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Abstract. This paper describes a simple and practical approach through the application of L
Stochastic Estimation (LSE) to reconstruct wind-induced pressure time series from the covariance
for structural load analyses on a low building roof. The main application of this work would be
reduction of the data storage requirements for the NIST aerodynamic database. The approach is b
the assumption that a random pressure field can be estimated as a linear combination of som
known pressure time series by truncating nonlinear terms of a Taylor series expansion. Cova
between pressure time series to be simulated and reference time series are used to calculate the e
coefficients. The performance using different LSE schemes with selected reference time se
demonstrated by the reconstruction of structural load time series in a corner bay for three typica
directions. It is shown that LSE can simulate structural load time series accurately, given a han
reference pressure taps (or even a single tap). The performance of LSE depends on the choic
reference time series, which should be determined by considering the balance between the accura
storage requirements and the complexity of the approach. The approach should only be used 
determination of structural loads, since individual reconstructed pressure time series (for loca
analyses) will have larger errors associated with them.

Key words: aerodynamic database; data reduction; Linear Stochastic Estimation; low buildings; pr
time series; reconstruction; structural loads.

1. Introduction

Due to the advances of electronically-scanned pressure measurement technology, infor
storage and computational capacities, increasing attention has been paid to database-assisted design
(DAD) for wind effects and wind loading on low-rise buildings (e.g., Simiu and Stathopoulos 1
Whalen et al. 1998, Rigato et al. 2001, Chen et al. 2002a, 2002b, 2003). In recognition of the fa
that DAD would be more realistic and more risk-consistent than conventional wind codes, an
lead to more economical designs, it has been proposed as a future code alternative (Rigatet al.
2001). However, there are some concerns associated with the use of aerodynamic databases
data-storage problems, on one hand, and a limited number of building configurations, on the
Because aerodynamic databases consist of long-term time series of pressures acquired at dens
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distributed tap locations covering the entire building envelope for many different conditions 
wind direction, building geometry, and flow conditions), the demand on storage space is extre
is estimated that the database used for codification will result in about 6 Gigabits of storag
contains the same building configurations as the original 1970s data (i.e., three building heigh
three roof slopes in one terrain) (Stathopoulos 1979). Our previous work (Chen et al. 2002b, 2003)
has focused on methods to interpolate the basic data to other building configurations for which n
exist. Although the huge quantity of pressure time series data can be stored on CDs, this will 
negative impact on the practicality and feasibility of DAD. Therefore, efforts are needed for exp
accurate techniques which can be used to effectively reduce the size of the aerodynamic d
Linear Stochastic Estimation (LSE), based on the covariance matrix, offers such an approach.

Stochastic estimation, generally speaking, is an approximation of a random variable in ter
some other random variables by truncating higher-order terms of a Taylor series expansion
surface pressure field, P(x, y; t), the stochastic estimate of the pressure field is the best mean s
estimate of P(x, y; t) given some reference data, Pref (t). This is called the conditional average of
P(x, y; t) given Pref (t), denoted as E(P |Pref) (Adrian 1975). Often, linear stochastic estimation 
used to estimate a random variable as a linear combination of some known reference variable

One advantage of this approach is that it has the ability to reconstruct the whole random field b
using only a few reference variables in conjunction with the covariance matrix. Clearly,
indicates that LSE has the potential to reduce the data-storage requirements for an aerod
database by the storing covariance matrix and some selected reference time series. In aition,
storing covariances could allow simpler usage by designers whose needs are less sophistica
those using the database for time series analysis. In other words, the reconstructed d
associated with covariance matrix could be more flexible. For example, the stored cova
matrices could be directly used with Load-Response-Correlation (LRC) method develope
Kasperski (1992) and Holmes and Syme (1994) to calculate expected effective static load distributions
corresponding to a peak structural load effect (e.g., bending moment, support reaction). Furthermore,
this could remove the need to estimate the peak factors required with the LRC method and 
therefore, yield the true advantage of having the aerodynamic database. 

As a simple and practical approach, LSE was first applied to the field of turbulent flow
Adrian (1975) in order to estimate the large-scale organized (i.e., coherent) turbulent stru
Since its introduction in turbulence, LSE has been successfully applied to simulate a vari
turbulent flows, such as wakes, pipe flows, shear layers, and jets. These examples inclu
estimation of conditional eddies (i.e., the flow field described by conditional averages) (Adrian
1975, Tung and Adrian 1980, Adrian and Moin 1988, Adrian et al. 1989), and the reconstruction o
velocity fields (Druault et al. 1999, Delville et al. 2000, Péneau et al. 2000) by using the
“conditional information” specified at one or more reference locations. A review of LSE in
analysis of turbulent velocity fields has been presented by Adrian (1994). 

The main objective of the present work is to develop a simple and practical approach wh
capable of reconstructing wind-induced pressure time series for structural load analyses 
envelope of low buildings, given only a handful of reference pressure taps. In other words, the L
approach can be viewed as a means to predict the whole pressure field by knowing the stat
pressure field at a limited number of tap locations based on the two-point spatial covariance
approach has the potential to reduce the size of aerodynamic databases, providing a 
database for numerical structural analysis.



