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Abstract. Wind-excited vibrations of slender structures can induce fatigue damage and cause str
failure without exceeding ultimate limit state. Unfortunately, the growing importance of this proble
coupled with an evident lack of simple calculation criteria. This paper proposes a mathematical m
for evaluating the crosswind fatigue of slender vertical structures, which represents the dual formula
a parallel method that the authors recently developed with regard to alongwind vibrations. It take
account the probability distribution of the mean wind velocity at the structural site. The aerodynamic crosswind
actions on the stationary structure are caused by the vortex shedding and by the lateral turbulen
schematised by spectral models. The structural response in the small displacement regime is expr
closed form by considering only the contribution of the first vibration mode. The stress cycle count
based on a probabilistic method for narrow-band processes and leads to analytical formulae of th
cycles histogram, of the accumulated damage and of the fatigue life. The extension of this proce
take into account aeroelastic vibrations due to lock-in is carried out by means of ESDU method
examples point out the great importance of vortex shedding and especially of lock-in concerning fat

Key words: buffeting; crosswind response; fatigue damage; fatigue life; lock-in; stress cycles histo
vortex shedding.

1. Introduction

Wind-excited vibrations of structures can induce damage accumulation and cause structural
without exceeding ultimate limit states. Some collapses due to wind loading have recently
attributed to fatigue (Robertson et al. 1999, Peil 2002). 

Faced with the growing importance of this phenomenon and with the persistent lack of reli
calculation methods, the authors of this paper have recently developed a formulation to estim
fatigue behaviour of slender vertical structures due to alongwind vibrations caused by longit
turbulence (Repetto and Solari 2001a).

Nevertheless, slender vertical structures exposed to wind may experience crosswind vib
which are often more critical than alongwind vibrations and however characterised by diff
properties. In fact, the mean part of the response is usually negligible. The fluctuating part is 
the lateral turbulence and to the vortex wake. This constitutes a complex physical phenomen
is often the main source of the vibration mechanism.

The vortex wake produces aerodynamic actions perpendicular to the wind direction, w
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frequency depends on the mean wind velocity and on the shape and the size of the st
section. The worst situation happens in correspondence of the critical wind velocities, which c
resonant shedding with a natural frequency. In these conditions aeroelastic forces may ex
motion up to realise an extremely dangerous synchronisation mechanism well known as lock-in.
Since large vibrations often occur at moderate and frequent wind speeds, structures sensitive to this
phenomenon may undergo a large number of stress cycles that cause fatigue damage.

In spite of numerous research works have been done in this field (Davenport 1966, Petrov
Mikitarenko and Perelmuter 1998), not only crosswind fatigue can be dealt with as a fully 
matter, but also the crosswind response of slender vertical structures (e.g., chimneys and tow
problem far to be solved definitely. In fact, several methods exist based on different physica
mathematical assumptions, which often lead to quite different results (Solari 1999). 

According to the spectral model proposed by Vickery and Clark (1972), the actions caused 
vortex shedding on a stationary structure constitute a random stationary Gaussian process repres
the frequency domain, by a power spectrum and a coherence function. When the Scruton number
the crosswind response may be calculated by the classical methods of random dynamics. W
Scruton number is small, the response becomes self-excited and sinusoidal. Using the method p
by Vickery and Basu (1983) aeroelastic effects can be modelled by a non-linear aerodynamic dam

Consistently with the above spectral model, ESDU (Response of Structures 1996) introduces a
method where aeroelastic effects are taken into account by a mode-generalized fluctuat
coefficient, as a non-linear function of the motion. It also assumes that, in the atmospheric win
amplitude of the motion may change over irregular periods from forced to self-excited and vice
Thus, a time factor is introduced, which represents the fraction of time during which the respo
sinusoidal. It increases on decreasing the turbulence intensity and the Scruton number.

The vortex-resonance model proposed by Ruscheweyh (1994) mainly focuses on aerostic
effects. Using a deterministic approach, it assumes that vortex shedding produces a harmon
on the effective correlation length, expressed as a nonlinear function of the motion amplitude
method has been introduced into the Eurocode 1 (1994) and is the basis of the only pro
currently in use for evaluating the vortex-induced fatigue. In such a context, the number of 
cycles during the structural life is evaluated taking in account the probability that the mean
velocity occurs within a conventional velocity range centred in the critical velocity value.

