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Abstract. Numerical flow computations around an aeroelastic 3D square cylinder immersed in the
turbulent boundary layer are shown. Present computational code can be characterized by three numerice
aspects which are 1) the method of artificial compressibility is adopted for the incompressible flow
computations, 2) the domain decomposition technique is used to get better grid point distributions, and 3)
to achieve the conservation law both in time and space when the flow is computed a with moving and
transformed grid, the time derivatives of metrics are evaluated using the time-and-space volume. To
provide time-dependant inflow boundary conditions satisfying prescribed time-averaged velocity profiles, a
convenient way for generating inflow turbulence is proposed. The square cylinder is modeled as a 4-lumped-
mass system and it vibrates with two-degree of freedom of heaving motion. Those blocks which surround
the cylinder are deformed according to the cylinder's motion. Vigorous oscillations occur as the vortex shedding
frequency approaches cylinder's natural frequencies.

Key words: aeroelastic problem; 3D square cylinder; turbulent boundary layer; computational fluid
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1. Introduction

To investigate such aeroelastiotions as vortex induced vibration, galloping and flutter of tall
buildings, wind tunnel tests have been carried out. The tests use scaled aeroelastic models o
buildings. When the structural system becomes complicated or inelastic, it's hard to satisfy the
dynamic similarity of building’s motion.

The aeroelastic problem has become one of the crucial targets among the computational fluid
dynamics (CFD) community (Tamura 1988). If the objective structure is isolated and its deformation
is negligible compared to the displacement, the computation can be done simply by moving the
whole computational domain in accordance with the structure’s motion. This simplification makes it
quite straightforward for researchers to adapt theirtiegisflow-solvers toaeroelastic problems.
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1 Professor
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However, in the case of buildings, whole bodies do not sway horizontally but get deformed by wind
forces since they are fixed at the ground level. So, to predict broader phenomena, the grid systern
should be transformed and deformed according to the buildings’ motions and deformations.

The buildings are immersed in the boundary layer so, to get flow fields depending on time,
fluctuating velocity profiles (the inflow turbulence) should be prescribezhel time step as inflow
boundary conditions. Theraretwo ways to enable us to generate the inflow turbulence; random
fluctuation inflow generation methods (Kondb al 1998, Maruyama, Y. and Maruyama, T. 1999),
or computed boundary layer flows using the results as inflows. With the former approach gtia¢egen
inflow can satisfy prescribed statistics but it requires detailedsurements of the target boundary
layer flow. With the latter method, it had been hard to reproduce prescribed velocity profiles until
Lund and his coworkers reported their way for spatially-developing boundary layer simulations
(Lund et al 1998). The most advantageous point with that approach is that the generated inflow conditions
have the coherent structures of turbulent boundary layer flows whereas the former approach does not.

In this paper the authors would like to introduce a numerical method for computing flows around
an aeroelastic 3D square cylinder. The method of artificial compressibility (Chorin 1967, Riogers
1991, Kataoka and Mizuno 1998) is adopted for the incompressible flow computations and the basic
equations are transformed into a generalized coordinate system. To get better grid point distributions
around the cylinder, the domain decomposition technique (Kataoka and Mizuno 1997) is used. The
computational domain is divided into blocks and some of these blocks are used for generating
inflow turbulence or transformed and defeed after the building’s motions and deformations. To
fulfill the conservation laws both in time and in space when the flow is computed withviagm
and transformed grid, time derivatives of metrics are computed according to the geometrical
explanations (Tamura and Fujii 1993). For generating inflow turbulence, a simplified version of
Lund’s approach is applied. The generated profiles are compared with wind tunnel measurements tc
evaluate the present method. Then computed results of an aeroelastic square cylinder ersited gen
inflow turbulenceare shown.

2. Computational method
2.1. Governing equations

With the idea of artificial compressibility (Chorin 1967), the governing equations for unsteady
incompressible flows can be written as (Rogsral 1991),

@ i =
a7 + Bdivu = 0

Ju . du 2

0r+0t = —(ulgradu—gradp+ vd'u Q)
where u = (ug, Uz, Ug) = (U, U, W), t is a physical time,r is an artificial time,3 is an artificial
compressibility parameter amldenotes the pressure divided by the fluid’s dengsityirstly, these
equations are advanced in artificial time until the artificial time derivatives satisfy a convergence
criterion. After that, they are advanced in physical time. The convergence criterion for the artificial
time step is set at ) meaning that the continuity equation for incompressible flow is satisfied
within an accuracy of 10at each physical time step.

