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Abstract. This paper describes a simple and practical approach through the application of Linear
Stochastic Estimation (LSE) to reconstruct wind-induced pressure time series from the covariance matrix
for structural load analyses on a low building roof. The main application of this work would be the
reduction of the data storage requirements for the NIST aerodynamic database. The approach is based c
the assumption that a random pressure field can be estimated as a linear combination of some othe
known pressure time series by truncating nonlinear terms of a Taylor series expansion. Covariances
between pressure time series to be simulated and reference time series are used to calculate the estimati
coefficients. The performance using different LSE schemes with selected reference time series is
demonstrated by the reconstruction of structural load time series in a corner bay for three typical wind
directions. It is shown that LSE can simulate structural load time series accurately, given a handful of
reference pressure taps (or even a single tap). The performance of LSE depends on the choice of th
reference time series, which should be determined by considering the balance between the accuracy, dat:
storage requirements and the complexity of the approach. The approach should only be used for the
determination of structural loads, since individual reconstructed pressure time series (for local load
analyses) will have larger errors associated with them.

Key words: aerodynamic database; data reduction; Linear Stochastic Estimation; low buildings; pressure
time series; reconstruction; structural loads.

1. Introduction

Due to the advances of electronically-scanned pressure measurement technology, information
storage and computational capacities, increasing attention has been gaidb@mse-assisted design
(DAD) for wind effects and wind loading on low-rise buildings (e.g., Simiu and Stathopoulos 1997,
Whalenet al 1998, Rigatcet al 2001, Cheret al 2002a, 2002b, 2003). In recognition of the fact
that DAD would be more realistic and more risk-consistent than conventional wind codes, and thus
lead to more economical designs, it has been proposed as a future code alternativee{Riato
2001). However, there are some concerns associated with the use of aerodynamic databases, such
data-storage problems, on one hand, and a limited number of building configurations, on the other.
Because aerodynamic databases isbrig long-term time series of pressures acquired at densely-
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distributed tap locations covering the entire building envelope for many different conditions (e.g.,
wind direction, building geometry, and flow conditions), the demand on storage space is extreme. It
is estimated that the database used for codification will result in about 6 Gigabits of storage if it
contains the same building configurations as the original 1970s data (i.e., three building heights with
three roof slopes in one terrain) (Stathopoulos 1979). Our previous work éChé&r?002b, 2003)

has focused on methods to interpolate the basic data to other building configurations for which no dats
exist. Although the huge quantity of pressure time series data can be stored on CDs, this will have &
negative impact on the practicality and feasibility of DAD. Therefore, efforts are needed for exploring
accurate techniques which can be used to effectively reduce the size of the aerodynamic database
Linear Stochastic Estimation (LSE), based on the covariance matars efich an approach.

Stochastic estimation, generally speaking, is an approximation of a random variable in terms of
some other random variables by truncating higher-order terms of a Taylor series expansion. For a
surface pressure fiel®(x, y; t), the stochastic estimate of the pressure field is the best mean square
estimate ofP(x, y; t) given some reference daRes (t). This is called theonditional averageof
P(x, y; t) given P (t), denoted as E|P.s) (Adrian 1975). Often, linear stochastic estimation is
used to estimate a random variable as a linear combination of some known reference variables.

One advantage of this approach is that it has the abilitgdonstruct the whole random field by
using only a few reference variables in conjunction with the covariance matrix. Clearly, this
indicates that LSE has the potential to reduce the data-storage requirements for an aerodynami
database by the storing covariance matrix and some selected reference time seriegiom) add
storing covariances could allow simpler usage by designers whose needs are less sophisticated the
those using the database for time series analysis. In other words, the reconstructed databas
associated with covariance matrix could be more flexible. For example, the stored covariance
matrices could be directly used with Load-Response-Correlation (LRC) method developed by
Kasperski (1992) and Holmes and Syme (1994) to calculate exmdigteive static load distributions
corresponding to a peak structural load effect (e.g., bending moment, support reactioa)meueth
this could remove the need to estimate the peak factors required with the LRC method and would,
therefore, yield the true advantage of having the aerodynamic database.

As a simple and practical approach, LSE was first applied to the field of turbulent flows by
Adrian (1975) in order to estimate the large-scale organized (i.e., coherent) turbulent structures.
Since its introduction in turbulence, LSE has been successfully applied to simulate a variety of
turbulent flows, such as wakes, pipe flows, shear layers, and jets. These examples include the
estimation of conditional eddies (i.e., the flow field described by conditioretages) (Adrian
1975, Tung and Adrian 1980, Adrian and Moin 1988, Adeaml 1989), and the reconstruction of
velocity fields (Druaultet al 1999, Delville et al 2000, Péneawet al 2000) by using the
“conditional information” specified at one or more reference locations. A review of LSE in the
analysis of turbulent velocity fields has been presented by Adrian (1994).