The use of linear stochastic estimation for the reduction of data in the NIST aerodynamic database109

n is
 a linear
 to a
ure time
ressure

ues are

d the

ld.

by its

,

ar
 linear
 in Eq.

imation
ed by
2. Background

2.1. Review of linear stochastic estimation

LSE is described in (Adrian et al. 1975, 1988, 1989, 1994), but for convenience, the derivatio
presented here. LSE is based on the assumption that a random field can be considered as
combination of some other random variables that are known and correlated. Applying this
surface pressure field (herein, non-dimensionalized pressure coefficients are used), the press
series at a tap location (assuming the ergodicity of the time series) can be estimated with p
time series at some reference tap locations, (also denoted as ), as :

(1)

where  is the linear estimate of pressure time series Cp(x, y; t) at a location (x, y), bi(x, y)
is the estimation coefficient associated with the ith reference pressure time series, b0(x, y) is a bias
term which is required in the present work since pressure time series with non-zero mean val
considered directly (if only fluctuations are considered, b0 is equal to zero), and N is the total
number of the reference pressure time series. In LSE, the most important step is to fin
estimation coefficients, bi, i=0, 1, ..., N, by using two-point correlations, as shown below.

LSE is developed from the linear estimate of the conditional average of a random fie
Accordingly, given the state of the pressure field at some reference pressure taps, , i=1, 2,
..., N (represented by an event data vector ), the pressure field can be estimated 
conditional average,

(2)

where  is the conditional average of the pressure field given a set of event data 
and can be viewed as a nonlinear function for , denoted as f( ). By expanding f( ) in a
Taylor series about =  as:

(3)

or in a tensor form,

(4)

where f ' (�) is a derivative function, bi , dij are estimation coefficients. By truncating the nonline
terms of the Taylor series expansion (i.e., only using the constant and first-order terms), the
stochastic estimate of the conditional average of the pressure field is derived, as expressed
(1). In this case, LSE is numerically equivalent to linear nonhomogeneous mean-square est
method, described by Papoulis (1984) or the multi-variable linear regression model discuss
Walpole and Myers (1985), as briefly reviewed below.

Cpref
xi yi ; t,( ) Cpi ref,

t( )

Ĉp x y; t,( ) bi

i 1=

N

∑ x y,( )Cpref
xi yi; t,( ) b0 x y,( )+=

Ĉp x y, ; t( )

Cpi ref,
t( )

Cpref

Ĉp x y; t,( ) E Cp|Cpref
( )= linear estimate of

f Cpref
( )= linear estimate of

E Cp|CPref
( ) Cpref

Cpref
Cpref

Cpref

Cpref
Cpref

E Cp|Cpref
( ) f Cpref

( ) f Cpref
( ) f ′ Cpref

( ) Cpref
Cpref

–( ) ...+ += =

E Cp|Cpref
( ) b0 biCpi ref,

dij Cpi ref,
Cpj ref,

...++ +=
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The estimation coefficients, bi, i=0, 1, ..., N, are determined by minimizing the mean square
value (ε) of the resulting error (e). The mean square value is defined as:

(5)

where , and M is the length of pressure time series record.
According to the orthogonality principle (Papoulis 1984), the mean square error ε is minimum if

bi (i = 0, 1, ..., N) are such that the resulting error e is statistically orthogonal to each of the data. In
other words, ε is minimum if the partial derivative of ε with respect to each bi is equal to zero,

(6)

Thus, expanding Eq. (4) yields :

(7)

and

(8)

By setting k=1, 2, ..., N, Eqs. (7) and (8) can be written in a (N+1)� (N+1) system of linear
algebraic equations as follows:

(9)

Eq. (9) can be transformed into a N� N system of equations based on the covariance matrix
multiplying the first row by , , ..., , respectively, and then subtracting 
remaining equations, respectively. This yields:

ε e2 Ĉp x y; t,( ) Cp x y; t,( )–[ ]2
= =

1
M
----- b0 bi

i 1=

N

∑ Cpref
xi yi ;, t( )+ Cp x y; t,( )–

 
 
 

2

t 1=

M

∑=

e Ĉp x y, ; t( ) Cp x y, ; t( )–=

∂ε
∂bi

------- 0= i 0 1 … N, , ,=

∂ε
∂b0

-------- 2
M
----- b0 bi

i 1=

N

∑ Cpref
xi yi ; t,( )+ Cp x y; t,( )–

 
 
 

t 1=

M

∑ 0= =

∂ε
∂bk

-------- 2
M
----- b0 bi

i 1=

N

∑ Cpref
xi yi; t,( )+

 
 
 

Cp x y; t,( )– Cpref
xk yk, ; t( )

 
 
 

0=
t 1=

M
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1 Cp1 re f, Cp2 ref, … CpN ref,

Cp1 re f,
Cp1 re f,

Cp1 re f,
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Cp2 ref,
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CpN ref,
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(10)

or,

(11)

(Eq. (10) is called the Yule-Walker equation (Papoulis 1984)) where each element, cij in [C], i, j=1, 2,
..., N, is the spatial covariance (zero time lag) between the reference time series at locations i and j ,
which is calculated with their fluctuations as follows :

(12)

(if i = j, it is the variance) where the pressure fluctuation is defined as :

(13)

ci0 in {C0}, i=1, 2, ..., N, is the covariance between the ith reference pressure time series and t
pressure time series to be simulated, which is given by :

(14)

By solving Eq. (11), the estimation coefficients bi (x, y) for simulating Cp(x, y ; t), can be easily
computed :

{ B}=[ C]−1{ C0} (15)

Then, by substituting bi ( i=1, 2, ..., N) into the first row of Eq. (9), b0 is obtained :

(16)

Finally, by substituting the calculated estimation coefficients bi (from Eqs. (15) and (16)) into Eq.
(1), the pressure field can be estimated.

