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Unbalanced wind buffeting effects on bridges
during double cantilever erection stages

Pedro A. Mendes' and Fernando A. Branco*
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Abstract.  This paper is focused on the torsional effects that are induced on bridge piers by unbalanced wind
buffeting on the deck during double cantilever erection stages. The case of decks with variable cross section i
considered in particular as this characteristic is typical of most frame bridges that are built by the cantilever
method. The procedure outlined in the paper is basically an application of the method that Dyrbye and Hanser
(1996) have illustrated for decks with constant cross section. This format was chosen because it is suitable fo
design purposes and may easily be implemented in structural codes. As a complement, the correspondence wi
the format that is adopted in the Canadian code (NBCC 1990) for the gust factor is established, which might be
useful to bridge designers used to the North-American approach to the gust effects on structures. Only
alongwind turbulence and horizontal movements of the deck are considered. The combination of torsional and
bending effects is also discussed and it is illustrated with an example of application.

Key words: bridges; alongwind effects; torsion of piers; combined bending and torsion; cantilever erection
stages.

1. Introduction

The effects of wind buffeting on bridges during the erection of the deck by the double cantilever
method should be assessed by designers. In fact, the flexibility that bridge structures usually present &
these erection stages may lead to undesirable stresses and displacements under the random excitation
to wind gusts. The use of temporary cables is often adopted as a remedy for such effects. Some exampl
of application of this solution are the Mezcala Bridge (Reetlal 1994), the Glebe Island Bridge
(Wheeleret al 1994), the Pasco-Kennewick Bridge and the Talmadge Memorial Bridge (Tang 1994).

As mentioned by Davenport (1994), the torsional effects due to unbalanced wind buffeting were
first considered by Sir Benjamin Baker in the design of the Firth of Forth Bridge. He then assumed
a rule-of-thumb in the design of the piers-simply “full mean wind” on one overhang and “no wind”
on the other. A pioneering procedure to evaluate the torsional effects induced by wind gusts on a
cantilever bridge was given by Davenport (1967), but only the resonant component of the torque
was then considered and the influence of the cross section being variable was not investigated. The
torsional effects of wind gusts were also studied by Foutch and Safak (1981), but only building-type
structures (i.e., not bridges) were considered.

The unbalanced wind loading on double cantilever bridges was recognised by the ASCE
Committee on Loads and Forces on Bridges as a subject for whidiorsldinvestigation and
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development of guidelines would be useful (“Bridge loading: research needed” 1982). This particular
wind loading has been considered in the ECCS Recommendations 1989, but the application of the
method given there is somewhat intricate and hardly compatible with the design practice. The latest
version of Eurocode 1 (EC1 1995) does not supply any information about this phenomenon. Recently,
Dyrbye and Hansen (1996) presented the torsional effects on cantilever bridges in a format suitable
for design purposes and illustrated it to the case of a deck with constant cross-section.

This paper is focused on the torsional effects induced on cantilever bridges that present a deck
with variable depth and on the joint analysis of bending and torsional effects. The importance of
torsion is illustrated and it is shown that the gust factor on these bridges (regarding the bending anc
torsional effects) may be evaluated as if the depth of the deck were constant, since the error
involved in this approximation has little significance.

The method illustrated in this paper is suitable for design practice and fozmepiation in
codes. The method is first given in the Dyrbye and Hansen's format and the correspondence with
the format that is adopted in the Canadian code (NBCC 1990) for the evaluation of the structural
effects of wind gusts is then established. Only alongwind turbulence and horizon&hembs of
the deck are considered. The unbalanced wind loads that may arise from vertical turbulence, vortex
shedding phenomena, special local topographic conditions or from structural asymmetry are not
taken into account.

The paper consists of six main parts:

(1) a brief review of the standard gust factor method, presented for the sake of clarity and
illustrated with alongwind bending effects,

(2) the modifications needed to apply this method for the torsional effects on cantilever bridges,

(3) analysis of decks with variable cross section,

(4) correspondence with the NBCC format,

(5) joint analysis of bending and torsional effects and

(6) an example of application.

2. Alongwind response of line-like structures

On a line-like structure with total lengthand with linear-elastic behavior, any structural response
(R) due to the drag force that is induced by the mean wind speed is given by :

L
1

b = [2pU%(S)D(S)Co(S)Ir(S)dS = EEpUZ, Dy Co el m sl )
3 i

where p is the specific mass of the alg is the mean wind spee® and C, denote a reference
dimension and the drag coefficient of the cross section of the strietegesponds to the coordinate
along the length of the structure akpds) is the structural response due to a static unit load applied at
section with coordinate. The subscriptref” denotes a reference value (such as the value at a reference
section of the structure, located at heiggtabove the ground) and thg-function is defined by:

Voo = L0n(s)s @
0

_ (M(E)FD(s)Co(8)Ir(S)
gm(S) |:]Uref[] Dref C:D.ref IR.ref (3)
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This paper is devoted to buffetingfexfts on bridges, so that only horizontal structures are
addressed for. Thug,s corresponds to the height of the bridge deck above ground and terms like
U(s) / Us are unitary. Nevertheless, the general format of the equations will be retained, for the
sake of completeness.