The main objective of the present work is to develop a simple and practical approach which is
capable of reconstructing wind-induced pressure time series for structural load analyses on the
envelope of low buildings, given only a handfulreference pressure taps. In other words, the LSE
approach can be viewed as a means to predict the whole pressure field by knowing the state of the
pressure field at a limited number of tap locations based on the two-point spatial covariance. This
approach has the potential to reduce the size of aerodynamic databases, providing a flexible
database for numerical structural analysis.
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2. Background
2.1. Review of linear stochastic estimation

LSE is described in (Adriaat al 1975, 1988, 1989, 1994), but for convenience, the derivation is
presented here. LSE is based on the assumption that a random field can be considered as a line
combination of some other random variables that are known and correlated. Applying this to a
surface pressure field (herein, non-dimensionalized pressure coefficients are used), the pressure tim
series at a tap location (assuming the ergodicity of the time series) can be estimated with pressur
time series at some reference tap locati@s,(x;, yi; t) (also denotegl a&) ), as:

Co(x,y; 1) = D DI V)G, (% Vi 1) +Do(%, Y) (1)

=1

where Cy(x, y; t) is the linear estimate of pressure time s€jés y; t) at a location, y), bi(X, y)
is the estimation coefficient associated with ithereference pressure time seribgx, y) is a bias
term which is required in the present work since pressure time series with non-zero mean values are
considered directly (if only fluctuations are considerbglis equal to zero), andll is the total
number of the reference pressure time series. In LSE, the most important step is to find the
estimation coefficientdy, i=0, 1, ...,N, by using two-point correlations, as shown below.

LSE is developed from the linearstenate of the conditional average of a random field.
Accordingly, given the state of the pressure field at some reference pressur@pitgps) i=1, 2,,
..., N(represented by an event data vec@y ), the pressure field can be estimated by its
conditional average,

ép(x, y; t) = linear estimate ofE(C,|C, )

= linear estimate of f(C,, ) (2)

where E(C,|Cp, ) is the conditional average of the pressure field given a set of evel@ data ,
and can be viewed as a nonlinear function@qr_ , denotéfCys ). By expandingf(C, )ina

Taylor series about, G,  as:
E(CIC,,) = H(Cp.) = f(Cp) +(Cp)(C, = Cp,) + .. (3)
or in a tensor form,
E(Cplcpref) = bo + bic:pi,ref + d” Cpi,reprj,ref * (4)

wheref' (o) is a derivative functionb;, d; are estimation coefficients. By truncating the nonlinear
terms of the Taylor series expansion (i.e., only using the constant and first-order terms), the linear
stochastic estimate of the conditional average of the pressure field is derived, as expressed in Eg
(2). In this case, LSE is numerically equivalent to linear nonhomogeneous mean-square estimation
method, described by Papoulis (1984) or the multi-variable linear regression model discussed by
Walpole and Myers (1985), as briefly reviewed below.
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The estimation coefficientdy, i=0, 1, ...,N, are determined by minimizing tmeean square
value () of the resulting errord). The mean square value is defined as:

£=¢€ = [Co(X V; t) - Co(X Y, 0]°
2

M N D
> %:bo + > biCp (X i 1) [ = Cp(X Y, t)% (5)

i=1

Zlr

~

wheree = Gy(X, y; t)—=C,(X, y; t) , andM is the length of pressure time series record.
According to the orthogonality principle (Papoulis 1984), the mean squaresasroninimum if

b (i=0, 1, ...,N) are such that the resulting ermrs statistically orthogonal teach of the data. In

other wordsg is minimum if the partial derivative &f with respect to each, is equal to zero,

o _

dbi_o i=01...,N (6)
Thus, expanding Eq. (4) yields:
de _ 220 N 0
o =y dbot S biC, (X yii ) |—Co(x,y; )g =0 (7)
o, M t:zl D{ i:zl e " 0
and
ge 220 N O 0
b - M z D{[bo+ Z biCp_ (X, i )O=Cp(X, ;s t)}cp,ef(xky Yi: )O=0 (8)
k =00 3 U 0

By settingk=1, 2, ...,N, Egs. (7) and (8) can be written in H+1)>< (N+1) system of linear
algebraic equations as follows:
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Eqg. (9) can be transformed intoNax N system of equations based on the covariance matrix by
multiplying the first row by C,  ,Cp, . , ....Cp, ., . respectively, and then subtracting the
remaining equations, respectively. This yields:
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Ciu Cpp ... Con E] b, E E]]Clo E]

Co;y Cor ...ConUb, 0 Oc,, O
#oorTNg Tt g=g0 Qg (10)
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or,

