
Wind and Structures, Vol. 4, No. 1 (2001) 45-62 45

d wind
ection is
ntilever
Hansen
table for
ence with

ight be
s. Only
nal and

ction

tilever
esent at
itation due
examples

).
 were
umed
ind”
s on a
torque
ed. The
g-type

ASCE

DOI: http://dx.doi.org/10.12989/was.2001.4.1.045
Unbalanced wind buffeting effects on bridges
during double cantilever erection stages

Pedro A. Mendes† and Fernando A. Branco‡

ICIST, Department of Civil Engineering, IST, Av. Rovisco Pais, 1096 Lisbon, Portugal

Abstract. This paper is focused on the torsional effects that are induced on bridge piers by unbalance
buffeting on the deck during double cantilever erection stages. The case of decks with variable cross s
considered in particular as this characteristic is typical of most frame bridges that are built by the ca
method. The procedure outlined in the paper is basically an application of the method that Dyrbye and 
(1996) have illustrated for decks with constant cross section. This format was chosen because it is sui
design purposes and may easily be implemented in structural codes. As a complement, the correspond
the format that is adopted in the Canadian code (NBCC 1990) for the gust factor is established, which m
useful to bridge designers used to the North-American approach to the gust effects on structure
alongwind turbulence and horizontal movements of the deck are considered. The combination of torsio
bending effects is also discussed and it is illustrated with an example of application.

Key words: bridges; alongwind effects; torsion of piers; combined bending and torsion; cantilever ere
stages.

1. Introduction

The effects of wind buffeting on bridges during the erection of the deck by the double can
method should be assessed by designers. In fact, the flexibility that bridge structures usually pr
these erection stages may lead to undesirable stresses and displacements under the random exc
to wind gusts. The use of temporary cables is often adopted as a remedy for such effects. Some 
of application of this solution are the Mezcala Bridge (Revelo et al. 1994), the Glebe Island Bridge
(Wheeler et al. 1994), the Pasco-Kennewick Bridge and the Talmadge Memorial Bridge (Tang 1994

As mentioned by Davenport (1994), the torsional effects due to unbalanced wind buffeting
first considered by Sir Benjamin Baker in the design of the Firth of Forth Bridge. He then ass
a rule-of-thumb in the design of the piers-simply “full mean wind ” on one overhang and “no w
on the other. A pioneering procedure to evaluate the torsional effects induced by wind gust
cantilever bridge was given by Davenport (1967), but only the resonant component of the 
was then considered and the influence of the cross section being variable was not investigat
torsional effects of wind gusts were also studied by Foutch and Safak (1981), but only buildin
structures (i.e., not bridges) were considered.

The unbalanced wind loading on double cantilever bridges was recognised by the 
Committee on Loads and Forces on Bridges as a subject for which additional investigation and
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development of guidelines would be useful (“Bridge loading: research needed” 1982). This par
wind loading has been considered in the ECCS Recommendations 1989, but the application
method given there is somewhat intricate and hardly compatible with the design practice. The
version of Eurocode 1 (EC1 1995) does not supply any information about this phenomenon. Re
Dyrbye and Hansen (1996) presented the torsional effects on cantilever bridges in a format s
for design purposes and illustrated it to the case of a deck with constant cross-section.

This paper is focused on the torsional effects induced on cantilever bridges that present 
with variable depth and on the joint analysis of bending and torsional effects. The importan
torsion is illustrated and it is shown that the gust factor on these bridges (regarding the bendi
torsional effects) may be evaluated as if the depth of the deck were constant, since th
involved in this approximation has little significance. 

The method illustrated in this paper is suitable for design practice and for implementation in
codes. The method is first given in the Dyrbye and Hansen's format and the correspondenc
the format that is adopted in the Canadian code (NBCC 1990) for the evaluation of the stru
effects of wind gusts is then established. Only alongwind turbulence and horizontal movements of
the deck are considered. The unbalanced wind loads that may arise from vertical turbulence,
shedding phenomena, special local topographic conditions or from structural asymmetry a
taken into account.

The paper consists of six main parts:

(1) a brief review of the standard gust factor method, presented for the sake of clarit
illustrated with alongwind bending effects,

(2) the modifications needed to apply this method for the torsional effects on cantilever bridg
(3) analysis of decks with variable cross section,
(4) correspondence with the NBCC format,
(5) joint analysis of bending and torsional effects and
(6) an example of application.