Assuming thatU is much larger than the longitudinal fluctuations of wind speed and than the
velocity of structural oscillation, the respongg may be taken as the mean response due to the
wind action. On the other hand, the mean of the largest values of the response that occur during
time intervals with a pre-defined duratidn(usually 10 minutes) is called the characteristic response,
R¢, and may be expressed in the form:

R«= Ur + K Or 4)

where oy is the standard deviation of the response fluctuationskaisdthe so-called peak factor.
The variance of the response is usually split in ®reng, namely the background and the resonant
components (denoted byi and o?, respectively). These two separate contributions may be
presented in the form (Dyrbye and Hansen 1996) :

1

Oy = ”R(Zlu.ref)_«/ Up (5&)
Ym
1

o = ”R(Zlu.ref)ya/vr (Sb)
m

where |yt (= Oure/ Urer) 1S the intensity of longitudinal turbulence at heigt4 and the non-
dimensional variancesy, U, are defined in the following. If the mean response is not zero, the so-
called gust factord) is defined such th&= ¢ ur. From the previous equations, it follows that :

1
¢ = 1+ KOr/ g = 1+K(2|u.ref)7f\lub+ur (6)
m

If the quasi-static model is assumed for the background turbulence effects, the non-dimensional
varianceu, (also indicated byl2) is given by :

1t L
Uy = J2 = L_zj’_l’ogb(sl)gb(sz)puqsl_SZ|)dSldSZ (7)
0

U(s)D(s)Co(9)Ir(s) 0u(S)
Uref Dref C:D.ref IR.ref Gu.ref

On(s) = (8)

The functionp, is the correlation coefficient of the longitudinal fluctuations of wind speed and it is
related with the lateral length scale of longitudinabtilence (). Assuming that :

r
pur) = exparg (9)
wherer = |s; — ;| andg, is defined through :
L
= 10
(po LZ(Zref) ( )

the double integral in Eq. (7) can be solved by (Dyrbye and Hansen 1996) :
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% = F[Gunpundr (11)
0

Gu(r) = £ [ gy(s)gu(s+ Nds (12)
0

Regarding the resonant turbulenckees for a particular structural mode of vibration, with natural
frequency fo (expressed in Hz), modal shapk(s) and total viscous damping (logarithmic
decrement), the varianeg is given by :

o = B K B 01 (19

where M; and M, depend on the mass of the structure per unit span (denoted),by
E(z fo) =fSu(z f) / 04(2) is the non-dimensional power spectrum of the along-wind turbulence and
JZ(f) is the joint-acceptance function. The following definitions apply :

( )Ir(S)
- o8t
- md
M, = _|’m(s) o2 S (15)
J3(f.) = L%ﬁ: 9(S1, Te) 01 (S5, To) W (|3, — 55, fe) dsy s, (16)
0

_ U)D(S)Co(s) @(s) |Su(s, fo)
gr(s’ fe) - Uref Dref C:D.ref d)ref S;_ref( fe)

(17)

where the functionge(r, fo) is the normalized cross-spectrum of the fluctuations of the wind force.
For horizontal structures, irrespective of the response being considgi@d= g,(s); besides, if
Ir(S) = ®@(s) thengy(s) = gi(s). Assuming that :

r
We(r, 1) = expa-i (18)

the double integral in Eq. (16) can be solved aslfori.e., through Eq. (11) witp, replaced by
and with G, replaced by a function (denoted &) that is defined by Eq. (12) witly instead ofgp.
The coefficientg is usually expressed in the form:

_ CfL

19
Uref ( )

whereC; is a non-dimensional decay coefficient for which a wide variety of values may be found in
the literature. For horizontal slender structures, located at a hdiglitove ground, Solari (1987)
indicates a mean valu@ = 8.5 L/ H)%® and a range of variation given by :
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I:LDO.ZS I:LDO.ZS
5045 <Cs121g (20)

In Eurocode 1 it is implicit tha€, may be taken as 11.5 (following Solari 1987, 1993). However, it
should be noted that this assumption is more appropriate for upright structures than for horizontal
slender ones, such as bridge decks.

Regarding the peak factor, if the wind load is assumed to be a Gaussian stationary stochastic
process and if the structural behavior is linear-elastic with viscous dampmagy be evaluated by :

0.5772
=.J2 M+ ——
K In(vT) + (T (21)

where v is the zero-upcrossing frequency. Several approximate expressiongrfay be found in
the literature. As the representative frequency of the background component is typically much lower
than the structural one, it is common to consider the following expression (NBCC 1990) :

U
v=rf L 22
e (22)

The present paper is focused on double cantilever bridges. The effects of wind gusts are evaluate
according to the model shown in Fig. 1, that consists of two symmetric overhangs, each one with
length L/2, supported on a vertical pier. The height of the deck above grdidinds (taken as
constant and is defined at the centre point of the deck at the tip of each overhang. The reference
cross section of the structure is chosen as one of the tips of the overhangs.