[CH{B} = {C} (11)

(Eq. (10) is called the Yule-Walker equation (Papoulis 1984)) where each elemantC], i, j=1, 2,
..., N, is the spatial covariance (zero time lag) between the reference time series at lo@attins
which is calculated with their fluctuations as follows:

cj = Cp, (X yit)Cy (X, Y5t)

Cpref(xh yirt) Cpref(ij yiit) — E:p,ef(xiy Yi) E:p,ef(xp Yi) (12)

(if i=j, it is the variance) where the pressure fluctuation is defined as:
Ch (% ¥it) = Cy(x, yit) =Cp(x, ¥) (13)

Co in {Cq}, i=1, 2, ...,N, is the covariance between th&reference pressure time series and the
pressure time series to be simulated, which is given by:

Cio = Cyp, ., (X, Vi, )Co(X, yit)

Cp. (% YD) Co(X, yit) = Cp_ (%, ¥)Co(X, ¥) (14)

By solving Eq. (11), the estimation coefficiertigx, y) for simulating Cy(x, y;t), can be easily
computed :

{B}=[ CI™{ Cq} (15)

Then, by substitutingy (i=1, 2, ...,N) into the firstrow of Eq. (9),byis obtained:

J— N —
by = Cp— z Cp,. (X, Yi)b; (16)

i=1

Finally, by substituting the calculated estimation coefficidn{$rom Eqgs. (15) and (16)) into Eq.
(1), the pressure field can be estimated.
It is noted that although LSE and the linear mean-square estimation method artthemable
linear regression method are numerically equivalent, there still exists the difference which lies in the
interpretation. Adrian (1994) states that “the mean square error of the linear estinGaig, 9f
must be large whei@,(x,y) is uncorrelated withC, ~, due, for example, to a large separation
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between X, y) and the location of the event data, the error of the linear stochastic estimate of
E(Co|C,, ., ) may be small becausgC,|C,, ) also vanishes as the separation becomes large”.

2.2. Reconstruction methodology

Fig. 1 describes the framework for reconstructing individual pressure time series for the analysis
of structural loads. It is shown that once the estimation coefficlenis0, 1, ...,N, have been
determined by using the covariance information in the pressure field (according to Egs. (15) and

(16)), pressure time series at the required location can be estimated according to Eq. (1), given the
reference pressure taps.

?

Retrieve:
covariance from database
[C1 & [Cal
Input:
Detem}inei .. P reference time series
estimation coefficients from database
[B] [Cpref]

Estimate:

pressure time series

N N
Cplxy,n= Elb,»(x, »Cp,,, @ +bp(x. y)

U input

Numerical Structural Analysis
(e.g., finite element analysis)

U output

Structural Loads & Responses
(e.g., bay uplift, frame load,
bending moments)

U for tuning designs

Fig. 1 Reconstruction methodology using the LSE
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These reconstructed pressure time series can then be used to calculate structural load time serit
on a desired region, or they can be input to a structural analysis program (e.g., ¥Vlzl&:998).
Bay uplift, frame uplift and bending moments are typical examples of the structural loads of
concern in the design of low buildings for wind. They are calculated from the pressure time series
as, for example,

Fa(t) = 55 (Golx, i 1) X AA) (17)
Fa(t) = 25 (G, yii 1) X A7 x 1) (18)
Fo(t) = 5y (ol i 1) X 4A x L) (19)

where Fi(t) , F2(t) ,Fs(t) denote the bay uplift, frame uplift, and bending moment time series,
respectively.Cy(X;, yi; t) is the linear estimate of pressure time series at locaflois the total

area of a roof zona¥ is the building widthAA is the tributary area of tapl; is the corresponding
influence line coefficientl; is the bending moment arm of the simulated pressure time series at
location i, based on the distance from the ridge or eave edges. It is noted that the structural loads
considered in this study are induced only from wind pressure time series. The bending moments
have been non-dimensionalized by building width.

3. Wind tunnel experimental data

The experimental database of pressure time series was acquired on a 1:100 scale gable-roofe
generic building model in the Boundary Layer Wind Tunnel Il at the University of Western Ontario
as a contribution to the NIST aerodynamic database. The building has a rectangular plan area of 8(
ft (24.4 m) by 125ft (38.1 m) with a roof slope of 1 in 12 and a ridge parallel to the long wall.
Four eave heights, 16 ft, 24 ft, 32ft and 40 ft (4.9 m, 7.3 m, 9.8 m and 12.2 m), were employed in
the wind tunnel tests. The roof dimensions, pressure tap layout and the definition of wind direction
are shown in Fig. 2. A total of 665 pressure taps were instrumented over the entire surface of the
building model with 335 pressure taps on the roof.