It is noted that although LSE and the linear mean-square estimation method or the multi-variable
linear regression method are numerically equivalent, there still exists the difference which lies
interpretation. Adrian (1994) states that “the mean square error of the linear estimate of Cp(x,y)
must be large when Cp(x, y) is uncorrelated with , due, for example, to a large separa

c11 c12 … c1N

c21 c22 … c2N

… … cij …
cN1 cN2 … cNN

b1

b2

…
bN 

 
 
 
 
 
  c10

c20

…
cN0 

 
 
 
 
 
 

=

C[ ] B{ } C0{ }=

cij C′pref
xi yi ;t,( )C′pref

xj yj ;t,( )=

Cpref
xi yi;t,( )Cpref

xj yj ;t,( ) Cpref
xi yi,( )Cpref

xj yj,( )–=

C′p x y;t,( ) Cp x y;t,( ) Cp x y,( )–=

ci0 C′pref
xi yi ;t,( )C′p x y;t,( )=

Cpref
xi yi ;t,( )Cp x y;t,( ) Cpref

xi yi,( )Cp x y,( )–=

b0 Cp Cpref

i 1=
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∑ xi yi,( )bi–=
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between (x, y) and the location of the event data, the error of the linear stochastic estima
E(Cp| ) may be small because E(Cp| ) also vanishes as the separation becomes large”.

2.2. Reconstruction methodology

Fig. 1 describes the framework for reconstructing individual pressure time series for the an
of structural loads. It is shown that once the estimation coefficients bi, i=0, 1, ..., N, have been
determined by using the covariance information in the pressure field (according to Eqs. (15
(16)), pressure time series at the required location can be estimated according to Eq. (1), gi
reference pressure taps.

Cpref
Cpref

Fig. 1 Reconstruction methodology using the LSE
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These reconstructed pressure time series can then be used to calculate structural load tim
on a desired region, or they can be input to a structural analysis program (e.g., Whalen et al. 1998).
Bay uplift, frame uplift and bending moments are typical examples of the structural load
concern in the design of low buildings for wind. They are calculated from the pressure time 
as, for example,

(17)

(18)

(19)

where , ,  denote the bay uplift, frame uplift, and bending moment time se
respectively.  is the linear estimate of pressure time series at location i, A is the total
area of a roof zone, W is the building width, ∆Ai is the tributary area of tap i, Ii is the corresponding
influence line coefficient, Li is the bending moment arm of the simulated pressure time serie
location i, based on the distance from the ridge or eave edges. It is noted that the structura
considered in this study are induced only from wind pressure time series. The bending mo
have been non-dimensionalized by building width.

3. Wind tunnel experimental data

The experimental database of pressure time series was acquired on a 1:100 scale gabl
generic building model in the Boundary Layer Wind Tunnel II at the University of Western On
as a contribution to the NIST aerodynamic database. The building has a rectangular plan are
ft (24.4 m) by 125 ft (38.1 m) with a roof slope of 1 in 12 and a ridge parallel to the long 
Four eave heights, 16 ft, 24 ft, 32 ft and 40 ft (4.9 m, 7.3 m, 9.8 m and 12.2 m), were employ
the wind tunnel tests. The roof dimensions, pressure tap layout and the definition of wind dir
are shown in Fig. 2. A total of 665 pressure taps were instrumented over the entire surface
building model with 335 pressure taps on the roof.

Pressure time series were measured for four roof heights, 37 approaching wind angles, a
upstream terrains with a high-speed solid-state pressure scanning system. The 37 wind angl
between 180o and 360o in increments of 5o. Two target upstream terrains (open country a
suburban) were modeled in the wind tunnel model tests. The characteristics of the wind 
boundary layer flow matched the Exposure C (open country) and Exposure B (suburban) de
in ASCE 7-98 (2000). The simulated exposures have equivalent roughness lengths, z0, of 0.03 m
and 0.3 m, respectively. The pressure signals were sampled at 500 Hz for 100 seconds and w
measured essentially simultaneously. Assuming that the wind tunnel/full-scale velocity ratio is
the corresponding full-scale sampling frequency is 15 Hz. Each time series record (of 5000
points) is then equivalent to 56 minutes in full-scale. Pressure time series in the aerody
database were corrected for residual non-simultaneity and were digitally low-pass filtered at 2
The reference wind tunnel speed for the measurements was 45 ft/s (13.7 m/s). Typically, mea

F̂1 t( ) 1
A
--- Ĉp xi yi ; t,( ) ∆× Ai( )

i
∑=

F̂2 t( ) 1
A
--- Ĉp xi yi ; t,( ) ∆Ai I i××( )

i
∑=

F̂3 t( ) 1
W A×
-------------- Ĉp xi yi; t,( ) ∆Ai Li××( )

i
∑=

F̂1 t( ) F̂2 t( ) F̂3 t( )
Ĉp xi yi ; t,( )
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height wind speeds were about 64% of this. All pressure data used in this study were expre
non-dimensional pressure coefficients referenced to the mean dynamic pressure in the unifor
at a reference height above the wind tunnel boundary layer as:

(20)

where p(t) is the pressure measured on the building surface, ρ is the air density, and  is the
approaching mean wind speed recorded at the reference height. The pressure coefficients can 
transformed into full-scale wind pressures, given the upstream dynamic pressures at the re
height. Further details about the wind tunnel experiments can be obtained in Ho et al. (2002).

In this study, the set of experimental pressure time series on a corner bay of the building 
with a full-scale eave height of 40 ft (12.2 m) and three typical wind directions (270o, 320o and
360o) were employed as example studies to evaluate the performance for the simulation of str
load time series by using the LSE. The corner bay was chosen since this is the most inte
region because of the strong vortices that often occur due to flow separation and turbulence.