These equations are transformed from the Cartesian coordiaig, Xz, t) = (X, ¥, z,t) to the
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2.2. Discretization schemes
2.2.1. Spatial derivatives

The equations are discretized using a finite volume method (FVM). Definitions in detail can be
found in the authors’ paper (Kataoka and Mizuno 1997). The spatial derivatives of the convective
and viscous flux vectors are discretized as follows

= Eo_ :
‘;—; ‘;—EV = (E)iv2—(Biv2 3)
where i is a spatial index. Viscous fluxewe computed with a second-order central difference.
Physical variables at the node-centers (with indexé#& andi-1/2) are given by averaging grid
points’ values, and non-linear terms are approximated by a fourth-order central differencing plus a
fourth-order damping term as,

= (Eo)i+12— (Ec)i-1/2

~ 1 ~
(UU)ivaz = SUivva(= Ui+ TUi g+ 7U = U; )

1_2|Ui+1/2|(_ui+2+3ui+1_3ui+ui—1) (4)

a is a parameter for controlling the size of artificial dissipation term and is set as 0.5 (see Kataoka
and Mizuno 1998). To avoid numerical pressure oscillations, a fourth-order damping term is added
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also to the pressure equation using the artificial speed of spund

(ﬁO)Hl/Z = ﬁ0i+1/2 %U + 3 fn

+C8H  (~Pi2+ 3P =3P +Piy)

1+1/2

C = ’\/(0i+%it/2)2+ﬁ(%i§+%i§+%i§) (5)

2.2.2. Moving and transformed grid and time derivatives

For the moving and transformed grid, the grid sroent changes the control volume size in time,
which makes it impossible to execute temporal and spatial integration separately. For example, if
time derivatives of metrics;; are computed with a chain ruleéas —&x.—¢éyy,—¢,z , the
geometrical conservation law Eq. (6) (Thomas and Lombard 1979) will not be satisfied.

oo, 0& (7’7t (7Zt_ 0

x00" 98 " an Yoz ©)

Hence they must be obtained by the way which treats both time and space at once. Rosenfeld and Kwa
(1991) showed the geometrical way for computfitg . Tamura and Fujii (1993) explained its_ geometrical
meanings in time and space dimensions. We took their geoméiteaaglretation for computingi

Taking a first-order explicit formula for the artificial time derivatives and a first or second-order
implicit for the physical time derivatives, Eq. (2) yields the following discretized equations,

mD\/n+1 n+l,m+l_Qn+l‘m) = Iim—IA—nt]{VnJrlQnJrl’m_(VQ)n}

Ehr AtU
[]L 3lm n+1 n+1 m+1 n+1,m
AT ZAE\/ -Q )
_ G nN+1-n+1,m n-1
= RT3V AV Q)" + (VO ™

whereV =J", the superscripta and m denote the quantities at physical time levelnAt and the
artificial time level 7= mArt, respectively. The pseudo-time step sfreis computed locally with a
cell-Courant number CFL as (Kataoka and Mizuno 1998),

At = CFLx—2% ¥ =

Oi + %%it +C
(Ve + Vo + Vo)

(8)

2.2.3. Domain decomposition

Grid systems used for CFD can be classified into two different types depending on the underlying
grid topology; Unstructured or Structured. With the domain decomposition technique, it is possible
to take a hybrid approach with those grid systems. Thus, if the computational domain is divided into
several blocks, the block level unstructured system would make it easier to control the grid point
distribution around the bodies. Compared with the unstructured grid system, the grid level structured
system is advantageous in formulating the discretization schemes. The discretization technique for
adopting the domain decomposition is straightforward and can be found in the authors’ paper
(Kataoka and Mizuno 1997).
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2.3. Generation of inflow turbulence
2.3.1. A technique proposed by Lund et al.