Pressure time series were measured for four roof heights, 37 approaching wind angles, and twc
upstream terrains with a high-speed solid-state pressure scanning system. The 37 wind angles wer
between 180 and 360 in increments of & Two target upstream terrains (open country and
suburban) were modeled in the wind tunnel model tests. The characteristics of the wind tunnel
boundary layer flow matched the Exposure C (open country) and Exposure B (suburban) described
in ASCE 7-98 (2000). The simulated exposures have equivalent roughness lengths).03 m
and 0.3 m, respectively. The pressure signatsewsampled at 500 Hz for 100 seconds and were
measured essentially simultaneously. Assuming that the wind tunnel/full-scale velocity ratio is 1:3,
the corresponding full-scale sampling frequency is 15 Hz. Each time series record (of 50000 data
points) is then equivalent to 56 minutes in full-scale. Pressure time series in the aerodynamic
database were corrected for residual non-simultaneity and were digitally low-pass filtered at 200 Hz.
The reference wind tunnel speed for the measurements was 45 ft/s (13.7 m/s). Typically, mean eave
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A Y Note: 1. The lengths of Frames are 40,

2. Model scale 1:100, roof slope 1 1n 12, roof height 40",
2. In total 335 roof taps with 120 taps in the corner bay.
3. Full scale dimensions (English unit).
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Fig. 2 Roof surface of the low building model (full-scale dimensions)

height wind speeds were about 64% of this. All pressure data used in this study were expressed ir
non-dimensional pressure coefficients referenced to the mean dynamic pressure in the uniform flow
at a reference height above the wind tunnel boundary layer as:

cy(t) = B (20)
Epvrzef

where p(t) is the pressure measured on the building surfade, the air density, an&/,er  is the
approaching mean wind speed recorded at the reference height. The pressure coefficients can be eas
transformed into full-scale wind pressures, given the upstream dynamic pressures at the reference
height. Further details about the wind tunnel experiments can be obtainedeinaH®002).

In this study, the set of experimental pressure time series on a corner bay of the building model
with a full-scale eave height of 40 ft (12.2 m) and three typical wind directions, (320" and
360°) were employed as example studies to evaluate the performance for the simulation of structural
load time series by using the LSE. The corner bay was chosen since this is the most interesting
region because of the strong vortices that often occur due to flow separation and turbulence.

4. Results and discussion
4.1. Cases studied

In LSE, there can be different choices for selecting reference time series in order to reconstruct
the pressure field. On one hand, the greater the number of reference time series that are used, tt
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Table 1 Reference pressure tap locations for the four LSE schemes

Case Reference Pressure Taps
LSE-1 Tap #704

LSE-2 Taps #704 & #3816

LSE-4 Taps #704, #816, #708 & #1213

LSE-5 Taps #704, #816, #708, #1213 & #1009

better the reconstruction performance LSE will achieve; on the other hand, the approach will
become more complex and there will be less data reduction. Thus, one of the objectives is to make
the number of the reference time series as small as possible. This will find its usefulness when
considering the data-storage problems in the development of the aerodynamic database. The choic
of reference time series should be determined by considering a balance between accuracy, date
storage and complexity. This is problem-dependent and done by trial-and-error since there are a
large variety of parameters involved in wind tunnel tests. The general guideline is to select those
which are strongly correlated with the target pressure field, and can dominate or characterize
fluctuating features of the target pressure field.

In this study, four schemes of reference time series were investigated, as listed in Table 1. Herein, the
notation LSEF represents a set bfeference time series (see Fig. 2 for the locations of the selected taps).
It is expected that the reference time series chosen from the separated flow regions can simulate th
adjacent individual pressures more accurately than the far field pressure taps due to larger correlations
Fig. 3 gives an example of the distribution of the correlation coefficient relative to one reference tap
(#704) for a cornering wind. It can be seen that the reference tap is generally more higidyech
with the adjacent pressures which characterize the fluctuating features of structural load time series.

Following the computational steps illustrated in Fig. 1, individual pressure time series at any required
locations and the corresponding structural loads can be reconstructed using different reference time serie
Good reconstruction requires that the simulated structural load time series preserve the key statistical an
probabilistical features of the experimental data with an acceptable accuracy (e.g., usually a predictior
error less than, say, 10%). Among these statistics, mean values, rms values, peaks, correlation:
autospectra are the more important measures of the basic quality of time series reconstruction. Skewne:
and kurtosis coefficients which are the third and fourth statistical moments about the mean value
respectively, are used to measure the non-Gaussian features of the time series.