4. Results and discussion

4.1. Cases studied

In LSE, there can be different choices for selecting reference time series in order to reco
the pressure field. On one hand, the greater the number of reference time series that are u

Cp t( )
p t( ) p∞–
1
2
---ρVref

2
------------------------=

Vref

Fig. 2 Roof surface of the low building model (full-scale dimensions)
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better the reconstruction performance LSE will achieve; on the other hand, the approac
become more complex and there will be less data reduction. Thus, one of the objectives is t
the number of the reference time series as small as possible. This will find its usefulness
considering the data-storage problems in the development of the aerodynamic database. The
of reference time series should be determined by considering a balance between accurac
storage and complexity. This is problem-dependent and done by trial-and-error since there
large variety of parameters involved in wind tunnel tests. The general guideline is to select
which are strongly correlated with the target pressure field, and can dominate or chara
fluctuating features of the target pressure field. 

In this study, four schemes of reference time series were investigated, as listed in Table 1. Her
notation LSE-i represents a set of i reference time series (see Fig. 2 for the locations of the selected t
It is expected that the reference time series chosen from the separated flow regions can simu
adjacent individual pressures more accurately than the far field pressure taps due to larger corr
Fig. 3 gives an example of the distribution of the correlation coefficient relative to one referenc
(#704) for a cornering wind. It can be seen that the reference tap is generally more highly correlated
with the adjacent pressures which characterize the fluctuating features of structural load time 

Following the computational steps illustrated in Fig. 1, individual pressure time series at any re
locations and the corresponding structural loads can be reconstructed using different reference tim
Good reconstruction requires that the simulated structural load time series preserve the key statis
probabilistical features of the experimental data with an acceptable accuracy (e.g., usually a pr
error less than, say, 10%). Among these statistics, mean values, rms values, peaks, corr
autospectra are the more important measures of the basic quality of time series reconstruction. S
and kurtosis coefficients which are the third and fourth statistical moments about the mean
respectively, are used to measure the non-Gaussian features of the time series.

Table 1 Reference pressure tap locations for the four LSE schemes

Case Reference Pressure Taps

LSE-1 Tap #704
LSE-2 Taps #704 & #816
LSE-4 Taps #704, #816, #708 & #1213
LSE-5 Taps #704, #816, #708, #1213 & #1009

Fig. 3 Contours of the correlation coefficient relative to tap #704 in open country terrain for α =320o
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Fig. 4 Autospectra of the measured and reconstructed pressure time series of tap #1210 in open country
terrain for α =320o

Fig. 5 Autospectra of the measured and reconstructed uplift time series in a corner bay in open country
terrain for: (a) α =270o, (b) α =320o and (c) α = 360o
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4.2. Reconstruction of individual pressure time series

As an example of the performance of an individual pressure time series, the reconstruction
#1210 is presented using the LSE-5 scheme. Fig. 4 shows the reconstructed and actual aut
for a cornering wind. As can be seen, the reconstructed autospectrum deviates significantl
that of the experimental data, especially at the energetic frequencies. This indicates that the 
not appropriate for capturing the fluctuation energy of individual pressure time series (at le
currently formulated with only a few taps). 

4.3. Reconstruction of bay uplift

Fig. 5 shows the comparison of autospectra of the experimental and the reconstructed ba
time series using LSE-1 through LSE-5 for three wind directions. As expected, the autos
obtained with LSE-5 resemble most closely those of the experimental data. For LSE-1, exc
the 270o azimuth, the simulated autospectra match well with the original autospectra, especia
the low frequency domain (which accounts for the largest fraction of the fluctuation energy)
poorer performance of LSE-1 for 270o azimuth indicates in this case, that more reference time series
required to capture the fluctuations (e.g., using LSE-2), or possibly a different tap should be
Generally, the more reference time series that are used, the better the agreement with the real d
more “conditional information” is known. It is also observed that almost all of the schemes fail
reproduce the sudden spike in the autospectra at roughly 90 Hz, which is due to the blade 
frequency. This can be attributed to the limitations of the linear assumption in the methodology

4.4. Reconstruction of frame uplift

Table 2 summarizes the statistics from the experimental and the reconstructed frame uplift time
series (Frame 1). Similar findings for the bay uplift reconstruction were obtained (with further
details in Chen, 2002). As shown, the LSE approach achieves good performance in recons
the frame uplift time series, including using only one reference tap. In particular, the mean va
the frame uplift is reconstructed perfectly. Among the schemes considered, LSE-5 exhibits th
performance. For example, by using LSE-5 for 320o azimuth, the maximum prediction errors of th
other statistics (rms, peak suction, skewness and kurtosis) are below 3%. The large corre
coefficient (0.97) between the reconstruction and the experimental data indicates an ac
estimation of the fluctuating features. The (weakly) non-Gaussian features of the experimental
uplift in this corner bay are also preserved well, as confirmed by the good prediction of ske
and kurtosis coefficients (Note that the absolute values of skewness and kurtosis coefficient
ideal Gaussian time series are 0.0 and 3.0, respectively). For this direction, LSE-1 also pe
well in estimating the rms and peak suction with a maximum absolute error of 6%.

