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Abstract. In the recent years flow around bridges are investigated using computer modeling. Selvam
(1998), Selvam and Bosch (1999), Frandsen and McRobie (1999) used finite element procedures. Larser
and Walther (1997) used discrete vorticity procedure. The aeroelastic instability is a major criterion to be
checked for long span bridges. If the wind speed experienced by a bridge is greater than the critical wind
speed for flutter, then the bridge fails due to aeroelastic instability. Larsen and Walther (1997) computed
the critical velocity for flutter using discrete vortex method similar to wind tunnel procedures. In this
work, the critical velocity for flutter will be calculated directly (free oscillation procedure) similar to the
approaches reported by Selvaeh al (1998). It is expected that the computational time required to
compute the critical velocity using this approach may be much shorter than the traditional approach. The
computed critical flutter velocity of 69 m/s is in reasonable comparison with wind tunnel measurement.
The no flutter and flutter conditions are illustrated using the bridge response in time.
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1. Introduction

In the recent years flow around bridges are investigated using computer modeling. Selvam (1998),
Selvam and Bosch (1999), Frandsen and McRobie (1999) used finite element procedures. Larser
and Walther (1997) used discrete vorticity procedure. The aeroelastic itystabd major criterion
to be checked for long span bridges. If the wind speed experienced by a bridge is greater than the
critical wind speed for flutter, then the bridge fails due to aeroelastic instability. Larsen and Walther
(1997) computed the critical velocity for flutter using discrete vortex method similar to wind
tunnel procedures. In this work, the critical velocity for flutter will be calculated directly similar
to the approaches reported by Selvatmal (1998). It is expected that the computational time
required to compute the critical velocity using this approach may be much shorter than the
traditional approach.
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1.1. Fluid-structure interaction (FSI) modeling

In the fluid-structure interaction (FSI) modeling, the equation of motion of the structure and the
fluid must be solved simultaneously. One difficulty in handlFfgl problem is that the structural
equations are formulated in the Lagrangian co-ordinate system and the fluid equations are
formulated in the Eulerian co-ordinate system. Hence to solve both equations, a moving grid is
needed at each time step for the fluid portion. Several different approaches are in use at this time
They are arbitrary Lagrangian-Eulerian (ALE) formulation (Nomura and Hughes 1992, Ssham
1998 and Tamurat al 1995), co-rotational approach (Murakami and Mochida 1995) and dynamic
meshes (De Sampaei al 1993). The co-rotational approach may be easier to implement by adding
extra terms in the Navier-Stokes(NS) equations for movements in one direction. For general
problems it will be difficult to apply. In the dynamic mesh approach, for each time step a new mesh
is formulated. This needs a very sophisticated grid generator. In the ALE approach, grid can be
moved as a whole with constant velocity for each node as reported by Tetnalir§1995) or with
different velocity for each node and in some region no movement at all as reported by Sedtam
(1998) and Nomura and Hughes (1992). Moving the grid as a whole is preferred for FSI problem
since the structure has rigid body movement. If the structure is very flexible and each node on the
structure is moving, then the other grid moving procedure has to be used. Also for this procedure
the geometric conservation law has to be satisfied as discussed by Thomas and Lombard (1979) an
Ferziger and Peric (1999) if not numerical instability may occur. Moving the grid as a whole may
be computationally easy to apply. In the bridge flow modeling the bridge deck is assumed to be
rigid and the first approach is used at this time.

1.2. Critical flutter velocity computation for bridges

The critical flutter velocity for bridges is calculated using forced motion and free motion of the
bridge cross section as discussed by Enevoldseal (1999) and Hansept al (1999). In the
forced motion of the bridge, the aerodynamic derivatives of the bridge cross section are determined.
The aerodynamic derivatives and their use in wind-tunnel experiments are reported in Dyrbye and
Hansen (1996) and Simiu and Scanlan (1978). This method evolved from wind-tunnel experiment.
The bridge cross section is forced to oscillate in pitching or heaving sinusoidal motion with a
prescribed frequency and amplitude. The aerodynamic derivatives are calculated from the forces
created during the forced motion through a least square minimisation. Larsen and Walther (1997)
and Enevoldsest al (1999) used this procedure.