L5
X/H

Fig. 3 Contours of the correlation coefficient relative to tap #704 in open country terrairr 820
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Fig. 4 Autospectra of the measured and reconstructed pressure time series of tap #1210 in open countr
terrain fora=320
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Fig. 5 Autospectra of the measured and reconstructed uplift time series in a corner bay in open country
terrain for: (a)a=27C, (b) a=32F and (c)a=360C
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4.2. Reconstruction of individual pressure time series

As an example of the performance of an individual pressure time series, the reconstruction of tap
#1210 is presented using the LSE-5 scheme. Fig. 4 shows the reconstructed and actual autospect
for a cornering wind. As can be seen, the reconstructed autospectrum deviates significantly from
that of the experimental data, especially at the energetic frequencies. This indicates that the LSE is
not appropriate for capturing the fluctuation energy of individual pressure time series (at least as
currently formulated with only a few taps).

4.3. Reconstruction of bay uplift

Fig. 5 shows the comparison of autospectra of the experimental and the reconstructed bay uplift
time series using LSE-1 through LSE-5 for three wind directions. As expected, the autospectra
obtained with LSE-5 resemble most closely those of the experimental data. For LSE-1, except for
the 270 azimuth, the simulated autospectra match well with the original autospectra, especially in
the low frequency domain (which accounts for the largest fraction of the fluctuation energy). The
poorer performance of LSE-1 for Z78imuth indicates in this case, that more reference time series are
required to capture the fluctuations (e.g., using LSE-2), or possibly a different tap should be used.
Generally, the more reference time series that are used, the better the agreement with the real data sin
more “conditional information” is known. It is also observed that almost all of the schemes failed to
reproduce the sudden spike in the autospectra at roughly 90 Hz, which is due to the blade passag
frequency. This can be attributed to the limitations of the linear assumption in the methodology.

4.4. Reconstruction of frame uplift

Table 2 summarizes the statistics from the experimental and the reconstraoteduplift time
series (Frame 1). Similar findings for the bay uplift reconstruction were obtainéd f(wther
details in Chen, 2002). As shown, the LSE approach achieves good performance in reconstructing
the frame uplift time series, including using only one reference tap. In particular, the mean value of
the frame uplift is reconstructed perfectly. Among the schemes considered, LSE-5 exhibits the best
performance. For example, by using LSE-5 for°328imuth, the maximum prediction errors of the
other statisticrms, peak suction, skewness and kurtosis) are below 3%. The large correlation
coefficient (0.97) between the reconstruction and the experimental data indicates an accurate
estimation of the fluctuating features. The (weakly) non-Gaussian features of the experimental frame
uplift in this corner bay are also preserved well, as confirmed by the good prediction of skewness
and kurtosis coefficients (Note that the absolute values of skewness and kurtosis coefficients of an
ideal Gaussian time series are 0.0 and 3.0, respectively). For this direction, LSE-1 also performs
well in estimating the rms and peak suction with a maximum absolute error of 6%.

Fig. 6 shows the probability density functions (PDF) and cumulative distribution functions (CDF)
of the measured and reconstructed frame uplift time series for a cornering wind. It can be seen tha
both the PDF and CDF of the original time series including the upper and lower tails were
preserved well in the time series reconstructed by using LSE-1 through LSE-5. Considering that the
observed peaks (i.e., the single worst values) are not commonly used in engineering practice due ftc
the significant stochastic variability in time series samp&sdek and Simiu 2002), more reliable
peaks are estimated through an extreme value analysis. The commonly used Type | (Gumbel)
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Table 2 Statistics of the reconstructed and experimental uplift time series for Frame 1 with wind directions of
27, 32 and 360 in open country terrain