This paper proposes a mathematical method for evaluating the crosswind fatigue of slender 
structures, which represents the dual formulation of a parallel method (Repetto and Solari 
that the authors recently developed with regard to alongwind vibrations. Likewise the comp
alongwind procedure, this method takes into account the probability distribution of the mean
velocity at the structural site. The aerodynamic crosswind actions on the stationary structu
caused by the vortex shedding and by the lateral turbulence, both schematised by spectral models
The structural response in the small displacement regime is expressed in closed form by cons
only the contribution of the first vibration mode (Piccardo and Solari 2000). The stress cycle co
is based on a probabilistic method for narrow-band processes. The results provide analytical fo
of the histogram of the stress cycles, of the accumulated damage and of the fatigue life. The ex
to large vibrations due to lock-in effects is carried out by means of ESDU method. Independently of
its reliability or of its consensus with reference to the other methods previously cited, it seems to be
the most appropriate to correct the above fatigue analysis in order to account for aeroelastic effects.

The proposed method is applied to three steel chimneys of different characteristics. The appli
focus on the relative importance of the two components of the crosswind actions, i.e., the 
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shedding and the lateral turbulence, and furnish relevant elements for a deep comprehensio
physical phenomenon. The comparison with Monte Carlo simulations underlines the good agreement
with numerical results.

2. Undisturbed wind

Let x, y, z be a Cartesian reference system with origin O on the ground and axis z directed
upwards. Ignoring, for sake of simplicity, the dependence of the wind direction on the time t, the
instantaneous wind velocity U at height z is expressed by the vectorial temporal law :

U(z, t) = U(z, t)+u(z, t) (1)

in which U and u are, respectively, the macro-meteorological and the micro-meteorolog
components of U (Van de Hoven 1957). It is admitted that U varies so slowly in time to be
approximated by a series of constant values on successive ∆T intervals (Fig. 1). On each ∆T
interval, Eq. (1) becomes:

U (z, t) = U (z)+u(z, t) (2)

where u(z, t) is the vectorial zero mean turbulent fluctuation of U around U.
Considering a flat homogeneous terrain and the internal boundary layer, U and u result:

U (z)=iU(z) (3)

u(z, t) = iu(z, t)+jv(z, t)+kw(z, t) (4)

where i , j , k are the unit vectors in the directions x, y, z, U is the mean wind velocity aligned with
x; u, v, w are the longitudinal (x), lateral (y) and vertical (z) turbulence components.

The mean wind velocity U (z) is expressed in terms of the height and the site properties, usin
logarithmic profile as proposed in the Eurocode 1 (1994):

(5)U z( ) Uref kT
z
z0

----ln=

Fig. 1 Temporal representation of wind velocity: a) real; b) simplified
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where kT is the terrain factor and z0 is the roughness length. Uref is the reference velocity, i.e., the
mean wind velocity at 10 m height, in open country; this is treated as a random variable 
distribution function is given by the hybrid Weibull model (Solari 1996):

(6)

in which F0 is the probability that Uref= 0; k e c are model parameters.
Turbulence components are schematized by random stationary Gaussian processes. A wideitical

survey on turbulence models is provided, for instance, in Solari and Piccardo (2001).

3. Aerodynamic crosswind actions 

The structure is schematised by a slender vertical beam, coaxial with z, of total height h, restrained
at its base. Wind gives rise to complex aerodynamic phenomena which induce alongwind 
crosswind forces and torsional moments (Piccardo and Solari 2000); at this stage of the a
aeroelastic effects are ignored. Focusing attention on only the crosswind response and treatinxz as
a symmetry plane, the mean wind force in y direction is null and its fluctuating component results

f(z, t)=fv(z, t)+fω(z, t) (7)

where fv and fω are lateral turbulence and wake contributions, respectively.
Applying the quasi-steady theory and admitting that turbulence is small, the loading term asso

with the lateral turbulence is given by :

(8)

where ρ is the air density, cd is the drag coefficient,  is the prime angular derivative of the 
coefficient, b is the reference size of the cross-section, Iv(z)=σv / U(z) is the lateral turbulence
intensity, σv is the root mean square (rms) value of v, v* (z, t)=v(z, t)/σv is the reduced turbulence
component, γv(z) is a non-dimensional function of z, called v shape function, which makes thi
model suitable to be applied both to structures with variable aerodynamic properties and to non
prismatic structures.