Lund et al (1998) proposed a convenient way for generating inflow turbulence with parallel flow
computations. They put a driver section at the windward position of the main domain, compute both
flow fields simultaneously, extract flow fields from the driver section, and use them as inflows for the
main domain. A periodic boundary condition is set for both spanwise and streamwise directions of the
driver, while only the fluctuating part of the velocity was recycled in the streamwise direction. The
fluctuating part can be computed as,

u (xy,zt)=ulxy,zt)—<u>(x, 2 9)

where x is streamwisey is spanwise ana is wall-normal direction respectively. The mean value
<u> is obtained by averaging in spanwise and time directions. Since the boundary layer thickness
develops in the streamwise direction, the fluctuating part must be scaled between thatinbetd

the downstreamrécy) planes of the driver section as,

u’inlt = Xu’recy(y: Zan t) X = ui*nlt/u:ecy (10)

wherez' =u'z/ v is the wall coordinate and is the friction velocity. Furthermorey!,, needs to
be interpolated along thedirection to be the san# as the inlet.

The most charactestic point with this method is that the fluctuating part of the velocity is
recycled instead of the instantaneous velocity itself. By adding the fluctuations to the mean velocity
profiles at the inlet section, time depending inflow velocities can be generated, and still their time
averaged values are the same as prescribed values.

2.3.2. Method simpilification

The authors simplified Lund’s method by assuming that the boundary layer thickness is constant
within the driver section. By this assumption, scalingapeeter ¥ and interpolations are not
necessary any more. Then following relations are derived,

Uinit(Ys Z 1) = <U>ini(2) + @(0) < {Urec(Y: Z, 1) — [U](2)}
Uinie(¥s Z, ) = @(6) X Urey(Ys Z, 1)
Winit(Ys Z, 1) = @(0) X {Wieel(¥s Z, 1) — [W](2)} (11)

where 8=12/9, d is the boundary layer thicknessi] [and [w] are the averaged values in horizontal
plane and @>, is the specified mean profile. Contrary to the initial assumption, the boundary
layer thickness develops unavoidabp(8) is a damping function to block the velocity fluctuation
from developing in the free stream.

3. Computed results
3.1. 3D flow computations over a 2D square cylinder

3D flow computations over a fixed 2D square cylinder at Reynolds number 22, 000 (based on the
cylinder's diameteD and free stream velocity,) has been conducted (Kataoka and Mizuno 1998).
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Fig. 1 Comparison of the time averaged streamwise velocity distributions. Computations (case 1-3) are based
on different grid resolutions (case 2 is the finest and case 3 is the coarsest)

Computations were done without any turbulence models and the physical time derivatives are
treated as a second-order.

Fig. 1 compares the time averaged streamwise velogityig= distributions along the symmetry line
from the present computations (cases 1, 2 and 3), LES computation based on the dynamic mixed SG
model (Murakamet al 1997) and experimental data (Lyn and Rodi 1994), whésehe streamwisex (
direction) velocity and < > denotes time averaged values. In the wake flow, case 1, 2 and LES
results show a very good agreement with the experimental data while case 3 underestimates the siz
of recirculation due to the grid coarseness. Though present computations are laminar, they show the
same accuracy as Murakami’s LES computation (or even closer to experimental data in the far wake
region). The figure proves that the artificial compressibility method can predict the separating flow.

3.2. Generated turbulent boundary layer

To confirm the present technique for generating inflow turbulence, a turbulent boundary layer flow
computation is conducted. As a reference, wind tunnel measurements of flow around a square
cylinder © =0.08 m,H =0.16 m,U,=4.491 m/s,Re=UyD /v = 24,000,0= 0.6 m) conducted by
Meng and Hibi (1998) are chosen. The experimental mean flow profile is shown in Fig. 2. By
fitting to the log law (Fig. 3), the friction velocity is estimated as 0.17 Ré&=u &/ v = 6,800).

The target mean profile is set as,

<u>/u=zZ=zulv 7<5
<u>/u=25Inz"+55 30<z z<zn
<u>/Up=min{(z/H)** 1.5} z<z (12)

where the power law profile succeeds the log lawzafabout 1.®). The domain size is
10D< 13.D < 11D in streamwise, spanwise and vertical direction respectively, and divided into
21X 55X 45 =51,945 grid points (see Block 6 in Fig. 8). Grid points are stretched into the floor
with the minimum distance ag =1.1. Computational conditions aréfUy/D =0.01, 8= 100,

CFL = 2.0, second-order differences for the physical time derivatives, a free slip boundatprcond
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Fig. 2 Measured mean velocity profile Fig. 3 Measured profile (in log scale)

for the ceiling, a periodic condition for side walls, a no-slip condition for the floor, and turbulence
models are not included.