Fig. 6 shows the probability density functions (PDF) and cumulative distribution functions (C
of the measured and reconstructed frame uplift time series for a cornering wind. It can be se
both the PDF and CDF of the original time series including the upper and lower tails 
preserved well in the time series reconstructed by using LSE-1 through LSE-5. Considering th
observed peaks (i.e., the single worst values) are not commonly used in engineering practice
the significant stochastic variability in time series samples (Sadek and Simiu 2002), more reliabl
peaks are estimated through an extreme value analysis. The commonly used Type I (G
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extreme value distribution (Cook 1985) was chosen for the current analysis of the largest peaks (i.e
peak suctions multiplied by −1). The Gumbel distribution function is defined as :

−ln [−ln(−P)]=a(x−u) (21)

where x denotes a peak value, P is the probability of no exceedance of the peak value x, a is a
measure of dispersion, and u is a measure of location. In this study, the distribution parameters were
determined by fitting the peaks on Gumbel plot paper using the least-mean-square metho
peaks were taken from 50 segments of frame uplift time series. Fig. 7 compares the distribu
the largest peaks of the experimental and reconstructed frame uplift time series using LSE-5
3 summarizes the comparison of the estimated peaks corresponding to the probability 
exceedance, as well as the fitted Gumbel parameters. It can be seen that the reconstructed
value distribution exhibits good agreement with the experimental data. This is also indicated
well-matched Gumbel parameters. The peaks corresponding to the probability of no exceedance of

Table 2 Statistics of the reconstructed and experimental uplift time series for Frame 1 with wind directi
270o, 320o and 360o in open country terrain

α Case Mean Rms Min. Max. Skewness Kurtosis CorrCoe

270° Real -0.1791 0.0467 -0.4333 -0.0567 -0.61 3.39
LSE-1 -0.1791

(0.0%)
0.0340

(-33.7%)
-0.4148
(-4.3%)

-0.0778
(37.1%)

-0.75
(23.0%)

4.01
(18.3%)

0.66

LSE-2 -0.1791
(0.0%)

0.0373
(-20.1%)

-0.4179
(-3.5%)

-0.0827
(45.8%)

-0.63
(3.3%)

3.52
(3.8%)

0.80

LSE-4 -0.1791
(0.0%)

0.0428
(-8.3%)

-0.4762
(9.9%)

-0.0712
(25.6%)

-0.65
(6.6%)

3.56
(5.0%)

0.92

LSE-5 -0.1791
(0.0%)

0.0436
(-6.6%)

-0.4643
(7.2%)

-0.0700
(23.4%)

-0.67
(9.8%)

3.61
(6.5%)

0.93

320° Real -0.2441 0.0654 -0.5872 -0.0140 -0.68 3.83
LSE-1 -0.2441

(0.0%)
0.0615
(-6.0%)

-0.5798
(-1.3%)

-0.0494
(253.1%)

-0.75
(10.3%)

3.94
(2.9%)

0.94

LSE-2 -0.2441
(0.0%)

0.0621
(-5.0%)

-0.5728
(-2.5%)

-0.0411
(193.5%)

-0.73
(7.3%)

3.91
(2.1%)

0.95

LSE-4 -0.2441
(0.0%)

0.0630
(-3.6%)

-0.5707
(-2.8%)

-0.0329
(135.1%)

-0.72
(5.9%)

3.82
(-0.3%)

0.96

LSE-5 -0.2441
(0.0%)

0.0634
(-3.0)

-0.5770
(-1.7%)

-0.0190
(-35.9%)

-0.70
(-2.9%)

3.82
(-0.3%)

0.97

360° Real -0.2093 0.0652 -0.5546 -0.0577 -0.74 3.63
LSE-1 -0.2093

(0.0%)
0.0567

(-13.0%)
-0.6846
(23.4%)

-0.0997
(72.7%)

-1.29
(74.3%)

5.94
(63.6%)

0.87

LSE-2 -0.2093
(0.0%)

0.0591
(-9.4)

-0.6344
(14.4%)

-0.0869
(50.6%)

-0.96
(29.7%)

4.32
(19.0%)

0.91

LSE-4 -0.2093
(0.0%)

0.0627
(-3.9%)

-0.5497
(-0.9%)

-0.0703
(21.7%)

-0.81
(9.5%)

3.82
(5.2%)

0.96

LSE-5 -0.2093
(0.0%)

0.0632
(-3.2%)

-0.5604
(1.0%)

-0.0691
(19.6%)

-0.81
(9.5%)

3.82
(5.2%)

0.97

Note: 1. The bracketed terms are the errors relative to the actual values.
2. CorrCoef represents correlation coefficient relative to the experimental time series.
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Fig. 6 (a) Probability distribution functions, and (b) cumulative distribution functions of the measured and
reconstructed uplift time series for Frame 1 with α =320o in open country terrain

Fig. 7 Distribution of the minima of the uplift time series for Frame 1 (multiplied by −1) with α =320o in
open country terrain

Table 3 The observed and estimated worst peaks for frame uplift (Frame 1) and ridge bending moment

Structural
Load

Effects
Case

Observed
Worst
Peak

Estimated Worst Peaks Gumbel Distribution Parameters

P(probability of no exceedance) y=−ln[ −ln(P)]=a(x−u)

99% 90% 80% a u

Frame
Uplift

Real -0.5872 -0.6793 -0.5395 -0.4948 16.80 0.4055
LSE-5 -0.5770 -0.6624 -0.5298 -0.4874 17.72 0.4028
Error% -1.7% -2.5% -1.8% -1.5%

Ridge
Bending
Moment

Real -0.2290 -0.2625 -0.2133 -0.1975 47.70 0.1661
LSE-5 -0.2257 -0.2588 -0.2095 -0.1938 47.69 0.1623
Error% -1.5% -1.4% -1.8% -1.9%
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99%, 90%, and 80% can be reconstructed accurately with a maximum error less than 3%.
The good performance of the LSE approach is also confirmed by the comparison o

corresponding autospectra between the LSE reconstructions and the experimental data. As s
Fig. 8, all the simulated power spectra by using various LSE schemes match well with the o
data, except for LSE-1 for 270o azimuth.