The loading term associated with the wake excitation may be formally expressed by:

(9)

where  is the rms lift wake coefficient, ω y
*  is the y reduced component of the wake excitatio

treated as a random stationary Gaussian process (Vickery and Clark 1972), γω is the ω shape function.
The cross-power spectra of v* and ω*  have the general expression:

(ε=v, ω) (10)

where n is the frequency; Sε
* (z, n) is the power spectrum of the reduced excitation component ε* at

height z; Cohεε(z, ,n) is the ε coherence function at heights z and z', assumed as real and give

FUref
Uref( ) F0 1 F0–( ) 1

Uref

c
--------- 

 
k

–exp–
 
 
 

+ Uref 0≥,=

fv z t,( ) 1
2
---ρ cd c′1+( )bγv z( ) I v z( )U

2
z( )v* z t,( )=

c′1

fω z t,( ) 1
2
---ρc̃1ωbγω z( )U2

z( )ωy
* z t,( )=

c̃1ω

Sεε
* z z′ n, ,( ) Sε

* z n,( )Sε
* z′ n,( )Cohεε z z′ n, ,( )=

z′
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where κ is a suitable non-dimensional quantity. 
Appendix I provides the expressions of Sε

*  and κε used in this paper.
Since f is a linear function of v*  and ω*  (Eq. 7), likewise v*  and ω*  also f is a random stationary

Gaussian process. Furthermore, assuming v* and ω* as independent (Solari 1985), the cross-pow
spectrum of f is the sum of the cross-power spectra of fv and fω (Eqs. 8 and 9).

4. Dynamic response and stress state

Let us consider the structure as linear elastic, with viscous damping.
The nil mean fluctuating crosswind force f(z, t) (Eq. 7) produces a nil mean fluctuating crosswin

displacement y(z, t) that determines a nil mean fluctuating stress state. Let s(z, t) denote the stress
in a given point P of the cross-section at height z. Due to linearity, both y and s are random
stationary Gaussian processes whose definition in general calls for numerical analysis (Solari
The problem may be simplified assuming, as classically, that the response depends only on 
mode of vibration. In such a case, the power spectrum of the fluctuating stress is given by :

(12)

 being the stress in P produced applying, in y direction, the alongwind mean force F(z) : 

(13)

Hy1(n) is the mechanical admittance function of the first mode of the structure :

(14)

where i is imaginary unit, ny1 and ξy1 are the fundamental frequency and the damping coefficien
the first mode in y direction, respectively. χv and χω are the non-dimensional quantities :

(15)

(16)

where Kyu, Kv'  and Kω'  are non-dimensional coefficients expressed by :

(17)

Cohεε z z′ n, ,( ) κε z z′ n, ,( ) z z′–
h

---------------–
 
 
 

exp=

Ss P n,( ) S
x

P( )[ ]
2

Hy1 n( ) 2 χv
2Sveq

* n( ) χω
2 Sωeq

* n( )+[ ]=

S
x

P( )

F z( ) 1
2
---ρcdbγu z( )U2

z( )=

Hy1 n( ) 1

1
n

ny1

------- 
  2

2i ξy1
n

ny1

-------+–

--------------------------------------------------=

χv

cd c′1+( )I v h( )K′v
cdKyu

-------------------------------------------=

χv

c̃1ωK′ω
cdKyu

----------------=

Kyu
1

hU
2

h( )φy1 h( )
--------------------------------- U

2

0

h

∫ z( )γu z( )φy1 z( )dz=
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(19)

φy1 (z / h)ζ y1 is the first modal shape in y direction, ζy1 being a modal shape factor. S*
veq (n) and

S*
ωeq (n) are the reduced Generalized Equivalent Spectra (Piccardo and Solari 1998) of the 

turbulence and of the wake excitation, respectively :

(20)

(21)

where :

(22)

zyv= 0.6h and zyω = 0.8h are the reference co-ordinates; kyv = kyω 0.5 / (ζy1+ 1)0.55 are the equivalent
correlation factors (Piccardo and Solari 2001).