The structural behavior is assumed to be linear-elastic with viscous damping and no modal
coupling is considered. The frequencies of the first modes of vibration that involve either alongwind
bending or torsion of the pier are denoted fpyand f;, respectively; in both these modes of
vibration, the deck is assumed to behave like a rigid body.

The net drag force on the whole deck (denotedhbylays a crucial role among the alongwind
effects in cantilever bridges. Inrgetical cases, regarding the bending moment at the base or the
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Fig. 1 Double cantilever bridge
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Fig. 2 Non-dimensional variance for a deck with constant cross section

alongwind displacement at the top of the pier, for instance, the cdimmduom drag induced by
the pier is much less than the contribution from drag acting on the deck. Thus, if the effects of the
“pier-drag” are neglected, the characteristic bending moments or alongwind displacements on the
pier may be estimated by a static analysis of the structure, subjected to the characteristicabrce
the top of the pier.

To evaluateF, the corresponding unit load-response functity) s unitary. The shape of the
bending mode of vibration along the dedk(s), is also unitary, as a result of the rigid behavior of
the deck. Thus, it follows tha¥l,= M,. Furthermore, in the case of a deck with constant cross
section,gm(S) = gu(S) = ar(s) = ¥me= 1. For an unitang-function (eitherg, or g;), the Egs. (11)-(12)
lead to the following expression for tdé - function :

2

¢

This function is illustrated in Fig. 2. The monotonical decrease od #enction with ¢ reflects the
loss of correlation on the wind force fluctuations with increasing span.

(@) = Sle+ exp(—¢) —1] (23)

3. Torsional response of a double cantilever bridge

The standard) method cannot be used directly to evaluate the torsional effects in the case of a
cantilever bridge with symmetric overhangs, since the mean torsional mqumeist £ero. However,
to circumvent this difficulty, the torsional moment that is induced by mean wind load acting on only
one of the overhangs may be considered instead,adfe. :
L/2

Hin = [ 5PU(H)D(IC(9)n(8)ds 24)
0

where the subscripth” stands for “half-deck”. Then, it is simple to verify that the charastieri
torsional moment may be obtained through (Dyrbye and Hansen 1996) :

Tc=Kor=¢ um (25)
where :
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o = K(zu_ref)y%/ub+ U, (26)
mh
1L/2
fon = [ (s 27)

The variance, and v, are still evaluated by Eq. (11) (either wi@, or G;). However, as the
origin of the s-axis is not located at one tip of the structure but rather at the middle (Fig. 1), a
proper redefinition of th&-functions (instead of Eq. 12) is needed, namely :

L/2-r

G(r) = [ 9(s)9(s+ nds (28)

-L/2

To evaluate the torsional moment, the unit load-response functidg(sjs=s, moreover, the
torsional mode is assumed to be linear and anti-symmetrical about the pieB (8es s= Ir(S).
Thus, it follows thagy,(s) = g:(s) andM; = M,.

In the case of a deck with constant cross section, alj-thactions are given byg(s) =2s/L and
the corresponding resuft.,n=1/4 is obtained. Regarding the non-dimensional response variances,
the Egs. (11) and (28) lead to the following expression :

3 2
o) = %[-1-(0—2_% +1—%1+ -g%fexp(—(p)} (29)

Fig. 2 also illustrates thi3?- function and shows that the largest variances for torsion correspond
to the range 3 @< 4 (the maximum value is attained @& 3.4). Thus, regarding the gust factor for
the torsional effects, the critical span rangd.is[3 to 4]. L{(H) for the background turbulence
effects andL =[3 to 4]. U(H)/(f;. C;) for the resonant component. Spans outside these ranges present
less torsional effects: in longer spans due to the loss of correlation between the wind force fluctuations,
and in shorter spans because both overhangs become fully enveloped by the relevant wind gusts.

Other torsional effects may be evaluated besides the moment that is induced on the pier. The
alongwind displacement of the deck at the end of each overhang due to the torsion of g pier (
for instance, is equal ta/2 times the pier rotation at the top. As the modal shape is defined
through @ (s) =s (i.e., it is normalized by the condition of unit rotation at the top of the pier), the
rotation at the top corresponds directly to the ratio between the torsional moment and the modal
stiffness. From these considerations, the characteristic valdiesafiven by :

Ty
Ac=L/2 (30)

L/2
(27)* [ m(s)s’ds

-L/2

4. Deck with variable cross section

The decks of frame bridges built by the cantilever method often present a variable depth. This
variation is usually parabolic with zero slope at mid-span. If the most unfavourable erection stage is
assumed to occur just prior to the closure of the span, then the slope at the end of the overhang
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may also be taken as zero.

Regarding the variation of the drag coefficient, it is worthwhile mentioning that, for usual bridge
decks and in the absence of experimental data, the ECCS document refers to a linear relationshij
betweenCy and the parametdd /B (whereD and B are the depth and the width of the deck,
respectively). The EC1 also refers to a linear variatio@gaf however, this linearity is not updd/

B but rather on its inversB,/ D, and extends up ®/ D equal to 4 or 5, depending on the type of deck.