4.5. Reconstruction of ridge bending moment

Table 4 gives the statistics of the reconstructed and experimental bending moment cal
about ridge for three wind directions. As shown, LSE-5 achieves the best performanc
reconstructing the ridge bending moment time series, where the maximum estimation error 
the key statistics (except for the most positive peak) is less than 10%, and all the corresp
correlation coefficients are larger than 0.93. It appears that two pressure taps (LSE-2) are su
to reconstruct the bending moment in terms of mean, rms and minimum peak. Even give
reference tap, the LSE still captures the minimum peak value accurately with an absolute err

Fig. 8 Autospectra of the measured and reconstructed uplift time series for Frame 1 in open country
with: (a) α =270o (b) α=320o and (c) α =360o
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than about 6% for the wind directions of 270o and 320o.
The comparisons in terms of PDF and CDF for a wind direction of 320o are shown in Fig. 9. All

the LSE schemes (except for LSE-1) have good performance to preserve the statistical features of
the original data. For the distribution of the largest peaks, using five reference taps als
reproduce the extreme value distribution well, as shown in Fig. 10. The estimated peaks 
bending moment time series for three probabilities of no exceedance are given in Table 3. As
shown, the LSE reconstruction accurately reproduces not only the observed single worst pe
also the estimated peaks through the Gumbel distribution, with a maximum absolute error less tha

Fig. 11 shows the corresponding autospectra of the LSE reconstructed and experimental ridge 
moment. As shown, two reference taps (LSE-2) are sufficient to reconstruct the majority o
fluctuation energy of the original time series. This is also in accordance with the above comp
in terms of statistical features.

Table 4 Statistics of the reconstructed and experimental ridge bending moment for the corner bay wit
directions of 270o, 320o and 360o in open country terrain

α Case Mean Rms Min. Max. Skewness Kurtosis CorrCoef

270° Real -0.1129 0.0299 -0.2814 -0.0332 -0.59 3.35
LSE-1 -0.1129

(0.0%)
0.0208

(-30.4%)
-0.2709
(-3.7%)

-0.0449
(35.2%)

-0.75
(27.1%)

4.01
(19.7%)

0.70

LSE-2 -0.1129
(0.0%)

0.0268
(-10.4%)

-0.2835
(0.7%)

-0.0449
(35.2%)

-0.63
(6.8%)

3.49
(4.2%)

0.90

LSE-4 -0.1129
(0.0%)

0.0286
(-4.4%)

-0.2949
(4.8%)

-0.0443
(33.3%)

-0.61
(3.4%)

3.40
(1.5%)

0.96

LSE-5 -0.1129
(0.0%)

0.0291
(-2.7%)

-0.2960
(5.2%)

-0.0421
(26.7%)

-0.63
(6.8%)

3.46
(3.3%)

0.97

320° Real -0.0995 0.0263 -0.2290 -0.0009 -0.55 3.72
LSE-1 -0.0995

(0.0%)
0.0211

(-19.6%)
-0.2150
(-6.1%)

-0.0326
(3450%)

-0.75
(36.4%)

3.94
(5.9%)

0.80

LSE-2 -0.0995
(0.0%)

0.0247
(-6.1%)

-0.2209
(-3.6%)

-0.0203
(2112%)

-0.70
(27.3%)

3.86
(3.8%)

0.94

LSE-4 -0.0995
(0.0%)

0.0248
(-5.5%)

-0.2217
(-3.2%)

-0.0197
(2046%)

-0.68
(23.6%)

3.78
(1.6%)

0.95

LSE-5 -0.0995
(0.0%)

0.0252
(-4.0%)

-0.2257
(-1.5%)

-0.0111
(1105%)

-0.62
(12.7%)

3.78
(1.6%)

0.96

360° Real -0.1015 0.0309 -0.2552 -0.0300 -0.73 3.62
LSE-1 -0.1015

(0.0%)
0.0252

(-18.6%)
-0.3126
(22.5%)

-0.0527
(76.1%)

-1.29
(76.7%)

5.94
(64.1%)

0.81

LSE-2 -0.1015
(0.0%)

0.0272
(-12.0%)

-0.2832
(11.0%)

-0.0448
(49.5%)

-0.94
(28.8%)

4.23
(16.9%)

0.88

LSE-4 -0.1015
(0.0%)

0.0296
(-4.3%)

-0.2548
(-0.2%)

-0.0327
(9.1%)

-0.77
(5.5%)

3.75
(3.6%)

0.96

LSE-5 -0.1015
(0.0%)

0.0299
(-3.3%)

-0.2630
(3.1%)

-0.0327
(9.2%)

-0.77
(5.5%)

3.74
(3.3%)

0.97

Note: 1. The bracketed terms are the errors relative to the actual values.
2. CorrCoef represents correlation coefficient relative to the experimental time series.
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4.6. Discussion

The LSE approach for estimating structural loads with the individual reconstructed pressur
series is simple in idea and implementation. As a stochastic approach, LSE is essentially a
estimate of the conditional average of a random variable by neglecting the nonlinear terms 
Taylor series expansion, given some reference variables. This assumption is open to qustion,
especially when applied to strongly non-Gaussian time series (e.g., pressure time series
separated flow regions) because it is believed that linear functions are unlikely to be able to captu
non-linearity. Of course, stochastic estimation of a random variable given some reference va
and also the higher-order terms can improve the accuracy of estimation (Adrian 1994), but 

Fig. 10 Distribution of the minima of the ridge bending moment time series (multiplied by −1) for the corner
bay for α =320o in open country terrain

Fig. 9 (a) Probability distribution functions and (b) cumulative distribution functions of the measured
reconstructed ridge bending moment time series for the corner bay with α=320o in open country terrain
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increase complexity and reduce practicality. Furthermore, it was shown by Tung and Adrian (
that the higher-order terms of Taylor series expansion would not have a significant effect o
estimation of the large-scale coherent structures in a turbulent velocity field, which verifies the u
of LSE with the assumption of linear approximation. As well, the purpose of using LSE in
study is for approximate estimation of structural load time series on large-scale loads, not fo
reconstruction of individual pressure time series. As shown in this study, for the reconstruct
structural load time series, LSE is efficient since the target time series are generally weakl
Gaussian or Gaussian. However, in the case of simulating strongly non-Gaussian time serie
not realistically expected that the LSE based on the assumption of linear approximatio
accurately capture the fluctuating features, although it still outperforms linear interpolation (Chen
2002). With this concern, it is suggested that nonlinear models be used for local reconstruc
pressure time series (e.g., time-delay ANN approaches (Giralt et al. 2000, Chen et al. 2002a)). This
would need further investigation.