Figs. 4-7 show generated profiles with the measurements. They are computed from the instantaneou
data ofAtU,/ D =800 to 1,200. The generated mean velocity becomes slightly faster at the log law
region and slower at the top, however, the specified velocity profile is well reproduced (Fig. 4). It is
interesting that the generated fluctuations (Fig. 5) show better agreement with measurements thoug|
there was no numerical control for them. This coincidence suggests there could be a cause-and
effect relation between the mean and fluctuating velocity profiles. Fig. 7 shows the power spectrum
of velocities aty, z) = (0, H) of the outflow plane. The power drops steeply at ab@u#t U, = 1.0,
which is the finest frequency defined by streamwise grid sizelAndA power peak appears at
aboutnD/ Uy = 0.1 because of the streamwise size of the domain.
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Fig. 8 Grid system for the square cylinder (7 blocks, 308,749 grid points)

The flow computation around a square cylinder is carried out using generated inflow conditions
and results are compared with Meng anbi'sl measurements also. Fig. 8 shows the grid system.
The domain is divided into 7 blocks and inflow conditions are generated within the block 6. The
computational conditions are the same as before, but a free slip condition is applied for side wall
boundaries except block 6.

Figs. 9 and 10 compare the computed results with the measurements. The computed velocity
profiles are in good accordance with experiments (Fig. 9), and computed velocity fluctuations show
modest coincidence (Fig. 10). Sub-grid scale (SGS) turbulence modelsambiobt included in the
computation are expected to improve the solution. As reported by Jordan (1999), however, the
combination of filtering operation and coordinate transformation is still under investigation. Yet SGS
models working with the moving and transfed grid system are not irstggated. Since the
upwind difference scheme is used for conwecterms, the present cpuitation cannot be called
as a DNS.
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3.3. Aeroelastic 3D square cylinder

Fig. 11 shows the model for the aeroelastic square cylinder. It is modeled as a 4-lumped-mass
system and vibrates with two-degrees of freedom of heaving motion. Its density ratibgs(100).
The stiffness and the damping ratio are constantly distributed. Fig. 12 showsrttedizesl modes
of vibration. The cylinder's motion can be defined as follows,

d_a' = a’ %
dt dt

wherea anda’ are displacement and oscillation velocity vectdrsf, C, K are mass, wind force,
damping and stiffness matrices respectively. Eq. (13) is integrated by a 5-step Runge Kutta method.
Computations are conducted with 4 reduced velocity conditions as listed in Table 1. The mechanical
damping ratio based on the 1st natural vibration mode is about 0.6%.

The grid system is shown in Fig. 13. The domain is divided into 7 blocks and blocks 1 and 7 are
transformed after the cylinder’s motion. Block 6 is a driver section for generating inflow turbulence.
The computational conditions arBe=UyD/v=2,700,AtU, /D =0.01, =100, CFL=2.5 and
first-order differences for the physical time derivatives. The boundary conditions are the same as in
the 3D fixed cylinder case. The target velocity profiles are set as Eq. (14) wherRe/ J,

Re =1,280 andd= 10D . In Fig. 14, the generated profiles are shown.
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Fig. 11 Model for aeroelastic cylinder Fig. 12 Vibration modes

Table 1 Computational conditions for aeroelastic cylinder

Vr Mode frequencies
1st 2nd 3rd 4th
Uy/ D f,D/ Uy D/ Uy 3D/ Uy 4D/ Uy
6.4 0.156 0.445 0.664 0.785
8.6 0.117 0.333 0.499 0.589
12.8 0.078 0.222 0.333 0.192

25.6 0.039 0.111 0.166 0.196
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10 T T 10 % T T
8.0F Target profile — B 8.0 .
g PPesent-—- Oully —
o lUy ===
6.0+ . 6.0} owlUn ™"
2 3
4.0 . 4.0t H .
:'ll
3
2.0+ . 2.0} A -
0.0 : 0.0boneet e '
0.0 0.5 1.0 1.5 0.0 0.1 0.2
<u>/Uy 0u/UH. 0v/Un Ow/Un
Fig. 14 Inflow velocity profiles (left: time averaged, right: fluctuation)
<usu'=Z7 7'<5
<u>/u"=2.5InZ" +5.5 30<Z z<H (14)

<u>/Uy = min{(z/ H)°2%¢ 1.2} zZ<H

Fig. 15 shows the cross-windréctional displacement of the node. Wt= 8.6 and 25.6, vigorous
oscillations occur. They are the cases when the vortex shedding resonates to the cylinder’s first anc
second vibration mode. Their instantaneous vortical structures around the cylinder and power
spectra of cross-wind force coefficieBt, are shown in Figs. 16, 17. Vortical structures are captured
by visualising the second eigenvalue of the velocity gradient tensor (Jeong and Hussain 1995). The
cross-wind force on the lower half of the cylinder is larger than on the higher part. This coincides
with the experiments (Maruyanw al 1996) qualitatively.