In the following, the ratio between the values thaindCp present over the pier and at the tip of
the overhangs is labelled B¥, and Y, respectively, and an additional coefficie®#)(is defined
as W= 445,

To assess the influence of variable deck geometry on the gust factors, two sets of three different
situations were considered. The situations in each set have a cofimatue, namely¥’ = 3.0
and ¥Y=6.0, and the parabolic variations were assumed to have zero slogelLaf2. The
situations considered in the sé¢t= 3.0 were as follows :

1) D(9) is parabolic andCp(s) is constant ¥, = 3.0);

2) bothD(s) andCp(s) are parabolic, with#p = 2.5 and¥:=1.2;

3) bothD(s) andCp(s) are linear, with¥;=2.5 and¥-=1.2.

In the same way, the following situations were considered in th#/se8.0 :

4) D(s) is parabolic an@p(s) is constant {, = 6.0);

5) bothD(s) andCp(s) are parabolic, with#, = 4.0 and¥ = 1.5;

6) bothD(s) andCp(s) are linear, with%¥; = 4.0 and¥= 1.5.

The variation of the deck geometry has an obvious effect on the mean response (either in the
alongwind effectus, or in the torsional ong,). The remaining influence on the response can be
analysed by looking at the ratid@) / ym (or J(@/ ymn), as the background and the resonant
components are directly proportional to this parameter.

Figs. 3 and 4 illustrate the values i) / ynr and of J(¢) / ymtn for the case of a deck with
constant cross section (labelled By=1.0) and for the two sets of variable geometry decks that
were referred previously. The results obtained in each set for the threorsstusre practically
coincident, with differences hardly noticeable at the scale of the figure, and so the values were
grouped in a single curve (defined by the average values).

1.0
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Ym —l ¥=1 N ¥Y=6
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Fig. 3 Comparison od(¢) / v, for different values of¥ (bending)
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Fig. 4 Comparison o8(¢@) / ymn for different values otV (torsion)

The important conclusion that can be drawn from Figs. 3 and 4 is that theJ(eibg, are little
affected by the deck cross section being variable. The condiier6.0 covers practically all the
cantilever bridges built so far. Thus, foraptical situations of variable geometry decks, the ratio
J(@ ! v (and thus the gust fact@r) either for the net drag force on the deck or for the torsional
effects can be evaluated as if the deck were constant.

The error involved in this approximation may be disregarded for design purposes -in the cases
considered for the sé¥ = 3.0, for instance, the differences did not exceed 7% of the exact value in
the alongwind case and 9% in the torsional one (less than 6% in the range &<for the set
¥=6.0, the maximum difference was around 14% in the alongwind case and 15% for the torsional
effect (less than 10% in the range ®<®6). It should be referred that the differences to the exact
values are small but show opposite trends, as they are conservative for torsion but are not conservativ
for bending.

Any torsional moment on the pier can be viewed as the result of a concentrated drag force acting
on the deck at a proper distance from the axis of the pier. Denotipg, liie mean value of the
drag force that acts over only one of the overhangs, the mean torsional moemesan be
evaluated through :

Hth= € Hrn (31)
wheree, is an equivalent eccentricity. The expressionefas simply :

L/2

_|’ D(s)Cp(s)s ds
0

e U2 (32)
_[D(s)CD(s) ds
0

The values taken by the non-dimensional eccentpcitye./ (L/2) for a range oty and % -values
(considering parabolic variations with zero slope at mid-span) are depicted in Fig. 5. If the cross section
of the deck is constant, the eccentri@tyis obviously equal to half the length edch overhang (i.e.,

X =0.5). For decks with variable cross sectjpecreases as the relative variation of deptremses.
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Fig. 5 Non-dimensional eccentricity

Several remarks should be made about the procedure to evaluate the buffeting effects that wa:
described. The first one is that the results can be rather sensitive to the structural damping, dependin
on the relative importance of the resonant effects; the influence of damping should be investigated
by considering a suitable range of variation. The decay coeffi€ienbnstitutes another source of
uncertainty and, regarding the torsional effects, the maximum structural response dezessxrity
correspond to a minimum value 6f. Once again, a suitable range of variation may be considered,
such as the range given in Solari 1987 (Eq. 20).

A final remark is that the proceduretlimed does not cover all the aerodynamic phenomena that
may contribute to the structural response, such as the flexural effects in the crosswind plane, the
pressure correlation on the windward and leeward sides of the deck and the effects of wake
excitation (Solari 1988). The assumption that the bridge is a line-like structure also precludes considering
the vertical correlation of the pressures along the depth of the deck. Albeit these limitations, it is the
authors' belief that the method is accurate enough and rather suitable to design practice.

