current wind spedd,, starting withU,,,, and incrementing wittJj,..

(4) Predicate the aerostatic equilibrium position under current wind speed by three-dimensional
nonlinear aerostatic analysis, which is the initial state of the motions under the dynamic wind
action.

(5) Structural dynamic characteristics is analyzed on the deformed aerostatic equilibrium position
by the subspace iteration method, and the modes are selected to participate in flutter analysis.

(6) Calculate the effective wind attack angle according to the deformation obtained in step (4),
the aerodynamic stiffness matrix and the aerodynamic damping matrix are recalculated to take
into account the nonlinear and three-dimensional effects of the aerodynamic force. Using the
changed dynamic characteristics obtained in step (5), the determinant is established and
solved to predicate the response state.

(7) Define the state of aerodynamic response according to the logarithmic decrendan@, If
aerodynamic instability does not happen, then return to step (3), and repeat steps (4)-(6) until
the flutter critical condition iseached.

To verify the accuracy and efficiency of the above method and the program, a simple-supported
beam of 300 meters is taken as example as shown in Fig. 2. In the aerodynamic stability analysis,
flutter derivatives of the airfoil are used (Scanlan and Tomoko 1971). Structural damping ratio is
assumed to be zero. Table 1 shows the modal frequencies and shapes of the beam under the de.
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Fig. 2 The simple-supported beam and its cross section
Table 1 Modes participating in flutter
Mode No. Frequency (Hz) Mode shape
1 0.1788 S-V
2 0.5010 S-T
3 0.7153 AS-V
4 0.9897 AS-T

Note: S-symmetric, AS-asymmetric, V-vertical bending, T-torsion

Table 2 Comparison between the analytical results and accurate solutions
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Results Critical wind speed (m/s) Frequency (Hz)
NFAB 139.15 0.3789
Accurate solutions 139.9 0.3801
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Fig. 3 Evolutions of the response logarithmic decrement and frequency with wind speed

load, which are selected to participate in flutter. The critical wind speed and frequency obtained
analytically are compared to the accurate solutions as shown in Table 2. The evolutions of the

logarithmic decrement and frequency of response with wind speed are plotted in Fig. 3.

As seen in Table 2, the results obtained analytically are just identical to the accurate solutions.
Moreover as shown in Fig. 3, the dynamic response from the stable condition to the unstable
condition can be clearly predicated. Therefore, it is demonstrated that the method and its computer
program are both accurate and efficient to predicate the response under the dynamic wind action.
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4. Parametric study

In order to comprehensively investigate the flutter stability of cable-stayed bridges, parametric
analyses including the ratios of side span to main span and the tower’s height to main span length,
the tower’s lateral configuration, and the subsidiary piers in side spans have been performed on the
Jingsha bridge over the Yangtze River by the computer program NFAB.

The Jingsha bridge is a cable-stayed bridge with a center span of 500 m and two side spans o
200 m. The deck is a pre-stressed concrete structure of 27.0 m wide and 2.0 m high as shown in
Fig. 4. The towers are H-shaped with 137-m height. There are two fan-shaped cable planes. A
three-dimensional finite element model is established for the bridge as shown in Fig. 5, in which the
towers and stiffening girders are modeled by three-dimensional geometric nonlinear beam elements,
and the cables are modeled by three-dimensional geometric nonlinear truss element. The connection
between the bridge components and the supports are properly modeled. The deck is idealized to ¢
three-girder finite element model. The aerostatic coefficients and flutter derivatives under different
wind attack angles are obtained from the section-model tests of the bridge (Song 1999). Structural
damping is assumed as 1.0%. Since flutter stability of the bridge is the worst at the wind attack
angle of -3, the following analyses are all at this wind attack angle.
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Fig. 4 General view of the Jingsha bridge over the Yangtze River

Fig. 5 Three-dimensional finite element model of the Jingsha bridge
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It is to be noted that in the following analytical cases, the cross section areas of the stay cables
are determined by the internal force under the dead and live loads with a safety factor of 2.5, and
the sectional parameters of the stiffening girder including the cross section area, the bending and
torsional moments of inertia, mass and mass moment of inertia per unit length etc are also
determined on the basis of the supporting capacity of the stiffening girder.

4.1. Ratio of side span to main span

Statistics show that for cable-stayed bridges, the side span to main span ratio usually ranges fron
1/3 to 1/2 (Yan 1996). To investigate the effect of the side span to main span ratio on flutter
stability, the cases of side spans of 166 m, 200 m and 250 m (the side span to main span ratios ar
0.33, 0.4 and 0.5 respectively) with the same center span are analyzed, the critical wind speeds o
flutter stability obtained analytically are given in Table 3.

As the side span length increases, the critical wind speeds are slightly increased as seen in Tabl
3. The fact can be owed to the increase of the torsion to bending frequency ratio as given in Table
4. Meanwhile, the vertical stiffness of the bridge is greatly decreased with increasing of the side
span length. Thus, the side span length can be determined according to the requirement of the
bridge supporting capacity.

4.2. Ratio of the tower’s height to main span length

It is to be noted that the tower’s height discussed here is measured from the bridge deck level.
Therefore, it is directly related to the inclined angles of the stay cables, which has important
influence on the bridge stiffness and the dynamic characteristics. For cable-stayed bridges, the
tower’s height to main span length ratio usually ranges from 1/4 to 1/7, but are mostly close to 1/5
(Yan 1996). To investigate the effect of the tower’s height on flutter stability, the cases as shown in
Table 5 are analyzed, in which the other design parameters are all the same.