2. Alongwind response of line-like structures

On a line-like structure with total length L and with linear-elastic behavior, any structural respon
(R) due to the drag force that is induced by the mean wind speed is given by :

(1)

where ρ is the specific mass of the air, U is the mean wind speed, D and CD denote a reference
dimension and the drag coefficient of the cross section of the structure, s corresponds to the coordinat
along the length of the structure and IR(s) is the structural response due to a static unit load applie
section with coordinate s. The subscript “ref ” denotes a reference value (such as the value at a refer
section of the structure, located at height zref above the ground) and the γm-function is defined by:

(2)

(3)

µR
1
2
---ρU2 s( )D s( )CD s( )IR s( )ds

0

L

∫ 1
2
---ρUref

2 Dref CD.ref 
  IR.refγmL= =

γm
1
L
--- gm

0

L

∫ s( )ds=

gm s( ) U s( )
Uref

----------- 
  2D s( )

Dref

-----------
CD s( )
CD.ref

--------------
IR s( )
IR.ref

------------=
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This paper is devoted to buffeting effects on bridges, so that only horizontal structures 
addressed for. Thus, zref corresponds to the height of the bridge deck above ground and terms
U(s) / Uref are unitary. Nevertheless, the general format of the equations will be retained, fo
sake of completeness.

Assuming that U is much larger than the longitudinal fluctuations of wind speed and than
velocity of structural oscillation, the response µR may be taken as the mean response due to 
wind action. On the other hand, the mean of the largest values of the response that occur
time intervals with a pre-defined duration T (usually 10 minutes) is called the characteristic respon
Rk , and may be expressed in the form :

Rk = µR + κ σR (4)

where σR is the standard deviation of the response fluctuations and κ is the so-called peak factor
The variance of the response is usually split in two terms, namely the background and the reson
components (denoted by σ b

2  and σ r
2 , respectively). These two separate contributions may 

presented in the form (Dyrbye and Hansen 1996) :

(5a)

(5b)

where Iu.ref (= σu.ref/ Uref) is the intensity of longitudinal turbulence at height zref and the non-
dimensional variances υb , υr are defined in the following. If the mean response is not zero, the
called gust factor (ϕ) is defined such that Rk = ϕ µR. From the previous equations, it follows that :

(6)

If the quasi-static model is assumed for the background turbulence effects, the non-dimen
variance υb (also indicated by Jb

2 ) is given by :

(7)

(8)

The function ρu is the correlation coefficient of the longitudinal fluctuations of wind speed and 
related with the lateral length scale of longitudinal turbulence (Lu

y ). Assuming that :

(9)

where r = |s1 − s2| and φb is defined through :

(10)

the double integral in Eq. (7) can be solved by (Dyrbye and Hansen 1996) :

σb µR 2I u.ref( ) 1
γm

----- υb=

σr µR 2I u.ref( ) 1
γm

----- υr=

ϕ 1 κσR µR⁄+ 1 κ 2I u.ref( ) 1
γm

----- υb υ r++= =

υb Jb
2 1

L2
----- gb s1( )gb s2( )

0

L

∫
0

L

∫ ρu s1 s2–( )ds1ds2= =

gb s( ) U s( )
Uref

-----------D s( )
Dref

-----------
CD s( )
CD.ref

--------------
IR s( )
IR.ref

------------
σu s( )
σu.ref

-------------=

ρu r( ) φb
r
L
---– 

 exp=

φb
L

Lu
y zref( )

------------------=
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Regarding the resonant turbulence effects for a particular structural mode of vibration, with natur
frequency fe (expressed in Hz), modal shape Φ(s) and total viscous damping δ (logarithmic
decrement), the variance υ r is given by :

(13)

where M1 and M2 depend on the mass of the structure per unit span (denoted bym),
E(z, fe) = fe.Su(z, fe) / σ u

2 (z) is the non-dimensional power spectrum of the along-wind turbulence
Jr

2( fe) is the joint-acceptance function. The following definitions apply :

(14)

(15)

(16)

(17)

where the function ψF(r, fe) is the normalized cross-spectrum of the fluctuations of the wind fo
For horizontal structures, irrespective of the response being considered, gm(s) = gb (s); besides, if
IR(s) = Φ(s) then gb(s) = gr(s). Assuming that :