5. Correspondence with the NBCC format

The background and resonant standard deviations can be expressed in the format of Egs. (5), the
are rewritten below in brackets, or in the format adopted in NBCC 1990 :

0= p e B [= ulw @) (332)
0= HlE S | MRy T (2OE G (@) (330)

The variableX andC., called the surface roughness factor and the exposure factor at Height
are defined in NBCC for each terrain category but, for the present purpose, only the/1@tjpis
important. The variabl& is called the gust energy ratio aBds the size reduction factor. The term
B corresponds to the background turbulence effects and the SE/m is associated with the
resonant component. If the following definitions are coer&d :

SN . Vi 2

CeH - 16|]Jref|:] - ﬁ(ZIu.ref) (34)
fe Zre 1 fe

F o oMol By, g (35)

AU
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whereU" denotes the friction velocity an@lis defined such thatr? (z) = 8 (U")? the equivalence
between the NBCC format and that of Eqgs. (5) is attained with :

_ BIi(a)

B = iy (36)
_ (@)

572 V2 (37)

The NBCC format can be applied for both the alongwind and the torsional effects. If the torsional
moment is considered, for instance, then the tgrin Egs. (33) should be interpreted /as and
the termy, in Egs. (36) and (37) correspondsytan.

If the gust factor in a variable geometry deck is evaluated without considering any variation of the
deck geometry, as it was argued before, then, for the drag on theygech, and thel ?- functions
are given by Eq. (23) (Fig. 2); in the same way, for the torsional momant 1/4 and thel 2-
functions are given by Eq. (29).

6. Combination of torsional and bending effects

The torsional momentsT) induced on a pier by the wind action during double cantilever erection
stages occur in association with bending effects, namely with alongwind shear fgycasd(
bending momentsM). Thus, the analysis of the joint effects should be considered in the design of
the pier. The shear force on the alongwindisv@/,,) of a pier with hollow rectangular cross section
(Fig. 6) is considered to illustrate the combination of bending and torsional effects.

The shear force in the alongwind walls is an important structural response - the design of the
transverse reinforcement on a concrete pier, for instance, depends diredtly éssuming the
Bredt's model for the torsional behavior of the cross section, the combifatidrieads to the
following expression foW,,:

V,(2) = \%91%(2) (38)

whereb(z) is the distance between the centrelines of the alongwind walls. Vi, each cross
section of the pier corresponds to a linear combinatiov afd T.
The shear force at the top of the pier is equal to the net drag force over the wholE)dmudt (

VT \£ * * v, =VR

V, =T/2b)

-
=

 —

pum—y

Fig. 6 Hollow rectangular section under torsion+shear
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increases to the bottom due to the drag on theitgaf. In the following, for the sake of clarity in
the illustration of the joints effects and without compromising the keypoints that will éreecktto,
the drag on the pier will be neglected and it is assumedais constant. Thus, the global shear
force on the pier is simply (2) = F (= constant).

As ur=0, the mean value of,, is given by :

Hyw = I%F = Hen (39)

Regarding the resonant componentogf,, both the alongwind bending and the torsional modes
of vibration (with frequencies denoted Wy andf;, respectively) contribute to the fluctuations of
Vy. As it was stated before, no modal coupling is considered (which is accepthbéndff, are
not too close). Thus, the resonant variance oMpefluctuations is obtained through :

02y = (1/2)°0% + (1/(2b))02; (40)

Because the, - function forF is even @ (s) = 1) and theg, - function for T is odd @u(s) = 2s/L) the
background components of tHe and T contributions to theV,, fluctuations also behave as
uncorrelated, so that the linear combination of variances expressed by Eq. (40) also apgligs to
The demonstration is given in Appendix A.

Thus, the total variance ™, is given by :

Ouw = (27 0f + (1/(20))? 02 (41)

Considering thaium = el (Eq. 31) and thape= 2uq,, the expressions foor and or may be
written in the form:

2
OF = ”Fh(ZIu.ref)_/\/UbF"' Urg (42)

Ymr
€

Or = ”Fh(ZIu.ref)y_:_hf\/ Upt+ Ut (43)
m

As it was stated before, it is possible to tagke=1 and to evaluate the varianagg andu,e from
the J2- function given by Eq. (23); in the same way, it is possible to congiggr 1/4 and to
evaluate the variancesandu,r from theJ?- function given by Eq. (29). Besidg$;, = L. Thus,
the following expression is derived from Egs. (42-43) :

Ovw = (2l se) o/ (Ups + Ure) + (260/D)2(Upr + Uy7) (44)

Fig. 2 illustrates that the background-bending variangg) (s always larger than the torsional one
(Upy). In fact, for a samey - value and in the range 3¢< 10, for instance, thd?- function for
bending is about 4 to 7 times tlé- function for torsion. In the same way, regarding the resonant
variances i is usually larger thao,r (the difference betweeme and u,r may be even higher than
between the background variances, depending @pandf;). However, since the eccentrici#y is
typically much larger than the cross dimension of the pier §.£b > 1), the torsional contribution
to oy in hollow rectangular piers usually becomes the predominant term.