Regarding time series reconstruction, Proper Orthogonal Decomposition (POD) (e.g., Bienkiewicz
et al. 1995), another standard stochastic approach based on using two-point correlations, a

Fig. 11 Autospectra of the measured and reconstructed ridge bending moment time series for the cor
in open country terrain with: (a) α =270o (b) α =320o and (c) α =360o
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potential. The difference between them lies in the interpretation of the covariance information.
uses the covariance matrix of the whole surface field to estimate modes by solving an eige
problem, and the reconstruction of pressure time series can be performed with the firs
dominant modes. In contrast, LSE uses the covariance matrix of only the selected referenc
series and the target time series to determine estimation coefficients. They both have
advantages and disadvantages. Generally, LSE is simpler, and can reproduce the mean 
pressure time series completely, but the reference time series need to be optimally determ
order to achieve the best possible reconstruction performance. POD reduces data by elim
higher-order modes which contain “unimportant” information.

Like for POD, LSE is applicable only if covariance matrices are known (since the covar
matrix will be used to calculate the estimation coefficients). The covariance information ca
obtained from either wind tunnel or full-scale experiments and should be stored with the dat
As shown in this study, the LSE can save at least 96% data storage if five properly se
reference taps are sufficient to reconstruct the pressure field accurately in the corner bay (wh
pressure taps were instrumented). Clearly, this indicates that aerodynamic databases which c
large number of pressure time series on the entire surface of low buildings can be reduce
much smaller data set by storing some optimal reference time series and the covariance m
The reconstructed pressure time series can be used as inputs to the finite element analysis p
provided that the reconstruction accuracy of LSE with these stored reference time series is suff
acceptable. However, several taps would need to be stored from each bay and the walls in 
achieve better performance. Besides the potential for data reduction associated with DA
covariance matrix can also be directly used by LRC method, offering a more flexible database

5. Conclusions

A simple and practical approach through the application of LSE has been developed to reco
wind-induced pressure time series for the analysis of structural loads in a corner bay of 
building where the covariance matrix is known. The reconstruction is based on the assumpti
pressure time series at any location can be estimated as a linear function of some other p
time series, and structural loads in a desired region can be calculated with these ind
simulated pressures. The effect of using different reference time series has been investig
order to achieve the best performance. The comparison between the simulation and the
measured data was at the level of statistical features including mean, rms, peak, skewness, 
correlations, autospectra, PDF, and CDF. Some major conclusions based on the present res
be made as follows:
� LSE is efficient for reconstructing pressure time series for use in the analysis of stru

loads, given a handful of reference pressure taps (even only one tap).
� LSE can reconstruct the mean value of pressure time series perfectly; for other sta

features, the performance depends on the number and location of reference time series.
� In order to achieve the best performance, reference time series need to be op

determined. The objective is to keep the number of reference pressure taps as small as pible,
providing that the simulation accuracy is still acceptable.

� The LSE can save about 96% data storage when simulating the pressure field of a corn
with five taps. This indicates that LSE has potential to be used for reducing data s
requirements in the development of the aerodynamic database.



The use of linear stochastic estimation for the reduction of data in the NIST aerodynamic database125

 of the
dged.
Chairs
g.

ress,

s shear

989),

SI/

n and

rtment

th an

tabase

f low

 and

lation

ion of

ds on

als for a

irection

design”,

amics

 Civil
Acknowledgements

This work presented was part of the Ph.D. program of the first author under the supervision
second and third authors. The financial support of NIST/TTU and NSERC is gratefully acknowle
One of the authors (GAK) acknowledges the support provided by the Canada Research 
Program. The authors would also like to thank Dr. T.C.E. Ho for his help with the data handlin

References

Adrian, R.J. (1975), “On the role of conditional averages in turbulence theory”, Turbulence in Liquids: Proc.
Fourth Biennial Symp. on Turb. in Liquids, September. J. Zakin and G. Patterson (Eds), Science P
Princeton, 323-332, 1977.

Adrian, R.J. and Moin, P. (1988), “Stochastic estimation of organized turbulent structure: homogeneou
flow”, J. Fluid Mech., 190, 531-559.

Adrian, R.J., Jones, B.G., Chung, M.K., Hassan, Y., Nithianandan, C.K., and Tung, A.T.C. (1
“Approximation of turbulent conditional averages by stochastic estimation”, Phys. Fluids, 1(6).