a Case Mean Rms Min. Max. Skewness Kurtosis CorrCoef
270 Real -0.1791 0.0467 -0.4333 -0.0567 -0.61 3.39
LSE-1 -0.1791 0.0340 -0.4148 -0.0778 -0.75 4.01 0.66
(0.0%) (-33.7%) (-4.3%) (37.1%) (23.0%) (18.3%)
LSE-2 -0.1791 0.0373 -0.4179 -0.0827 -0.63 3.52 0.80
(0.0%) (-20.1%) (-3.5%) (45.8%) (3.3%) (3.8%)
LSE-4 -0.1791 0.0428 -0.4762 -0.0712 -0.65 3.56 0.92
(0.0%) (-8.3%) (9.9%) (25.6%) (6.6%) (5.0%)
LSE-5 -0.1791 0.0436 -0.4643 -0.0700 -0.67 3.61 0.93
(0.0%) (-6.6%) (7.2%) (23.4%) (9.8%) (6.5%)
320 Real -0.2441 0.0654 -0.5872 -0.0140 -0.68 3.83
LSE-1 -0.2441 0.0615 -0.5798 -0.0494 -0.75 3.94 0.94
(0.0%) (-6.0%) (-1.3%) (253.1%) (10.3%) (2.9%)
LSE-2 -0.2441 0.0621 -0.5728 -0.0411 -0.73 3.91 0.95
(0.0%) (-5.0%) (-2.5%) (193.5%) (7.3%) (2.1%)
LSE-4 -0.2441 0.0630 -0.5707 -0.0329 -0.72 3.82 0.96
(0.0%) (-3.6%) (-2.8%) (135.1%) (5.9%) (-0.3%)
LSE-5 -0.2441 0.0634 -0.5770 -0.0190 -0.70 3.82 0.97
(0.0%) (-3.0) (-1.7%)  (-35.9%) (-2.9%) (-0.3%)
360° Real -0.2093 0.0652 -0.5546 -0.0577 -0.74 3.63
LSE-1 -0.2093 0.0567 -0.6846 -0.0997 -1.29 5.94 0.87
(0.0%) (-13.0%) (23.4%) (72.7%) (74.3%) (63.6%)
LSE-2 -0.2093 0.0591 -0.6344 -0.0869 -0.96 4.32 0.91
(0.0%) (-9.4) (14.4%)  (50.6%) (29.7%) (19.0%)
LSE-4 -0.2093 0.0627 -0.5497 -0.0703 -0.81 3.82 0.96
(0.0%) (-3.9%) (-0.9%) (21.7%) (9.5%) (5.2%)
LSE-5 -0.2093 0.0632 -0.5604 -0.0691 -0.81 3.82 0.97

(0.0%) (-3.2%) (1.0%) (19.6%) (9.5%)  (5.2%)

Note: 1. The bracketed terms are the errors relative to the actual values.
2. CorrCoef represents correlation coefficient relative to the experimental time series.

extreme value distrildion (Cook 1985) was chosen for theremt analysis of the largest peaks (i.e.,
peak suctions multiplied byl). The Gumbel distribution function is defined as:

=In[-In(-P)]=a(x-u) (22)

where x denotes a peak valu, is the probability of no eeedance of the peak valyea is a
measure of dispersion, ands a measure of location. In this study, the distributiomipaters were
determined by fitting the peaks on Gumbel plot paper using the least-mean-square method. The
peaks were taken from 50 segments of frame uplift time series. Fig. 7 compares the distribution of
the largest peaks of the experimental and reconstructed frame uplift time series using LSE-5. Table
3 summarizes the comparison of the estimated peaks corresponding to the probability of no
exceedance, as well as the fitted Gumbel parameters. It can be seen that the reconstructed extren
value distribution exhibits good amgment with the experimental data. This is also indicated by
well-matched Gumbel parameters. The peaks corresponding to theilisolodmo exceedance of
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Table 3 The observed and estimated worst peaks for frame uplift (Frame 1) and ridge bending moment

Structural Observed Estimated Worst Peaks Gumbel Distribution Parameters
Load Case Worst P(probability of no exceedance) y=—In[-In(P)]=a(x-u)
Effects Peak 99% 90% 80% a u
Real -0.5872 -0.6793 -0.5395 -0.4948 16.80 0.4055
Er;?;te LSE-5  -05770  -0.6624  -0.5298  -0.4874 17.72 0.4028
Error% -1.7% -2.5% -1.8% -1.5%
Ridge Real -0.2290 -0.2625 -0.2133 -0.1975 47.70 0.1661
Bending LSE-5 -0.2257 -0.2588 -0.2095 -0.1938 47.69 0.1623

Moment  Error% -1.5% -1.4% -1.8% -1.9%
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99%, 90%, and 80% can be reconstructed accurately with a maximum error less than 3%.

The good performance of the LSE approach is also confirmed by the comparison of the
corresponding autospectra between the LSE reconstructions and the experimental data. As shown i
Fig. 8, all the simulated power spectra by using various LSE schemes match well with the original
data, except for LSE-1 for 27@zimuth.

4.5. Reconstruction of ridge bending moment

Table 4 gives the statistics of the reconstructed and experimental bending moment calculated
about ridge for three wind directions. As shown, LSE-5 achieves the best performance for
reconstructing the ridge bending moment time series, where the maximum estimation error for all
the key statistics (except for the most positive peak) is less than 10%, and all the corresponding
correlation coefficients are larger than 0.93. It appears that two pressure taps (LSE-2) are sufficient
to reconstruct the bending moment in terms of mean, rms and minimum peak. Even given one
reference tap, the LSE still captures the minimum peak value accurately with an absolute error less
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Table 4 Statistics of the reconstructed and experimental ridge bending moment for the corner bay with wind
directions of 276 320 and 360 in open country terrain