In the free motion of the bridge cross section, the aeroelastic stability of the cross section is
observed directly. Here the cross section is elastically suspended in the flow andbilitye ctahe
cross section is observed for various wind speeds. The flow and pressure is computed for the giver
position of the bridge and then using this pressure the bridge will be moved to a new position due
to the dynamic response of the structure. This process is continued in time. The plot of the bridge
position in time for various approach wind speeds gives the detail &fetfoelastic stability. The
critical flutter velocity may be calculated in few computer runs. The challenge is the accuracy of the
numerical procedure. Frandsen and McRobie (1999 )disteenet al (1999), Nomura and Hughes
(1992), Mendes and Branco (1995) and Sehetmal (1998) use this procedure. Frandsen and
McRobie (1999), and Envoldeset al (1999) did not give the details of the grid movement
procedure. The others used it for different structures.
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2. Objective

The objective of this paper is to study the issues involved in the computation of flow around
bridges and to compute the critical velocity for flutter in a direct way using a moving grid. In the
previous work (1998 and 1999), the finite element grids were refined by using 10,337 nodes to
improve the drag coefficier@y values for the Great Belt East Bridge (GBEB) sections. In this work
further improvements in grid refinements using grid generators are reported. Dhkerice is
modeled using Large Eddy Simulation (LES) and the governing equations are solved by Finite
Element Method (FEM).

2.1. Nomenclature

In the following discussion Reynolds numbeg, drag coefficientCqy, lift coefficient C; and
moment coefficienC,, and Strouhal numbe&k are defined as :

R. = VB/v

Cy = F«/ (0.50V?BW)

C = F,/(0.50V?BW)

Cm = M/(0.50V?B?W) and

S =H/(TV) 1)

WhereB is the width,H is the height, andlV is the length in the direction of the bridgey is the
reference velocityy is the kinematic viscosityry, andF, are the drag and lift force$) is the
moment,T is the period of oscillation of the lift forces apds the density. For 2D computatiow,
is considered to be one.

3. Computer modelling using LES

The flow around the bridge is represented using the Navier-Stokes equationsriddl issues
and turbulence modeling issues were discussed in detail in Selvam (1998 and 1999).

3.1. Governing equations for flow

In this work, the LES turbulence model is coesat. Thetwo and thee-dimensional equations
for an incompressible fluid using the LES model in general tensor notation are as follows :

Continuity EquationlJ;;=0 (2)
Momentum Equation:
Uiet (U= VUi ==(p/ p+ 2K/ 3)i+ [(v+ v)(Ui; + Uil 3)
where v = (Ch)*(S?/ 2)°%,
S =U;j+ Uy,

h = (hyhohg)®3 for 3D,
h = (h:h,)*® for 2D,
andk = (u/ (Ch))?.
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Empirical ConstantsCs= 0.15 for D and 0.1 for B, andCy=0.094

WhereU;, andp are the mean velocity and pressure respectivelis the grid velocityk is the
turbulent kinetic energy; is the turbulent eddy viscositly;, h,, andh; are controlvolume spacing
in the x, y, andz directions ando is the fluid density. Here the area or volume of the element is
used for the computation df. Here a comma represents differentiatibrrepresents time and
i=1,2 and 3 mean variables in tkey andz directions. To implement higher order approximation
of the convection term (Selvam 1998) the following expression is used in Eq. (3) instgah; of

(U= V)Uij = B[(U; = V))(Ui— ViQUij] / 2 (4)

Depending upon the values 6f different procedures can be implemented. For balance tensor
diffusivity(BTD) scheme 8= ¢4t is used; wheredt is the time step used in the integration. For
streamline upwind procedure suggest®ds considered as :

0=1/max (V1] /dx |Us| /dy, |Us| / d2) (5)

Heredx dyanddz are the controvolume length andl;, U,, andU; are the velocities in the y
and z directions. In this computatiofi= & is used. This has less numerical diffusion as compared
to benchmark problems in Selvam (1998). For moving grid the maximum of the BTD or 0.3 times
Eq. (5) is considered for better stability of the solution.