(18)

the double integral in Eq. (16) can be solved as for Jb
2 , i.e., through Eq. (11) with ρu replaced by ψF

and with Gb replaced by a function (denoted by Gr) that is defined by Eq. (12) with gr instead of gb.
The coefficient φr is usually expressed in the form :

(19)

where Cr is a non-dimensional decay coefficient for which a wide variety of values may be fou
the literature. For horizontal slender structures, located at a height H above ground, Solari (1987)
indicates a mean value Cr = 8.5 (L / H )0.25 and a range of variation given by :

Jb
2 1

L
--- Gb

0

L

∫ r( )ρu r( )dr=

Gb r( ) 2
L
--- gb

0

L r–

∫ s( )gb s r+( )ds=

υr

M1

M2

------- 
 

2 π2

2δ
------ E zref fe,( )Jr

2 fe( )=

M1 m s( )Φ s( )
Φref

------------
IR s( )
IR.ref

------------ds
0

L

∫=

M2 m s( )Φ2 s( )
Φref

2
--------------ds

0

L

∫=

Jr
2 fe( ) 1

L2
-----

0

L

∫
0

L

∫ gr s1 fe,( )gr s2 fe,( )ψF s1 s2– fe,( )ds1ds2=

gr s fe,( ) U s( )
Uref

-----------D s( )
Dref

-----------
CD s( )
CD.ref

--------------Φ s( )
Φref

------------ Su s fe,( )
Su.ref fe( )
---------------------=

ψF r f e,( ) φr
r
L
---– 

 exp=

φr

Cr feL

Uref

-------------=
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In Eurocode 1 it is implicit that Cr may be taken as 11.5 (following Solari 1987, 1993). However
should be noted that this assumption is more appropriate for upright structures than for hor
slender ones, such as bridge decks.

Regarding the peak factor, if the wind load is assumed to be a Gaussian stationary sto
process and if the structural behavior is linear-elastic with viscous damping, κ may be evaluated by :

(21)

where ν is the zero-upcrossing frequency. Several approximate expressions for ν may be found in
the literature. As the representative frequency of the background component is typically much
than the structural one, it is common to consider the following expression (NBCC 1990) :

(22)

The present paper is focused on double cantilever bridges. The effects of wind gusts are ev
according to the model shown in Fig. 1, that consists of two symmetric overhangs, each on
length L/2, supported on a vertical pier. The height of the deck above ground (H) is taken as
constant and is defined at the centre point of the deck at the tip of each overhang. The re
cross section of the structure is chosen as one of the tips of the overhangs.

The structural behavior is assumed to be linear-elastic with viscous damping and no 
coupling is considered. The frequencies of the first modes of vibration that involve either alon
bending or torsion of the pier are denoted by fb and ft , respectively; in both these modes o
vibration, the deck is assumed to behave like a rigid body.

The net drag force on the whole deck (denoted by F) plays a crucial role among the alongwin
effects in cantilever bridges. In practical cases, regarding the bending moment at the base o

5.0
L
H
---- 

 
0.25

Cr 12.1
L
H
---- 

 
0.25

≤ ≤

κ 2 νT( )ln=
0.5772

2 νT( )ln
------------------------+

ν fe
υ r

υb υr+
-----------------=

Fig. 1 Double cantilever bridge
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alongwind displacement at the top of the pier, for instance, the contribution from drag induced by
the pier is much less than the contribution from drag acting on the deck. Thus, if the effects 
“pier-drag” are neglected, the characteristic bending moments or alongwind displacements 
pier may be estimated by a static analysis of the structure, subjected to the characteristic forcFk at
the top of the pier.

To evaluate Fk the corresponding unit load-response function (IR) is unitary. The shape of the
bending mode of vibration along the deck, Φ (s), is also unitary, as a result of the rigid behavior 
the deck. Thus, it follows that M1= M2. Furthermore, in the case of a deck with constant cr
section, gm(s) = gb(s) = gr(s) = γmF= 1. For an unitary g-function (either gb or gr), the Eqs. (11)-(12)
lead to the following expression for the J 2 - function :

(23)

This function is illustrated in Fig. 2. The monotonical decrease of the J2-function with φ reflects the
loss of correlation on the wind force fluctuations with increasing span.