To obtain the characteristic value of the joint effégt(through Eg. 4, witlx given by Eqg. 21), the
zero-upcrossing frequency)(may be taken as a weighted average of the structural frequencies that
are involved. Taking intaccount Eq. (44), that describes the distinct components of variance, the
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following expression may be consigd in this case :
) _ Uief2+ (26/b)°ur 2

(Upr + Ue) + (26./ D) (01 + Uy7)

v (45)

When the total variance of a combined response (suétFagR; + a;R,) is a linear combination of
the variances of the individual effects, such as in the present case, the characteristic value of the
combined response is given by :

Re = (Qlry + 35Ry) + Kro/aZ0%, + 8503, (46)

Despite its theoretical inconsistency, it is interesting to refer to a simplified approach that consists
of estimating the characteristic value of a combined response as a linear combination of the
charactestic values of the individual effect®{ andRy,), i.e.:

Rk = &1Ra + &R (47)

Within this approach, if the individual gust factors fr andR, are taken equal ter (in fact, the
differences are usually small, since the variatior @fith frequency is slow), it follows that :

Ri= (a1 Hr1 + @ Hro) + Kr (810kr1 + 8200) (48)

The comparison between Egs. (46) and (48) revealRiaR,, i.e., the simplified method leads to
a conservative estimate of the combined response.

Finally, it is worthwhile discussing the influence of the decay coefficéntig the joint analysis
of torsion and alongwind bending. In fact, the maximum torque is obtained@#ith4; on the
other hand, the lower 8, the higher become the alongwind effects. Thus, the design situation should
reflect a compromise between the different role playe@.by

Once a certain range of variation@fis assumed for design purposes, such as the range proposed by
Solari (Eq. 20), let the minimum and maximu@p- values be denoted W9:m and Cyy, respectively.
The values ofg that correspond to the torsional frequency and to these extCenvalues may
also be defined (and denoted I, and @w:, respectively). Assuming that the resonant
contributions dominate over the background ones, the following situations may then occur in the
analysis of the joint effects :

- if @m> 3.4, the assumptio, = C,, may be adopted for design, as the structural response
would certainly decrease if higher values were considere@,for

= if @m=3.4=< @u, the combined response should be assesseq; faalues in the rangeCl,
34U/ (T L)];

— if gw < 3.4, it is advisable to consider the whole rangg, [ Civ], in order to attain the most
unfavourable situation.

7. Example of application

The procedure described above is applied to the bridge that crosses the Douro River at Régua
Portugal. This structure was designed by Eng. Armando Rito and its construction finished in 1997.
The main span of the bridge is 180.0m long and the piers are 87.0 m high. The deck is a prestresse
reinforced concrete box girder and presents a parabolictivariaf depth between 4.0 m at mid-
span and 12.0 m over the piers. At the erection stage just prior to the closure of the main span, the
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structure presented= 175 m,f,=0.304 Hz and;=0.122 Hz.

The drag coefficient of the deck is assumed to have a parabolic variation b&yedmn25 at
mid-span andCp = 1.75 at the connection to the piers. The reference value of the structupahgas
taken asd;=0.05 and the aerodynamic damping for each mode of vibration (with generic frequency
fo) is estimated by :

_ pUDG,

a 2mf, (49)

It is assumed that the structural parameter(D.Cp) is constant along the entire span. The value
m/ (D.Cp) = 6400 kg/ni, that pertains to the tip of the overhangs, is considered.

The basic wind characteristics are taken from EC1 assumingefi@nt category Il conditions
(typical of farmland with occasional small obstacles) and a reference wind Ypged20 m/s (10
min. mean wind speed at 10 m above ground). The lateral length scale of turbulence is taken as
LY = (1/3)L; (Dyrbye and Hansen 1996). The input parameters and the corresponding results for the
torsional moment on the pier are listed in Table 1. The values shown(éord for¢ ) correspond
to a durationT = 10 minutes. The values of the NBCC coefficients are also presented at the bottom
of the table.

All the gust factors shown in Table 1 have been obtained as if the deck had a constant cross section.

The gust factor obtained for the basic situation (denoted by Case 1) is equal to 2.37. If the
parabolic variations of the depth and of the drag coefficient are taken into account (considering
Yp=12.0/4.0 = 3.0 and/- =1.75/1.25 = 1.4), the gust factor decreases from 2.37 to 2.22. The error
involved is conservative and of only 7%, that illustrates the validity of considering a constant cross
section in design practice.

In order to assess the influence of some parameters in the structural response, three other cast
were considered. In each case all the data are equal to those of Case 1 except for one paramete
The influence of the structural damping is illustrated in Case 2,=f0.10 is considered, for
instance, the gust factor is reduced from 2.37 to 1.90.

The value@g=8.7 in Case 1 corresponds @=11.5, which is in accordance to EC1 but is
beyond the range of values for which the joint acceptance function is maximum (vd. Fig. 2). In
Case 3, the decay coefficie@it is taken as the lower limit of the range proposed by Solari (i.e.,
C,=5.0X (175/87Y2°=6.0) and@ = 4.5 is obtained. As this value is closest to ‘ttritical” range
for torsion (3 <@ < 4), the gust factor becomes higher than in Case 1 (2.65 instead of 2.37). If the
value @ =3.4 is considered (the value at whidh is maximum), the gust factor becomes even
higher; in this case, the resgit= 2.68 would then be obtained.