3.2. Governing equations for the bridge

Since the flow around the bridge is solved using the non-dimensional NS equations, the structural
dynamic equations for the bridge are also solved in a non-dimensional form. The bridge is assumed
to have pitching and heaving motion. The structural properties of the GBEB suspended span as
reported by Larsen and Walther (1997) are #evis :

Mass moment of inertien= 22.7< 10° kg/m

Rotational mass moment of inertia 2.47< 1¢f kg.nf/m
Pitching frequencyw, = 1.709 rad/s

Heaving frequencyu, = 0.622 rad/s

The bridge rotates about the shear center and moves vertically from the center of gravity. Since
both are along théne of symmetry botrare uncoupled. The equations of motion for the pifch,
and heaveh are as flows :

(Pi) it + Wh P = Cin(0.50V?B?) / | (6)
(h,) 1+ w?h=C (0.50V?B) / m

Non-dimensionalizing the length [B/and time byB/V, whereB is the width of the bridge and
is the reference velocity and simplifying the equations one get

(p,)a+ (L/U)?p=0.Cp/ Ry 7
(h,) ¢+ (an/ [au])? h=0.5C/ R,
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Hereu is the reduced velocity and is equaMa (w, B), R=1/(pB* andR,=m/(pB?. In this
work R, =2.178 andR, = 19.236 for the air densityg = 1.228 kg/m are used. The above equations
are solved explicitly using the central difference method.

3.3. Finite element scheme to solve NS equations

The NS equations are solved using an implicit method suggested in Selvam (1998). The four-step
advancement scheme for Egs. (2) and (3) is as follows :

Step 1 : ®lve for U; from Eq. (3). The diffusion and higher order convection terms are
considered implicitly to be in the current time and the first order convection terms are
considered explidy from the previous time step. The pressure is considered in the right
hand side of the equation. This set of equations leads to a symmetric matrix and the
preconditioned conjugate gradigf@CG) procedure is used tohge. For simplicity here
onp/ pis considered ag.

Step 2 : Get new velocities &k = U; + ot(p,;) whereU; is not specified

Step 3 : Slve for pressure fromp(); = U;i / &

Step 4 : Caorect the velocity for incompressibilityd; = U; = dt (p;) whereU; is not specified

Step 2 eliminates the checkerboard pressure field when using equal order interpolation for velocity
and pressure in the case of FEM. Implicit treatment of the convective and diffusive terms eliminates
the numerical stability restrictions. In this work the time step is kept for CFL (Cefraadérick-

Lewis) number less than one. The above NS equations are approximated by FEM procedure. The
velocity and pressure are approximated using equal order interpolation. Eight noded brick element is
used for ® and four noded quadrilateral is used for. 2

The equations are stored in a compact form as discussed in Selvam (1998). The equations ar
solved by preconditioned conjugate gradient (PCG) procedure. To solve the velocitiesraelaxation
factor of 0.7 is used. The iteration is done until the absolute sum of the residue of the equation
reduces to X 107 times the number of nodes for each time step. Usually the pressure and momentum
equations take about 50 and 10 iterations for PCG solution respectively.

3.4. Boundary and initial conditions

The cross section of the GBEB suspension span used for computation is shown in Fig. 1. The

27000 000 V=0 Un=V=0
Un=0
C.G+ — 1 1337 — Vn=0
S.C.] 3060 1000
12350 ; oo
| 19000 | 8000 Un=V=0
31000 T o I

Fig. 1 Cross section of the Great Belt East BridgeFig 2. Solution region and boundary conditions
suspension span. All dimensions are in mm
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computational region and boundary conditions are shown in Fig. 2 for the fixed grid. The cylinder
surface has no slip condition. The wpam boundary has uniform velocity of one in thdirection

and zero in the direction. At the outflow boundary the normal gradient of the velocities are zero
and the sides have slip boundaries. Computation is dorieefof 1.

4. Results

4.1. Computation for rigid bridge

The FEM grid used for illustration here has 14,805 nodes and 14,570 elements. Around the bridge
the grid has 21% 63 points as shown in Fig. 3. The minimum grid spacing close to the bridge deck
is about 0.0015B. The time step may be around 0.0004 sec. The flow is run for 60 sec.