3. Torsional response of a double cantilever bridge

The standard ϕ method cannot be used directly to evaluate the torsional effects in the case
cantilever bridge with symmetric overhangs, since the mean torsional moment (µT) is zero. However,
to circumvent this difficulty, the torsional moment that is induced by mean wind load acting on
one of the overhangs may be considered instead of µT, i.e. :

(24)

where the subscript “h” stands for “half-deck”. Then, it is simple to verify that the characteristic
torsional moment may be obtained through (Dyrbye and Hansen 1996) :

Tk = k σT = ϕ µTh (25)
where :

J2 φ( ) 2

φ2
----- φ φ–( )exp 1–+[ ]=

µTh
1
2
---ρU2 H( )D s( )CD s( ) IR s( )ds

0

L 2⁄

∫=

Fig. 2 Non-dimensional variance for a deck with constant cross section
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(27)

The variances υb and υr are still evaluated by Eq. (11) (either with Gb or Gr). However, as the
origin of the s-axis is not located at one tip of the structure but rather at the middle (Fig. 
proper redefinition of the G-functions (instead of Eq. 12) is needed, namely :

(28)

To evaluate the torsional moment, the unit load-response function is IR(s) = s; moreover, the
torsional mode is assumed to be linear and anti-symmetrical about the pier, i.e., Φ (s) = s = IR(s).
Thus, it follows that gb (s) = gr(s) and M1 = M2.

In the case of a deck with constant cross section, all the g-functions are given by g(s) = 2s / L and
the corresponding result γmh= 1/4 is obtained. Regarding the non-dimensional response varian
the Eqs. (11) and (28) lead to the following expression :

(29)

Fig. 2 also illustrates this J2 - function and shows that the largest variances for torsion corresp
to the range 3 <φ < 4 (the maximum value is attained at φ ≈ 3.4). Thus, regarding the gust factor fo
the torsional effects, the critical span range is L = [3 to 4]. Lu

y (H) for the background turbulence
effects and L = [3 to 4]. U(H) / ( ft . Cr) for the resonant component. Spans outside these ranges p
less torsional effects: in longer spans due to the loss of correlation between the wind force fluctu
and in shorter spans because both overhangs become fully enveloped by the relevant wind gusts.

Other torsional effects may be evaluated besides the moment that is induced on the pi
alongwind displacement of the deck at the end of each overhang due to the torsion of the p∆),
for instance, is equal to L / 2 times the pier rotation at the top. As the modal shape is def
through Φ (s) = s (i.e., it is normalized by the condition of unit rotation at the top of the pier), 
rotation at the top corresponds directly to the ratio between the torsional moment and the 
stiffness. From these considerations, the characteristic value of ∆ is given by :

(30)

4. Deck with variable cross section

The decks of frame bridges built by the cantilever method often present a variable depth
variation is usually parabolic with zero slope at mid-span. If the most unfavourable erection st
assumed to occur just prior to the closure of the span, then the slope at the end of the ov

ϕ κ 2I u.ref( ) 1
γmh

------- υb υr+=

γmh
1
L
--- gm

0

L 2⁄

∫ s( )ds=

G r( ) 2
L
--- g

L 2⁄–

L 2 r–⁄

∫ s( )g s r+( )ds=

J2 φ( ) 8

φ4
----- φ3

12
------ φ2

4
-----– 1 1

φ
2
---+ 

 
2

φ–( )exp–+=

∆k L 2⁄
Tk

2πft( )2 m
L 2⁄–

L 2⁄

∫ s( )s2ds

------------------------------------------------=
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may also be taken as zero.
Regarding the variation of the drag coefficient, it is worthwhile mentioning that, for usual b

decks and in the absence of experimental data, the ECCS document refers to a linear rela
between CD and the parameter D / B (where D and B are the depth and the width of the dec
respectively). The EC1 also refers to a linear variation of CD ; however, this linearity is not upon D/
B but rather on its inverse, B / D, and extends up to B / D equal to 4 or 5, depending on the type of dec

In the following, the ratio between the values that D and CD present over the pier and at the tip o
the overhangs is labelled by ΨD and ΨC , respectively, and an additional coefficient (Ψ ) is defined
as Ψ = ΨDΨC .

To assess the influence of variable deck geometry on the gust factors, two sets of three d
situations were considered. The situations in each set have a common Ψ - value, namely Ψ = 3.0
and Ψ = 6.0, and the parabolic variations were assumed to have zero slope at s= L /2. The
situations considered in the set Ψ = 3.0 were as follows :

1) D(s) is parabolic and CD(s) is constant (ΨD = 3.0);
2) both D(s) and CD(s) are parabolic, with ΨD = 2.5 and ΨC = 1.2;
3) both D(s) and CD(s) are linear, with ΨD = 2.5 and ΨC = 1.2.