The knowledge of the power spectrum in Eq. (12) enables to obtain the main parameters
stress process; in particular, desiring to count fatigue cycles, the rms value and the ex
frequency should be determined. Taking Eq. (7) into consideration, the variance of the stress 
can be expressed by :

σ s
2 (P) = σsv

2 (P) + σsω
2 (P) (23)

in which σsv
2 (z) and σsω

2 (z) are the contributions to the total variance of the stress process d
the lateral turbulence and to the wake excitation, respectively. They are given by :

σsε
2 (P) = [Sx(P) χε] 2(Qε + Dε) (24)

where Qε and Dε are non-dimensional quantities proportional, respectively, to the quasi-static
and to the resonant part of the structural response to the ε excitation component :

(25)

Using these quantities, the expected frequency of the stress process is given by :

(26)

K ′v
1

hU
2

h( )I v h( )φy1 h( )
---------------------------------------------- U

2

0

h

∫ z( )γv z( )I v z( )φy1 z( )dz=

K ′ω
1

hU
2

h( )φy1 h( )
--------------------------------- U

2

0

h

∫ z( )γω z( )φy1 z( )dz=

−~

Sveq
* n( ) Sv

* zyv n,( )C kyv

nCzvh

U zyv( )
---------------

 
 
 

=

Sωeq
* n( ) Sω

* zyω n,( )C kyω
h

Lb
------

 
 
 

=

C χ{ } 1
χ
--- 1

2χ 2
--------– 1 e 2χ––( ) per χ 0> ; C 0{ } 1==

−~

Qε Sεeq
*

0

ny1

∫ n( )dn ; Dε
πny1

4ξy1

----------Sεeq
* ny1( )= =

vs

χv
2ny1

2 Dv χω
2 ny1

2 Dω+
χv

2 Qv Dv+( ) χω
2 Qω Dω+( )+

--------------------------------------------------------------------
1 2⁄

=
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Appendix II provides closed formulae of Qε and Dε (ε = v, ω) based on the spectral mode
defined in Appendix I (Piccardo and Solari 2000).

5. Stress cycles histogram and fatigue verification

The histogram of the stress cycles, the total accumulated damage and the fatigue life 
crosswind vibrations can be determined by the same procedure already used for analys
alongwind fatigue in Repetto and Solari (2001a).

Let δU be a suitably small velocity range. U ref values are subdivided into a full set of non
overlapping intervals ∆Ui=(i - 1, i )δU (i = 1, 2, …), centred on Uref, i = (2i -1)δU / 2. The sub-set of
wind actions and the corresponding stress states associated with Uref values belonging to ∆Ui are
referred to as the i -th loading condition. Its occurrence probability is given by :

(27)

The stress fluctuation si associated with the i-th loading condition is a nil mean Gaussia
stationary random process, whose standard deviation σsi and expected frequency νsi are given by
Eqs. (23) and (26), respectively, having put Dε = Dεi , where Dεi is the value of Dε calculated in
correspondence with Uref = Uref, i . It is admitted, as it is typical of flexible and lightly dampe
structures, that si is a narrow band process. Thus, at every up-crossing of a given S threshold, a
cycle of amplitude ∆s� 2S corresponds.

Let us consider a series of stress thresholds Sj = jδs ( j = 0, 1, 2, …), δs being a suitably small
stress interval. Let ∆sj = Sj -1 + Sj = (2j -1)δs represent the average amplitude of the stress cycle
the range (2Sj -1, 2Sj ]. The mean number of cycles of amplitude ∆sj per unit time, due to the i-th
loading condition is given by :

(28)

which provides the 3D stress cycles histogram.
Applying the Palmgreen-Miner linear accumulation law, the mean total damage D per unit time is

the sum of the contributions to damage of all the blocks of the 3D stress cycles histogram:

(29)

where dij is the fraction of the mean damage per unit time caused to the structure by the i, j-th block :