a Case Mean Rms Min. Max. Skewness Kurtosis CorrCoef
270 Real -0.1129 0.0299 -0.2814 -0.0332 -0.59 3.35
LSE-1 -0.1129 0.0208 -0.2709 -0.0449 -0.75 4.01 0.70
(0.0%) (-30.4%) (-3.7%) (35.2%) (27.1%) (19.7%)
LSE-2 -0.1129 0.0268 -0.2835 -0.0449 -0.63 3.49 0.90
(0.0%) (-10.4%) (0.7%) (35.2%) (6.8%) (4.2%)
LSE-4 -0.1129 0.0286 -0.2949 -0.0443 -0.61 3.40 0.96
(0.0%) (-4.4%) (4.8%) (33.3%) (3.4%) (1.5%)
LSE-5 -0.1129 0.0291 -0.2960 -0.0421 -0.63 3.46 0.97
(0.0%) (-2.7%) (5.2%) (26.7%) (6.8%) (3.3%)
320 Real -0.0995 0.0263 -0.2290 -0.0009 -0.55 3.72
LSE-1 -0.0995 0.0211 -0.2150 -0.0326 -0.75 3.94 0.80
(0.0%) (-19.6%) (-6.1%) (3450%) (36.4%) (5.9%)
LSE-2 -0.0995 0.0247 -0.2209 -0.0203 -0.70 3.86 0.94
(0.0%) (-6.1%) (-3.6%) (2112%)  (27.3%) (3.8%)
LSE-4 -0.0995 0.0248 -0.2217 -0.0197 -0.68 3.78 0.95
(0.0%) (-5.5%) (-3.2%) (2046%) (23.6%) (1.6%)
LSE-5 -0.0995 0.0252 -0.2257 -0.0111 -0.62 3.78 0.96
(0.0%) (-4.0%) (-1.5%) (1105%) (12.7%) (1.6%)
360° Real -0.1015 0.0309 -0.2552 -0.0300 -0.73 3.62
LSE-1 -0.1015 0.0252 -0.3126 -0.0527 -1.29 5.94 0.81
(0.0%) (-18.6%) (22.5%) (76.1%) (76.7%) (64.1%)
LSE-2 -0.1015 0.0272 -0.2832 -0.0448 -0.94 4.23 0.88
(0.0%) (-12.0%) (11.0%) (49.5%) (28.8%) (16.9%)
LSE-4 -0.1015 0.0296 -0.2548 -0.0327 -0.77 3.75 0.96
(0.0%) (-4.3%) (-0.2%) (9.1%) (5.5%) (3.6%)
LSE-5 -0.1015 0.0299 -0.2630 -0.0327 -0.77 3.74 0.97

(0.0%) (-33%) (3.1%)  (9.2%)  (55%)  (3.3%)

Note: 1. The bracketed terms are the errors relative to the actual values.
2. CorrCoef represents correlation coefficient relative to the experimental time series.

than about 6% for the wind directions of 2&hd 320.
The comparisons in terms of PDF and CDF for a wind direction df &20shown in Fig. 9. All
the LSE schemes (except for LSE-1) have good performance to preserveistieastbgatures of
the original data. For the distribution of the largest peaks, using five reference taps also can
reproduce the extreme value distribution well, as shown in Fig. 10. The estimated peaks of the
bending moment time series for three probabilities of no exceedascgiven in Table 3. As
shown, the LSE reconstruction accurately reproduces not only the observed single worst peak but
also the estimated peaks through the Gumbel distribution, with a maximum absolute error less than 2%.
Fig. 11 shows the corresponding autospectra of the LSE reconstructed and experimental ridge bendin
moment. As shown, two reference taps (LSE-2) are sufficient to reconstruct the majority of the
fluctuation energy of the original time series. This is also in accordance with the above comparison
in terms of statistical features.
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4.6. Discussion

The LSE approach for estimating structural loads with the individual reconstructed pressure time
series is simple in idea and implementation. As a stochastic approach, LSE is essentially a linear
estimate of the conditional exage of a random variable by neglecting the nonlinear terms of a
Taylor series expansion, given some reference variables. This assumption is opeistitm,que
especially when applied to strongly non-Gaussian time series (e.g., pressure time series in the
separated flow regions) because it is believedliear functions are unlikely to be able to capture
non-linearity. Of course, stochastic estimation of a random variable given some reference variables
and also the higher-order terms can improve the accuracy of estimation (Adrian 1994), but it will
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increase complexity and reduce practicality. Furthermore, it was shown by Tung and Adrian (1980)
that the higher-order terms of Taylor series expansion would not have a significant effect on the
estimation of the large-scale @hnt structures in a turbulent velocity field, which verifies the use
of LSE with the assumption of linear approximation. As well, the purpose of using LSE in this
study is for approximate estimation of structural load time series on large-scale loads, not for local
reconstruction of individual pressure time series. As shown in this study, for the reconstruction of
structural load time series, LSE is efficient since the target time series are generally weakly non-
Gaussian or Gaussian. However, in the case of simulating strongly non-Gaussian time series, it is
not realistically expected that the LSE based on the assumption of linear approximation can
accurately capture the fluctuating features, althougtillitositperforms linearinterpolation (Chen
2002). With this concern, it is suggested that nonlinear models be used for local reconstruction of
pressure time series (e.g., time-delay ANN approaches (@fralt 2000, Cheret al 2002a)). This
would need further investigation.