The significant height of the piers and the long span of this structure (in terms of frame bridges)
make it rather flexible during the erection stages, as the low structural frequencies reveal. For this reasor
the resonant effects of the wind gusts are much more important than the backgiouletdardects
(in Case 1, for instance,r = 0.441 is 87% of total variance). Case 4 illustrates the importance of the
structural frequency in the response: if a larger value is givefh (mamely 0.3 Hz), the relative
contribution of the resonant effects becomes lower, as well as the gust factor (1.75 instead of 2.37).

In all the cases shown, the zero-upcrossing frequen)oyf (the torsional response is very close to
the structural frequencyfj. This fact is typical in flexible structures and rather small differences
would be obtained it had been identified directly with instead of using Eq. (22) (in Case 1, for
instance, the gust factor would change from 2.37 to 2.39).

Regarding the alongwind effects, the main results obtained by the same methodology for the net



Unbalanced wind buffeting effects on bridges during double cantilever erection stages59

Table 1 Input parameters and results for torsional effects

INPUT Case 1 Case 2 Case 3 Case 4
Basic wind speed)y.s[m/s] 20 " " "
Roughness lengtlz, [m] 0.05(*) " " "
Terrain factork; 0.19 (% " " "
Exponent for scale of turbulence, 0.26 (*) " " "

Air density, p [kg/m’] 1.25 " : "
Total length of the structuré, [m] 175 " " "
Height of the deck above ground,[m] 87 " " "
Reference depth (tip of the armB) [M] 4 " " "
Reference drag coefficientp 1.25 " " "
Torsional frequencyf, [Hz] 0.122 " " 0.3
Structural dampingds 0.05 0.10 0.05 0.05
Equivalent mass per unit area, (m/D) [kéfm 8000 " " "
Decay coefficientC, 11.5 (%) " 6.0 11.5

RESULTS Case 1 Case 2 Case 3 Case 4
Wind speed at deck levele= kfn(H/z,)Upas [M/S] 28.4 (%) " " "
Intensity of turbulencel = 1/In(H/Z,) 0.134 (% " " "
Longitudinal scale of turbulenck,j(H) = 300H/300f [m] 217.4 (*) " " "
Lateral scale of turbulencé? (H) = (1/3) Lj(H) [m] 725 " " "

@ Eq. (10) 2.414 " " :
Background variancey, = J2 (@) Eq. (29) (Fig. 2) 0.066 " " "

@ Eq. (19) 8.659 " 4.518 21.293
Joint acceptance functiod?(@) Eq. (29) (Fig. 2) 0.052 " 0.067 0.027
N=f.LY/U(H) 0.936 (*) " ! 2.301
Non-dimensional spectral densig(N) = 6.8N / (1+10.2NY® 0.126 (*) " " 0.076
Aerodynamic dampingd, Eq. (49) 0.023 " " 0.009
Total dampingd=4&+ &, 0.073 0.123 " 0.059
Resonant variance), Eq. (13) (withM;=M,) 0.441 0.261 0.567 0.170
Zero-upcrossing frequency, Eq. (22) [Hz] 0.114 0.109 0.115 0.255
Peak factork Eqg. (21) 3.105 3.091 3.110 3.354
Gust factorg Eq. (26) (withymn= 1/4) 2.37 1.90 2.65 1.75
Mean torsional moment (one overhangy), [KN.m] 14022 " " "
Characteristic torsional momeri, [KN.m] 33232 26642 37158 24539

NBCC
Turbulence coefficient 6 (*) " " "
Roughness/exposure factér/ Cey Eq. (34) 0.048 " " "
Background factorB Eq. (36) 1.581 " " "
Gust energy ratiof- Eq. (35) 0.188 " " 0.114
Size reduction facto Eq. (37) 0.650 " 0.836 0.338
Gust factorg = k JK/CeH(B + SF2711/9) 2.37 1.90 2.65 1.75

(* - values taken according to Eurocode 1)

drag force on the declE) are summarised in Table 2 (only Case 1 is considered).
To illustrate the joint analysis of alongwind and torsional effects, the pier is assumed to have a
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Table 2 Main results for alongwind and torsional effects (Case 1)

Drag force on the declE) Torsional moment on the pief)(

f, (H2) 0.304 0.122

@ 2.414

@ 21.577 8.659

Up 0.516 0.066

U 0.555 0.441

k 3.308 3.105

¢ 1.92 2.37
L = 865 kN Lirn = 14022 kN.m
0r = 240 kN o7 = 10703 kN.m
Fy= 1660 kN T = 33232 kN.m

hollow rectangular section with(z) =6.00 m and the shear force in the alongwind wallg) (s
considered (“pier-drag” is neglected).

According to Eqg. (44), the equivalent eccentrictymust be evaluated in order to assesg.

From Fig. 5, for¥,=3.0 and%¥:=1.4, x =&,/ (L/2)=0.37. Thusg,=0.37X(175/2) = 32.4 m and
e./b=5.4. The same result can be obtained thraaghuqrn/ (Ur/ 2).