(30)

in which nij is given by Eq. (28) and Nj is the mean number of stress cycles with amplitude ∆sj

which causes the structural collapse. Applying the experimental results obtained by Wohler, th
be expressed as a broken line in which the l -th segment is given by :

Pi 1 F0–( ) i 1–( )δU
c

----------------------- 
 –

k

exp
iδU

c
--------- 

 –
k

exp–
 
 
 

i 1 2 …, ,=( )=

nij Pivsi
j 1–( )2δs2

2σsi
2

-------------------------–
j2δs2

2σsi
2

-------------–exp–exp
 
 
 

=

D dij

j

∑
i

∑=

dij

nij

Nj

-----=



534 Maria Pia Repetto and Giovanni Solari

e
:

s
r :

ge

the
sswind
priately

dding.
ith the
cited or
onstant
hese

still a
 correct

o for
ivalent

over

ring
m.
(31)

where al and ml are parameters depending on the properties of the element studied.
Substituting Eqs. (28) and (30) into Eq. (29) provides the mean total damage per unit time. Th

fatigue life of the structure is the time period in which the mean total damage reaches the unit

(32)

6. Lock-in effects

Let us define the critical wind velocity Ucr as the mean wind velocity in correspondence of which
the vortex shedding frequency nyω equals the fundamental frequency of the structure ny1 at the
reference height z= zyω. It is defined by :

(33)

in which bm is the mean size of the upper third of the structure, S is the Strouhal number. When thi
condition occurs, lock-in effects may arise, whose importance depends on the Scruton numbe

(34)

where my1 is the first equivalent mass in y direction (Ruscheweyh 1994), very close to the avera
mass of the upper third of the structure.

When the Scruton number is sufficiently large, the response of the structure is forced by 
vortex shedding and random in nature. The rms value and the expected frequency of the cro
response can be evaluated using classical linear random dynamics and the fatigue life is appro
furnished by the method described in the previous section. 

On decreasing the Scruton number, the structural motion significantly affects the vortex she
The fluctuating forces at various sections along the structure tend to become in phase w
motion and thus more correlated with each other. The resulting response, defined as self-ex
locked-in, becomes nonlinear, deterministic and progressively assumes the shape of a c
amplitude sinusoid at frequency ny1. Several methods have been proposed in literature to take t
phenomena into account (Vickery and Basu 1983, Ruscheweyh 1994, Response of Structures 1996).
Independently of the reliability or of the consensus related to different methods, which is 
matter of wide debate, the method proposed by ESDU seems to be the most appropriate to
the above procedure for evaluating the role of lock-in effects on the fatigue life of the structure.
Note, however, that ESDU method works with circular cross-sections. It can be used als
polygonal sections with eight or more sides, by equating the polygonal shape to an equ
circular cylinder with added roughness.

In a neighbourhood of the critical wind velocity the amplitude of the motion can change 
irregular periods from forced to self-excited and vice-versa. ESDU defines a time factor ft = ft(Sc, U,
Iu), where Iu is the longitudinal turbulence intensity, which represents the fraction of time du
which the response is sinusoidal; (1-ft) is the fraction of time during which the response is rando

Nj

al

∆sj
ml

---------- ∆s l 1–( ) ∆sj ∆s l( )≤ ≤( )=

TF vsi

j

∑
i

∑ Pi
1
Nj

----- j 1–( )2δs2

2σsi
2

-------------------------–exp
j δs( )2

2σsi
2

--------------–exp– 
 

1–

=

Ucr
ny1bm

S
-------------=

Sc
4πmy1ξy1

ρbm
2

----------------------=
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On increasing Sc, or Iu, or for U far from Ucr, ft tends to zero. On decreasing Sc and Iu, and for U
tending to Ucr, ft tends to be unit.

Based on this approach, the cycle histogram and the fatigue life derived assuming the struc
stationary (Eqs. 28 and 32) must be reviewed to take into account the fraction of time during 
the self-excited response occurs. It results :

(35)

(36)

where fti = ft(Sc, Ui , Iu); kij = 1 for j = ,  being the rms value of the self-excite
stress for U = Ui ; kij = 0 otherwise.