In the same way, the following situations were considered in the set Ψ = 6.0 :

4) D(s) is parabolic and CD(s) is constant (ΨD = 6.0);
5) both D(s) and CD(s) are parabolic, with ΨD = 4.0 and ΨC = 1.5;
6) both D(s) and CD(s) are linear, with ΨD = 4.0 and ΨC = 1.5.

The variation of the deck geometry has an obvious effect on the mean response (either
alongwind effect, µF, or in the torsional one, µTh). The remaining influence on the response can 
analysed by looking at the ratio J(φ) / γm (or J(φ) / γmh), as the background and the resona
components are directly proportional to this parameter. 

Figs. 3 and 4 illustrate the values of J(φ) / γmF and of J(φ) / γmTh for the case of a deck with
constant cross section (labelled by Ψ = 1.0) and for the two sets of variable geometry decks t
were referred previously. The results obtained in each set for the three situations are practically
coincident, with differences hardly noticeable at the scale of the figure, and so the values
grouped in a single curve (defined by the average values).

Fig. 3 Comparison of J(φ) / γm for different values of Ψ (bending)
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The important conclusion that can be drawn from Figs. 3 and 4 is that the ratios J(φ) / γm are little
affected by the deck cross section being variable. The condition Ψ = 6.0 covers practically all the
cantilever bridges built so far. Thus, for practical situations of variable geometry decks, the ra
J(φ) / γm (and thus the gust factor ϕ) either for the net drag force on the deck or for the torsio
effects can be evaluated as if the deck were constant. 

The error involved in this approximation may be disregarded for design purposes - in the
considered for the set Ψ = 3.0, for instance, the differences did not exceed 7% of the exact valu
the alongwind case and 9% in the torsional one (less than 6% in the range 2 <φ < 6); for the set
Ψ = 6.0, the maximum difference was around 14% in the alongwind case and 15% for the tor
effect (less than 10% in the range 2 <φ < 6). It should be referred that the differences to the ex
values are small but show opposite trends, as they are conservative for torsion but are not cons
for bending.

Any torsional moment on the pier can be viewed as the result of a concentrated drag force
on the deck at a proper distance from the axis of the pier. Denoting by µFh the mean value of the
drag force that acts over only one of the overhangs, the mean torsional moment µTh can be
evaluated through :

µTh = ec µFh (31)

where ec is an equivalent eccentricity. The expression for ec is simply :

(32)

The values taken by the non-dimensional eccentricity χ = ec / (L / 2) for a range of ΨD and ΨC-values
(considering parabolic variations with zero slope at mid-span) are depicted in Fig. 5. If the cross 
of the deck is constant, the eccentricity ec is obviously equal to half the length of each overhang (i.e.,
χ = 0.5). For decks with variable cross section, χ decreases as the relative variation of depth increases.

ec

µTh

µFh

--------

D s( )CD s( )s ds
0

L 2⁄

∫

D s( )CD s( ) ds
0

L 2⁄

∫

---------------------------------------------= =

Fig. 4 Comparison of J(φ) / γmh for different values of Ψ (torsion)
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Several remarks should be made about the procedure to evaluate the buffeting effects th
described. The first one is that the results can be rather sensitive to the structural damping, de
on the relative importance of the resonant effects; the influence of damping should be inves
by considering a suitable range of variation. The decay coefficient Cr constitutes another source o
uncertainty and, regarding the torsional effects, the maximum structural response does not necessarily
correspond to a minimum value of Cr . Once again, a suitable range of variation may be conside
such as the range given in Solari 1987 (Eq. 20). 

A final remark is that the procedure outlined does not cover all the aerodynamic phenomena 
may contribute to the structural response, such as the flexural effects in the crosswind pla
pressure correlation on the windward and leeward sides of the deck and the effects of
excitation (Solari 1988). The assumption that the bridge is a line-like structure also precludes cons
the vertical correlation of the pressures along the depth of the deck. Albeit these limitations, it
authors' belief that the method is accurate enough and rather suitable to design practice. 