Adrian, R.J. (1994), “Stochastic estimation of conditional structure: a review”, App. Sci. Res., 53, 291-303.
ASCE Standard 7-98 (2000), Minimum Design Loads for Buildings and Other Structures, Revision of AN

ASCE 7-95, American Society of Civil Engineers, Reston, Virginia.
Bienkiewicz, B., Tamura, Y., Ham, H.J., Ueda, H. and Hibi, K. (1995), “Proper orthogonal decompositio

reconstruction of multi-channel roof pressure”, J. Wind Eng. Ind. Aerod., 54/55, 369-381.
Chen, Y. (2002). “Time series simulation of wind-induced pressures on low buildings”, Ph.D. thesis, Depa

of Civil and Environmental Engineering, The University of Western Ontario, London, Ontario, Canada.
Chen, Y., Kopp, G.A. and Surry, D. (2002a), “Interpolation of wind-induced pressure time series wi

artificial neural network”, J. Wind Eng. Ind. Aerod., 90, 589-615. 
Chen, Y., Kopp, G.A. and Surry, D. (2002b), “Interpolation of pressure time series in an aerodynamic da

for low buildings”, submitted to J. Wind Eng. Ind. Aerod.
Chen, Y., Kopp, G.A. and Surry, D. (2003), “Prediction of (to appear) pressure coefficients on roofs o

buildings using artificial neural networks”, J. Wind Eng. Ind. Aerod., 91, 423-441.
Cook, N.J. (1985), The designer’s guide to wind loading of building structure: Part 1, Butterworths, Building

Research Establishment Report. 
Delville, J., Lamballais, E. and Bonnet, J.-P. (2000), “POD, LODS and LSE : their links to control

simulations of mixing layers”, ERCOFTAC Bulletin, 46, 29-38.
Druault, P., Lamballais, E., Delville, J. and Bonnet, J.P. (1999), “Development of experiment/simu

interfaces for hybrid turbulent results analysis via the use of DNS”, Proc. 1st Int. Symp. Turb. Shear Flow
Phenomena, Santa Barbara, California, 779-784.

Giralt, F., Arenas, A., Ferre-Giné, J., Rallo, R. and Kopp, G.A. (2000), “The simulation and interpretat
turbulence with a cognitive neural system”, Phys. Fluids, 12, 1826-1835.

Ho, T.C.E, Surry, D., Morrish, D., and Kopp, G.A. (2002), “The NIST aerodynamic database for wind loa
low buildings: Part 1. Basic aerodynamic data and archiving”, under preparation.

Holmes, J.D. and Syme, M.J. (1994), “Wind loads on steel-framed low-rise buildings”, Steel Construction, 28(4), 2-12.
Kasperski, M. (1992), “Extreme wind load distributions for linear and nonlinear design”, Eng. Struct., 14, 27-34.
Papoulis, A. (1984). Probability, Random Variables and Stochastic Theory (2nd Edn.), McGraw-Hill, New York.
Péneau, F., Faghani, D. and Boisson, H.C. (2000), “Linear stochastic estimation of velocity entrance sign

L.E.S. of a turbulent flat plate boundary layer”, ERCOFTAC Bulletin, 46, 39-43.
Rigato, A., Chang, P. and Simiu, E. (2001), “Database-assisted design, standardization and wind d

effects”, ASCE J. Struct. Eng., 127(8), 855-860.
Sadek, F. and Simiu, E. (2002), “Peak non-Gaussian wind effects for database-assisted low-rise building 

ASCE J. Eng. Mech., 128(5), 530-539.
Simiu, E. and Stathopoulos, T. (1997), “Codification of wind loads on buildings using bluff body aerodyn

and climatological data base”, J. Wind Eng. Ind. Aerod., 69-71, 497-506.
Stathopoulos, T. (1979). “Turbulent wind action on low-rise buildings”, Ph.D Dissertation, Department of



126 Y. Chen, G. A. Kopp and D. Surry

 

for the
”, 

ference
and Environmental Engineering, The University of Western Ontario, London, Ontario, Canada.
Tung, T.C. and Adrian, R.J. (1980), “Higher-order estimates of conditional eddies in isotropic turbulence”,Phys.

Fluids, 23(7), 1469-1470.
Walpole, R.E. and Myers, R.H. (1985), Probability and Statistics for Engineering and Scientists (3rd Edn.),

Macmillan Publishing Company, New York.
Whalen, T., Simiu, E., Harris, G., Lin, J. and Surry, D. (1998), “The use of aerodynamic databases 

effective estimation of wind effects in main wind-force resisting systems: application to low buildingsJ.
Wind Eng. Ind. Aerod., 77-78, 685-693.

Notation

A area of a roof zone
∆Ai tributary area of tap i
{B} estimation coefficient vector
bi(x, y) ith estimation coefficient for simulating pressure time series at (x, y)
[C] spatial covariance matrix between reference time series
cij spatial covariance between reference time series at location i and j
{C0} spatial covariance vector between the pressure time series to be reconstructed and re

time series
Cp non-dimensional wind pressure coefficient
Cp(x, y; t) pressure time series at location (x, y)

reference pressure time series at location i, also denoted as (xi, yi ; t)
C'p(x,y; t) fluctuation of pressure time series at location (x, y)

mean value of pressure time series at location (x, y)
rms value of pressure time series at location (x, y)
linear stochastic estimate of pressure time series at location (x, y)
linear stochastic estimate of pressure time series at location i

F1(t) uplift time series
F2(t) frame uplift time series
F3(t) bending moment time series
Ii influence coefficient of tap i
Li bending moment arm of tap i
t time instant
(x, y) spatial coordinate of a tap location
W building width
E(� |�) conditional average operator
[�]−1 inverse of matrix

average operator
α wind direction

Abbreviations
CorrCoef correlation coefficient
DAD database-assisted design
LRC load-response-correlation 
LSE linear stochastic estimation
LSE-i linear stochastic estimation which uses i reference time series
NIST National Institute of Standards and Technology
POD proper orthogonal decomposition
rms root-mean-square

AK

Cpi ref,
t( ) Cpref

Cp x y,( )
C̃p x y,( )
Ĉp x y; t,( )
Ĉpi

t( )

( )�
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