7. Applications 

The proposed procedure is applied below to evaluate the crosswind induced fatigue of thre
chimneys, whose main characteristics are shown in Fig. 2, where R is the radius and t is the
thickness of the shell. Chimney 1 (Fig. 2(a)) is 25 m high and has constant radius and thic
Chimney 2 (Fig. 2(b)) is 100 m high and is composed by two trunks connected at z = 34 m; in order
to decrease its tendency to lock-in, an inner layer of 5 cm of gunite is realised, which furnish
added mass and increases the structural damping. Chimney 3 (Fig. 2(c)) is 30 m high a
constant radius and variable thickness. The steel of all the chimneys is Fe510. Table 1 sum
the main dynamical properties of each structure.

Applying the Eurocode 1, the chimneys are placed in Italy, in zone 7, roughness class C, ex
category III. So, kT = 0.20, z0= 0.10 m, zmin= 5 m; furthermore, admitting that terrain is flat, cT = 1.
Thus, in correspondence with a mean return period of 50 years, Uref = 29 m/s (with ∆T = 10 min).

nij 1 ft i–( )Pivsi
j 1–( )2δs2

2σsi
2

-------------------------–exp
j2δs2

2σsi
2

-------------–exp–
 
 
 

ft iPiny1kij+=

TF 1 fti–( )
j

∑
i

∑ Pivsi
1
Nj

----- j 1–( )2δs2

2σsi
2

-------------------------–exp
j2δs2

2σsi
2

-------------–exp–
 
 
 

ftiny1Pikij
1
Nj

-----+=

2σsi δs 1+⁄ 2⁄ σsi

Fig. 2 Radius and thickness: (a) chimney 1; (b) chimney 2; (c) chimney 3
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Taking this estimate into consideration, the dynamic response of all structures is determined
loading conditions, assuming Uref, i = (2i - 1)δU / 2, with δU = 1 m/s, i = 1, 2, …, 30. Analyses have
been carried out to check the stability of the solution on decreasing δU; they show that results do
not change when using velocity intervals lower than 1 m/s. The occurrence probability of 
loading condition is given by Eq. (27) using the parameters F0 = 0.1943, k = 1.549, c = 4.629 m/s
(Fig. 3).

Turbulence intensities at the site of the structures are Iu(z) = 1/ln(z / z0), Iv(z) = 0.8 Iu(z); integral
length scales are Lu(z) = 300(z / 200)0.55, Lv(z) = 0.25Lu(z) with z in metres; the exponential decay
coefficient of the lateral turbulence is Czv= 6.5 (Solari and Piccardo 2001). The drag coefficient 
the shafts is cd = 0.7, the rms lift wake coefficient is = 0.3, the Strouhal number is S= 0.2.

Fatigue damage is analysed in the critical structural sections reported in Table 1. According
Eurocode 3 (1994), they are classified as Category 50 and the number of cycles Nj that causes the
failure at different values of amplitude ∆sj is provided by the fatigue curve (Eq. 31) :

Nj � � for ∆sj � ∆sL

Nj = a1 / ∆sj
5 for ∆sL < ∆sj < ∆sD (37)

Nj = a2 / ∆sj
3 for ∆sD � ∆sj

c̃1ω

Table 1 Structural characteristics

Structure Chimney 1 Chimney 2 Chimney 3

Height
Fundamental frequency
Modal shape factor
Structural damping
Scruton number
Critical wind velocity
Equivalent mass
Height of critical section

h = 25 m
ny1 = 1.29 Hz
ζy1= 1.5
ξy1 = 0.006
Sc= 13.5
Ucr=5 m/s
my1 = 140 kg/m
hc=0 m

h = 100 m
ny1 = 0.486 Hz
ζy1= 2
ξy1= 0.01
Sc= 16
Ucr = 9 m/s
my1 = 2220 kg/m
hc= 34 m

h = 30 m
ny1 = 1.27 Hz
ζy1 = 1.7
ξy1 = 0.006
Sc= 9.5
Ucr=6 m/s
my1 = 160 kg/m
hc = 0 m