The computedCd of 0.062 and Strouhal numb8tof 0.14 is in good comparison with the wind-
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Fig. 4 \orticity contour diagram using (a) LES model (b) no LES model
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tunnel measurements as reported by Larsen and Walther (1997) for the static case at an angle attac
of zero degree. The flow features developed were also in reasonable comparison with Larsen anc
Walther. Previously Selvam and Bosch (1999) could not develop the vortices on the top and bottom
decks due to limitation of grid refinements. The flow features on the top and bottom are shown in
Fig. 4. The flow is computed either considering turbulence model LES (Fig. 4a) or no LES (Fig.
4b). The second one has much more vortices at the bottom.

4.2. Computation for flexible or moving bridge

The same grid is used for computing the aeroelastic stability. The computed flow using the fixed
grid in the previous section is used as the start up solution for computation. This saves computer
time when runs are made for many casesially a perturbation of 1.8 degrees is provided and the
response of the bridge in time is studied to see if the reduced vealbdgyabove or below the
critical flutter velocity. Based on thaty® values ranging from 0.4 to 1.4 are considered for
computation. If the reduced velocity is below the critical velocity for flutter, the oscillations dies
down gradually in time as shown in Fig 5. df is above the critical velocity for flutter, the
oscillations grows up till the bridge fails (Fig 6). The response of the structure iratengotted
for " =0.4 and 1.4 for illustration. The critical velocity for the onset of flutter is determined from
the plot of the pitch angle versus time. The aerodynamic damping is positive as long as the pitch
angle decreases in time and vice-versa. The plot of the pitch angle versus time is analyzed to study
the extent of growth or decay. The rate of growth and decay is found by averaging the change in
amplitude values of the last two periods of the pitch angle vs. time plot. These rates are plotted for
eachu® value and the point where the plot crosses the zero decay/growth line is found. This point
represents the critical value of for the onset of flutter.

It is clearly shown in Fig. 5 that when the velocity £ 0.4 andV =21.2 m/s) is less than the
critical flutter velocity (7675 m/s as reported by Enevoldessnal 1999 from wind tunnel study),
the perturbation gradually dies down i.e., no flutter condition is observed. When the velocity
(u'=1.4 andV=74.2 m/s) is higher than or closer to the critical velocity, flutter occurs as shown in
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Fig. 5 Bridge response for reduced velocityof 0.4 (no flutter condition)




264

R. Panneer Selvam, S. Govindaswamy and Harold Bosch

g
»

o

v

L -]

i

Fig. 6 Bridge response for reduced veloaityof 1.4 (flutter condition)
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Fig. 7 Bridge and grid position at the end of 30 s€@y. 8 Close up of the velocity vector diagram for

foru=14

u=14

Fig. 6. In our case, it is estimated that critical flutter velocity occurs atl.3 or for a reference

velocity of 69 m/s. A time step of 0.001 is used in these computations. Further work is underway to

study for longer time duration and to try much accurate solution procedures for the fluid-structure

interaction problem.
The grid position at the end of 30 sec. tbr 1.4 is shown in Fig. 7. The grid is rotated by about

14 degrees from its original position. The velocity vector diagram is also plottddsfarase in Fig.

8. One can see the prominent vortices on the top front of the bridge.
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5. Conclusions

The flow around the Great Belt East Bridge (GBEB) suspension span is computed using finite
element procedure. The turbulence is modelled using large eddy simulation model. The flow is
computed forRe of 1@. In this work a reasonably wellrefined grid with 14,805 nodes are
considered. The computétt andSt are in comparison with wind tunnel measurement.

Numerical procedures related with moving grids are discussed. One of the ALE procedures is
selected for the computation of moving grids. In this work the critical flutter velocity is computed
using free oscillation technique. The computed critical velocity of 69 m/s is in reasonable comparison
with wind tunnel measurement and numerical nliode by Larsen and Walther (1997). The
program is verified with proper illustration of no-flutter and flutter conditionuor 0.4 and 1.4
respectively. Over all the FEM procedure is viable for practical application.

Further work is underway to study for longer time duration and to try much accurate solution
procedures for the fluid-structure interaction problem. The computation of critical flutter velocity
using forced and free aflation procedures will be investigated.
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