As can be seen in Table 5, the critical wind speed is achieved to the maximum value when the

Table 3 The critical wind speeds under different side span length
Side span length (m) 166 200 250
Critical wind speed (m/s) 73.4 74.5 76.8

Table 4 The modal frequencies and the torsion to bending frequency ratios

Side span length (m) 166 200 250
1-S-V(Hz) 0.1925 0.1817 0.1406
1-S-T(Hz) 0.3866 0.3911 0.3451
Frequency ratio 2.008 2.1524 2.535

Table 5 The critical wind speeds under the different tower’s height to main span length ratios
Ratios of the tower’s height to main span length 1/4.3 1/5 1/6 1/7
Critical wind speed (m/s) 74.5 88.8 59.3 52.4




288 Xin-Jun Zhang and Bing-Nan Sun

ratio of tower’s height to main span length is assumed as 1/5. With the decrease of tower’s height,
the efficient supporting capacity of the stay cables is decreased, which results in the great decreas
of structural stiffness and further the modal frequencies especially the torsional frequencies. The
critical wind speeds are therefore significantly decreased. Besides the economics and supporting
capacity of the bridge, to a great extent, the favorable tower’s height can be determined by the
wind-resistant requirement of the bridge.

4.3. The tower’s lateral configuration

Generally, the arrangement of cable planes is parallel or inclined, which is directly related to the
lateral configuration of the towers. In practice, the H-shaped, A-shaped and the reverse Y-shaped
towers (above the deck level) are usually designed in modern cable-stayed bridges as shown in Fig. ¢
(Yan 1996). To investigate the effect of the tower’s lateral configuration on flutter stability, the
bridges with different tower’s lateral configurations are assumed and analyzed, in which the other
design parameters are the same for all the cases. The modal frequencies and the critical wind speec
obtained analytically are both given in Table 6.

The frequencies of the 1st symmetric vertical bending modes are almost the same for all the
cases, but the torsional frequencies in the other two cases are very close and both greater than th:
in the case of H-shaped towers designed for the bridge. As compared with the case of H-shapec
towers, the torsional frequencies in the other two cases are greatly increased, and the amplitudes ar

(a) H-shaped (b) A-shaped (c) Reverse Y-shaped

Fig. 6 The tower’s lateral configurations

Table 6 The modal frequencies and the critical wind speeds under different tower’s lateral configurations

Frequency (Hz)

Tower’s configuration Critical wind speed (m/s)
1-s-v 1-S-T
H-shaped 0.1817 0.3911 74.5
A-shaped 0.1818 0.5678 95.2

Reverse Y-shaped 0.1808 0.5712 96.2
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Table 7 The modal frequencies and the critical wind speeds under different number of the subsidiary piers

Frequency (Hz)

Number of the subsidiary pies Critical wind speed (m/s)
1-S-v 1-S-T
0 0.1817 0.3911 74.5
1* 0.2818 0.4298 74.5
2% 0.2908 0.4348 74.9

Note: *the subsidiary is located 70 meters away from the abutment;
*Two subsidiary piers are located 70 m and 140 m away from the abutment respectively.

greater than 45%. With the significant increase of the torsional frequencies, the critical wind speeds
are therefore significantly increased as shown in Table 6. Similarly, the critical wind speeds in the

later two cases are increased by greater than 21 m/s. In fact, the arrangements of cable planes al
inclined under the later two cases, whereas they are parallel in the case of H-shaped towers. Thu:
for cable-stayed bridges, the arrangement of inclined cable planes is helpful to improve the flutter

stability of cable-stayed bridges, the A-shaped and the reverse Y-shaped towers are both
aerodynamically favorable.

4.4. The subsidiary piers in side spans

For cable-stayed bridges, a few of subsidiary piers are usually installed in side spans (Yan 1996).
As viewed from the dynamic characteristics, the subsidiary piers are helpful to increase the vertical
bending stiffness. To investigate the effect of the subsidiary piers in side spans on the flutter
stability, the cases under different number of the subsidiary piers in side spans are analyzed, the
results are given in Table 7.

It is found from Table 7 that the subsidiary pies have almost no effect on the critical wind speeds.
The fact can be attributed to the small variations of the torsional frequencies even though the
vertical bending frequencies are greatly increased as the subsidiary piers are installed in side span:s
Therefore, the subsidiary pies can be installed in side spaowding to the requirement of the
bridge supporting capacity.

5. Conclusions

Based on the method of nonlinear flutter analysis, parametric studies have been made for the
Jingsha bridge over the Yangtze River, the effects of some design parameters on flutter stability are
investigated. Some conclusions are summarized as follows:

(1) The critical wind speed is slightly affected by the side span length. Thus, the side span length

can be determined according to the requirement of the bridge supporting capacity.

(2) The tower’s height has important influence on the flutter stability of cable-stayed bridges.
With the decrease of the tower’s height, the critical wind speed will be greatly decreased. As
the tower’s height to main span length ratio is attained to 1/5, the critical wind speed will be
achieved to the maximum value.

(3) Flutter stability is remarkably improved by the arrangement of inclined cable planes.
Therefore, it is suggested that the inclined cable planes should be designed for long-span anc
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especially super long-span cable-stayed bridges.

(4) The A-shaped and the reverse Y-shaped towers are both aerodynamically favorable for cable-
stayed bridges due to the inclined cable planes.

(5) The subsidiary pies in side spans have almost no influence on flutter stability of cable-stayed
bridges. Thus, the subsidiary pies can be installed in side spans according to the requirement
of the bridge supporting capacity.
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