Fig. 3 Occurrence probability of the loading conditions
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where a1 = 3.436� 1014, a2 = 2.518� 1011, ∆sL = 20 MPa, ∆sD = 37 MPa. The parameters a1 and a2

take into account the partial safety factor γMf = 1.25 advised by Eurocode 3 for fatigue resistance.
Fig. 4 shows the rms value of the fluctuating stress in the critical section of the three chimn

varying the reference mean velocity Uref ; thick lines correspond to the total stress; thin and dot
lines provide the contributions due to the lateral turbulence and to the vortex shedding, respectiv
Diagram a) is referred to chimney 1 and shows that vortex shedding effects in the low wind ve
range are quite limited, while lateral turbulence effects dominate at high wind velocity values.
Diagram b) is referred to chimney 2 where vortex shedding effects on the response are
evident, although lateral turbulence effects still dominate at high wind velocity values. Diagram c) is
referred to chimney 3 where the crosswind response is characterised by a lock-in phenome
correspondence of the critical wind velocity. In particular, using ESDU method, ft = 0.66 for
U = Ucr, ft = 0 for U� Ucr . Due to such phenomenon, vortex shedding effects in the low w
velocity range is larger than lateral turbulence effects at high wind velocity values. 

As the yielding limit stress of the structural material is fy = 235 Mpa, the three structures exhibite,
due to crosswind vibrations, a consistent safety margin as regard the ultimate limit state.
analyses not reported here showed that the ultimate limit state verification is satisfied also tak
alongwind response into account. 

Fig. 5 illustrates the 3D stress cycles histogram (Eq. 36) induced by crosswind vibrations in th
critical sections of the three chimneys during 1 year. These diagrams show numerous blocks
wind velocity due to vortex shedding and some smaller blocks at high wind velocity due to l
turbulence. The most relevant differences occur in the range of the critical velocities. Fig
shows few and small blocks. Fig. 5(b) points out the presence of some blocks characterised b
amplitude. Fig. 5(c) emphasises one dominant block associated with high stress amplitude.

Applying Eq. (30) in correspondence of Eq. (37), the fraction of the damage induced to structu
any block of the cycle histogram is shown in Fig. 6 on varying the amplitude of the stress cycles a
reference velocity. It is worth notice that diagrams (a), (b) and (c) adopt different vertical scale

Fig. 6(a) shows the distribution of the damage induced in chimney 1. It is concentrated i
ranges of the wind velocity, where the greatest amplitude cycles arise due to vortex shedding an
lateral turbulence, respectively. In this case vortex shedding and lateral turbulence contributions to
fatigue damage are of the same order of magnitude. However, this chimney does not suffe
induced fatigue, as the mean fatigue life is TF  = 2� 103 years (Eq. 32).

Fig. 4 Rms values of the stress processes in the critical sections: (a) chimney 1; (b) chimney 2; (c) chi
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The fraction of the damage induced in chimney 2 is represented in Fig. 6(b). The dam
concentrated in the intermediate range of the wind velocity, where great amplitude cycles 
vortex shedding arise. The blocks at higher wind velocity, due to lateral turbulence, cause negligible
damage. The corresponding mean fatigue life is TF = 47 years (Eq. 32). The fatigue phenomenon
dominated by the vortex shedding, contrary to the limit state verification, which pointed ou
dominant role of the gust buffeting.

Fig. 6(c) shows the distribution of the damage in chimney 3. It is caused by only the block of t
cycles induced in correspondence of the critical velocity responsible of the lock-in phenom
other contributions to damage are negligible. The corresponding mean fatigue life is TF = 1.8 years
(Eq. 36). This means that the structure, judged as safe with regard to ultimate limit sta
absolutely unsafe due to fatigue.

The obtained solutions are compared with the results of a numeric analysis carried out by 
Carlo simulations. Chimney 2 is taken into account and 30 stress histories at the critical s
associated with 30 loading conditions, were carried out by the random phase method (Shinoz
and Jan 1972), starting from the stress spectrum in Eq. (12). Each stress time history was si
over a period of ∆T = 10 minutes, with a time step ∆t = 0.1s. Fig. 7 shows some pieces of th
simulated stress histories, corresponding to different values of the reference wind velocit
diagrams confirm that the narrow band hypothesis may be correctly applied to crosswind 
processes, especially in the range of the critical wind velocity.