Regarding time series reconstruction, Proper Orthogonal Decampd$OD) (e.g., Bienkiewicz
et al 1995), another standard stochastic approach based on using two-point correlations, also ha:
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potential. The difference between them lies in the interpretation of the covariance information. POD
uses the covariance matrix of the whole surface field to estimate modes by solving an eigenvalue
problem, and the reconstruction of pressure time series can be performed with the first few
dominant modes. In contrast, LSE uses the covariance matrix of only the selected reference time
series and the target time series to determine estimation coefficients. They both have their
advantages and disadvantages. Generally, LSE is simpler, and can reproduce the mean value c
pressure time series completely, but the reference time series need to be optimally determined ir
order to achieve the best possible reconstruction performance. POD reduces data by eliminating
higher-order modes which contain “unimportant” information.

Like for POD, LSE is applicable only if covariance matrices are known (since the covariance
matrix will be used to calculate the estimation coefficients). The covariance information can be
obtained from either wind tunnel or full-scale experiments and should be stored with the database.
As shown in this study, the LSE can save at least 96% data storage if five properly selected
reference taps are sufficient to reconstruct the pressure field accurately in the corner bay (where 12(
pressure taps were instrumented). Clearly, this indicates that aerodynamic databases which contain
large number of pressure time series on the entire surface of low buildings can be reduced to &
much smaller data set by storing some optimal reference time series and the covariance matrices
The reconstructed pressure time series can be used as inputs to the finite element analysis program
provided that the reconstruction accuracy of LSE with these stored reference time series is sufficiently
acceptable. However, several taps would need to be stored from each bay and the walls in order t
achieve better performance. Besides the potential for data reduction associated with DAD, the
covariance matrix can also be directly used by LRC method, offering a more flexible database.

5. Conclusions

A simple and practical approach through the application of LSE has been developed to reconstruct
wind-induced pressure time series for the analysis of structural loads in a corner bay of a low
building where the covariance matrix is known. The reconstruction is based on the assumption that
pressure time series at any location can be estimated as a linear function of some other pressur
time series, and structural loads in a desired region can be calculated with these individual
simulated pressures. The effect of using different reference time series has been investigated ir
order to achieve the best performance. The comparison between the simulation and the actua
measured data was at the level of statistical features including mean, rms, peak, skewness, kurtosi
correlations, autospectra, PDF, and CDF. Some major conclusions based on the present results ce
be made as follows:

® | SE is efficient for reconstructing pressure time series for use in the analysis of structural
loads, given a handful of reference pressure taps (even only one tap).

® | SE can reconstruct the mean value of pressure time series perfectly; for other statistical
features, the performance depends on the number and location of reference time series.

e In order to achieve the best performance, reference time series need to be optimally
determined. The objective is to keep the number of reference pressure taps as smalllas poss
providing that the simulation accuracy is still acceptable.

e The LSE can save about 96% data storage when simulating the pressure field of a corner bay
with five taps. This indicates that LSE has potential to be used for reducing data storage
requirements in the development of the aerodynamic database.
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Abbreviations
CorrCoef
DAD

LRC

LSE

LSE-

NIST

POD

rms

AK

area of a roof zone

tributary area of tap

estimation coefficient vector

ith estimation coefficient for simulating pressure time serieg, af)
spatial covariance matrix between reference time series

spatial covariance between reference time series at lodediwa)
spatial covariance vector between the pressure time series to be reconstructed and reference
time series

non-dimensional wind pressure coefficient

pressure time series at location ¥)

reference pressure time series at locati@iso denoted a€p_, X ¥i;t)
fluctuation of pressure time series at locatigny(

mean value of pressure time series at locatom) (

rms value of pressure time series at locatigry)(

linear stochastic estimate of pressure time series at locatign (
linear stochastic estimate of pressure time series at logation
uplift time series

frame uplift time series

bending moment time series

influence coefficient of tap

bending moment arm of tdp

time instant

spatial coordinate of a tap location

building width

conditional average operator

inverse of matrix

average operator

wind direction

correlation coefficient

database-assisted design

load-response-correlation

linear stochastic estimation

linear stochastic estimation which usegference time series
National Institute of Standards and Technology

proper orthogonal decomposition

root-mean-square
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