The main results obtained o, in Case 1 are presented in Table 3. The value obtainedyfor (

Ue) is almost the double obgr+ uyr); however, ag./b=5.4> 1, the torsional contribution tay,,
becomes clearly predominant over the alongwind one (in fact, the torsional contribution corresponds
to 98% of the totaV,, - variance). This fact is reflected by the high value of the gust factoy,for
namely¢ = 7.47.

To illustrate the influence of “pier-drag”, if the cross section of the pier is considered with a
crosswind outer dimension equal to 6.60 m and with a drag coefficient of 1.7, the value obtained for
the total “pier-drag” due to mean wind speed is 329 kN (38%-pand the corresponding bending
moment at the base of the pier is only 19% of the momgdt Thus, if the “pier-drag” had been
considered in the joint analysis, the torsional effects would stilrisl predominate oW,, and the
charactestic responseV,,) would be little afected.

Finally, if the characteristic response is estimated through Eq. (47), the result wjgd=bEL/2)F
+ 1/(2< 6.0)T, = 3599 kN. As it was referred before, this is a conservative estimate ofeatreciestic
response\yx= 3229 kN).

Table 3 Main results for the combined respovigéCase 1, withe./ b =5.4)

(Upet Uyp) 1.071
(UbT+ UrT) 0.507
(2. / b)2 (Upt + UrT) 59.092
oww | tww (EQ. 44) 2.08
v (Eq. 45) 0.116 Hz
K (Eq. 21) 3.112
¢ (Eq. 6) 7.47
Lhw= Hel 2 (Eq. 39) 432 kN

Vo= @ tw (Or Eq. 46) 3229 kN
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8. Conclusions

The torsional effects induced on bridge piers by unbalanced wind buffeting on the deck during
double cantilever erection stages may be significant and should be considered in the design of sucl
bridges. The Sir Benjamin Baker's rule-of-thump=(1) may give a reasonable estimate of such
effects if the torsional frequency is high (namely for typical short-span bridgek,lsag than 60 to
80 m) but it is rather incoect for flexible catilever bridges ¢> 1).

The evaluation of the gust factor on cantilever bridges that present a deck with variable depth may
be performed as if the depth were constant. In fact, neither the variation of the depth nor the
variation of the drag coefficient have any relevant influence on the gust factor for alongwind
bending or for torsional effects. However, it should be clear that the mean response must be
evaluated by considering the real geometry of the deck.

The combination of alongwind and torsional effects should be considered in the design of the
piers. The importance of the torsional component was illustrated for the case of shear in the alongwind
walls of a pier with hollowrectangular cross section.

The method illustrated in this paper is suitable for design practice and fozmepiation in
structural codes.
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Appendix A - Background variance of a combined response

Consider a structural respon&) (hat results from a linear combination of two other respoRsen(lRy), i.e. :
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R(S) = 4Ry(8) + &:Ry(9) (A1)

wherea; anda, are constants. In the case of a horizontal line-like structure with constant cross section, the
Eq.(5a) corresponds to :

02 = [PU(H)DCoa (M) 1n(s) n(s)pu(r)dsids, (A2)

wherer = |s; — 5,|. Considering thatr(s) = a;lri(S) + &lre(S), and omitting subscripR from the background
variances of the responses, the following expression may be derived :

02=af0p + 8 Opp+ 818, [ PUH)DCoO,(H) 12 (Irset Irased)

/Aot o e LG =
The generalisation of this expression for any line-like structure is straightforward. The result is :
o=a? b1+ 35 Obp + [ PUret Drer Coref Guet lrrefl 12 J512 (A.4)
wherel ;e andJZy, are defined through :
| & rer = (Al et ol rore) (A.5)
%22 = L1 10:(2000(5) + 0u(s)am(] 1) (n6)

Just like the double integral in Eq. (7) can be solved through Egs. (11), (12), the double integral in Eq.
(A.6) can be solved by the following procedure (the demonstration is similar to the one given in Dyrbye and
Hansen 1996 for a singf - function):

F = %{Gb.lz(r)pu(r)dr (A7)
Gose(1) = 2 [ [0u(S)0ua(S+ 1) + Gl S)Gus( + )]s (A9)

If the origin of thes-axis is located at the middle of the structure and not at one of the tips, the limits of
integration in Eqg. (A.8) change from (0;r) to (-L /2, L/ 2-r). Taking into account that :

[ [90oMGu(y+ DIy = = [ [Goa(-S-NGa(-9)]dS = [ [Gu(-9Ta(-S—D)]ds (A9

the Eq. (A.8) can be rewritten in the form :

L/2-r

Gor1) = 2 [ [0:4(S)9ualS+ 1) + Goa(~9 G~ D] ds (A10)

-L/2

It is clear that if one of thg,- functions is even and the other is odd, the correspor@ing function is
zero and so is'lﬁ_lz. Thus, the background components of fjeandR, contributions tadR behave as uncorre-
lated, in the sense that :

ot=ajoh+asoh (A.11)
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