Fig. 5 Histogram of the stress cycles: (a) chimney 1; (b) chimney 2; (c) chimney 3

Fig. 6 Fractions of damage: (a) chimney 1; (b) chimney 2; (c) chimney 3
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Fig. 7 Simulated stress histories in chimney 2: (a) Uref = 4 m/s; (b) Uref = 8 m/s; (c) Uref= 20 m/s

Fig. 8 Histogram of the stress cycles obtained
by the rainflow method (chimney 2)

Fig. 9 Fractions of damage caused by each loading
condition (chimney 2)
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Each history has been analysed by means of a cycle counting algorithm based on the r
method (Rychlik 1987); the number of cycles during 10 minutes was extended to the refe
period T = 1 year by taking into account the occurrence probability of each loading condition 
2). Fig. 8 shows the stress cycle histogram given by the above procedure and confirms t
results are in good agreement with those obtained applying Eq. (28) (Fig. 5b). Fig. 9 show
fractions of the damage associated to each loading conditions, evaluated with the pro
analytical method and with the rainflow method. The rainflow results endorse the analytical es
both in the damage distribution and in the fatigue life (TF = 48 years), attesting the precision of th
proposed method for crosswind vibrations where the narrow band hypothesis is satisfied. 

8. Conclusions

This paper proposes a mathematical method for fatigue analysis of slender vertical stru
subjected to crosswind vibrations. Lateral turbulence and vortex shedding actions on sta
structures are schematised by spectral models. Lock-in effects are taken into account though
method. Expressions of the cycles histogram and of the mean fatigue life are determine
probabilistic environment. They highlight the great importance of the vortex shedding mechan
the damage accumulation, even if the ultimate limit state verifications are widely satisfied
comparison between theoretical and numerical solutions, obtained processing Monte Carlo simu
by the rainflow technique, confirms the precision of the proposed method.

A research is currently in progress with the aim of improving the analysis by taking into ac
the contribution of all vibration modes to the static and quasi-static parts of the stress (Piccar
Solari 2002, Solari and Repetto 2001), by considering the damage reduction due to the do
role of directional wind velocity distributions and by superimposing the alongwind and cross
stresses to evaluate the global accumulated damage (Repetto and Solari 2001b). 
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Appendix - I

Adopting the turbulence model proposed by Solari and Piccardo (2001), the spectral equation of the 
turbulence component v*  is given by :

(38)

where U is the mean wind velocity and Lv is the integral length scale of v in y direction. The coherence
function of v is expressed by the relationship:

(39)

where Cvz is the exponential decay coefficient of v along z.
The spectral equation of the reduced wake excitation in y direction is expressed by the model proposed 

Vickery and Clark (1972) :

(40)

Sv
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q. (25)

cture,

ent
where nω(z) = SU(z) / b is the vortex shedding frequency, S is the Strouhal number, b is the width of the
section; B(z) is the bandwidth spectral parameter assigned by the formula B2(z) = B0

2 + 2I u
2(z), where Iu is the

longitudinal turbulence intensity and B0 = 0.08. The wake coherence function is given by ESDU (Response of
Structures 1996) :

(41)

where L is the correlation length (in b’s) of the vortex shedding.

Appendix - II

Considering the spectral equations given in Appendix I, the quasi-static and the resonant terms in E
assume the form (Piccardo and Solari 2000) :

(42)

(43)

(44)

(45)

where F is a function defined as :

(46)

In the above equations, b and h are the reference size of the cross-section and the height of the stru
respectively. U is the mean wind velocity, Lv is the integral length scale of v in y direction and Czv is the
exponential decay coefficient of v along z. ny1 and ξy1 are the fundamental frequency and the damping coeffici
of the first mode in y direction, respectively. zyv= 0.6 h and zyω = 0.8 h are the reference co-ordinates; kyv = kyω

0.5 / (ζy1 + 1)0.55 are the equivalent correlation factors, where ζy1 is a modal shape factor. nω(z) = SU(z) / b
is the vortex shedding frequency, S is the Strouhal number, B(z) is the bandwidth spectral parameter. L is the
correlation length, expressed in b’s. C is defined by Eq. (22).
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