Fig. 18 shows the phase angjesf Cr,. As the wind speed increases, the positive phase angle, namely
the negative aerodynamic-damping occurs along the whole span at the shedding friet(émecg.6).

Then the angle shifts about 180 degreevasapproaches 12.8. This shift decreases the cross-wind
displacement atr = 12.8. When the shedding approaches the second vibration Wred25.6), negative
damping occurs on the lower half and positive damping at the other part. So the wind forces activate the
cylinder's oscillation on the lower part while the cylinder's motion at the top decelerates the vibration.



390 Hiroto Kataoka and Minoru Mizuno

0.2 ) . L 0.2 " ;
200 250 300 350 400 200 250 300 350 400
/D U/
Vr=6.4 Vr=8.6

=0, 1 1 3 _0.2 1 1 1
0 2200 250 300 3580 400 200 250 300 350 400
tUy/D tU,/D
Vr=12.8 Vr=25.6

Fig. 15 Time history of cross-wind directional dislacement

Fr=25.6
Fig. 16 Instantaneous vortical structures



Numerical flow computation around aeroelastic 3D square cylinder using inflow turbuleng@l

20.0 T T T 10.0 T T T

A
o
e

Power of Cry
Power of Cry

nD/Un
Vr=8.6

Fig. 17 Power spectra @,

180 180 ; — .
135 1351 | 1
90 90} |
= 45 =t :
o o
S Ok 3 0 f
© .45 S 450 do 1 ; 2
el —
-90 -90- Rgggg ..... I 4
. {35, node 3 - R
1:5 ‘ -/ 125 node 4 :St
0.00 0.05 0.10 0.15 i 0.00 0.05 0.10 0.15 0.20
nD/Uy nD/Un
Vr=6.4 Vr=8.6
180
135
90
= 45 =
(2] j*)]
3 0 3
S .45( <
-90
-1351 . 4 :
-18 - - N
0.00 0.05 0.10 0.15 0.20 0.00 0.05 0.10 0.15 0.20
nD/Un nD/Un
Vr=12.8 Vr=25.6

Fig. 18 Phase anglg of Cg,

4. Conclusions

The numerical method based on artificial compressibility, the domain decomposition technique
and the conservation law, both in time and in space, is explained. To demonstrate the feasibility and
benefits of the presented method, 3D flows around 2D and 3D square cylinders are computed. The resuli
show that it can predict the separating flow either in the uniform flow or in the turbulent flow.

A convenient technique for generating inflow turbulence is proposed and is shown to reproduce
the specified mean velocity profiles.

Then computed results for wind-induced oscillations of an aeroelastic square cylinder which is
submerged in the turbulent boundary layee provided. The results show the resonance at two
reduced velocity conditions. When the vortex shedding resonates to the cylinder’s second vibration
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mode, aerodynamic forces are found to activate the oscillation at the lower part, damping it at the
top at the same time. Though computations are done at small Reynolds number (=2,700), the result
show qualitative agreement with the experiments.

Since the present code does not include any turbulence models, the solution accuracy would be
improved by them. When computing the flow around a 3D oscillating cylinder a moving and
transformed grid should be used. The time-dependent transformation according to the cylinder
motion provides the change of grid shapee., the change of filter length in time for the SGS
model. None of the existing SGS models account for this time dependent filter length and so some
doubt must also attach to results using that approach, especially for aeroelastic problems.

On the other hand, the present results in Sections 3.1 and 3.2 show the same accuracy as LES ¢
are in good agreement with experimental results. This is because

e the computed Reynolds Numbers are moderate (22-24,000),

e the grid systems have sufficient spatial resolution to capture those eddies that are essential to tht

separated flow, and

e by takinga = 0.5 in Eq. (4) the effect of artificial damping is minimized.
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