5. Correspondence with the NBCC format

The background and resonant standard deviations can be expressed in the format of Eqs. 
are rewritten below in brackets, or in the format adopted in NBCC 1990 :

(33a)

(33b)

The variables K and CeH , called the surface roughness factor and the exposure factor at heigH,
are defined in NBCC for each terrain category but, for the present purpose, only the ratio K / CeH is
important. The variable F is called the gust energy ratio and S is the size reduction factor. The term
B corresponds to the background turbulence effects and the term SF/ δ is associated with the
resonant component. If the following definitions are considered :

(34)

(35)

σb µ K
CeH

--------B µ 2I u.ref( ) 1
γm

----- Jb
2 φb( )==

σr µ K
CeH

-------- SF
δ 2π( )⁄
------------------ µ 2I u.ref( ) 1

γm

----- π2 2δ( )E zref fe,( ) Jr φr( ) 2⁄==

K
CeH

-------- 16
U*

Uref

--------- 
 

2 4
β
--- 2I u.ref( )2= =

F
feSu zref , fe( )

4 U*( )
2

------------------------------ β
4
---E zref , fe( )= =

Fig. 5 Non-dimensional eccentricity
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where U* denotes the friction velocity and β is defined such that σ u
2 (zref) = β (U *)2, the equivalence

between the NBCC format and that of Eqs. (5) is attained with :

(36)

(37)

The NBCC format can be applied for both the alongwind and the torsional effects. If the tor
moment is considered, for instance, then the term µ in Eqs. (33) should be interpreted as µTh and
the term γm in Eqs. (36) and (37) corresponds to γmTh.

If the gust factor in a variable geometry deck is evaluated without considering any variation 
deck geometry, as it was argued before, then, for the drag on the deck, γmF= 1 and the J 2 - functions
are given by Eq. (23) (Fig. 2); in the same way, for the torsional moment, γmTh= 1/4 and the J 2 -
functions are given by Eq. (29).

6. Combination of torsional and bending effects

The torsional moments (T) induced on a pier by the wind action during double cantilever erec
stages occur in association with bending effects, namely with alongwind shear forces (V) and
bending moments (M). Thus, the analysis of the joint effects should be considered in the desi
the pier. The shear force on the alongwind walls (Vw) of a pier with hollow rectangular cross sectio
(Fig. 6) is considered to illustrate the combination of bending and torsional effects. 

The shear force in the alongwind walls is an important structural response - the design 
transverse reinforcement on a concrete pier, for instance, depends directly on Vw. Assuming the
Bredt's model for the torsional behavior of the cross section, the combination T- V leads to the
following expression for Vw :

(38)

where b(z) is the distance between the centrelines of the alongwind walls. Thus, Vw at each cross
section of the pier corresponds to a linear combination of V and T.

The shear force at the top of the pier is equal to the net drag force over the whole deck (F) and

B
β
4
---

Jb
2 φb( )
γm

2
---------------=

S
π
4
---

Jr
2 φr( )
γm

2
---------------=

Vw z( ) V z( )
2

----------- T
2b z( )
-------------±=

Fig. 6 Hollow rectangular section under torsion+shear
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increases to the bottom due to the drag on the pier itself. In the following, for the sake of clarity in
the illustration of the joints effects and without compromising the keypoints that will be referred to,
the drag on the pier will be neglected and it is assumed that b(z) is constant. Thus, the global shea
force on the pier is simply V (z) = F (= constant).

As µT = 0, the mean value of Vw is given by :

(39)

Regarding the resonant component of σVw , both the alongwind bending and the torsional mod
of vibration (with frequencies denoted by fb and ft , respectively) contribute to the fluctuations o
Vw . As it was stated before, no modal coupling is considered (which is acceptable if fb and ft are
not too close). Thus, the resonant variance of the Vw - fluctuations is obtained through :

(40)

Because the gb - function for F is even (gb1(s) = 1) and the gb - function for T is odd (gb2(s) = 2s / L) the
background components of the F and T contributions to the Vw fluctuations also behave as
uncorrelated, so that the linear combination of variances expressed by Eq. (40) also applies toσ 2

b.Vw.
The demonstration is given in Appendix A.

Thus, the total variance of Vw is given by :

σ 2
Vw = (1/2)2 σF

2 + (1/(2b))2 σ 2
T (41)

Considering that µTh= ecµFh (Eq. 31) and that µF = 2µFh , the expressions for σF and σT may be
written in the form :

(42)

(43)

As it was stated before, it is possible to take γmF= 1 and to evaluate the variances υbF  and υrF from
the J2 - function given by Eq. (23); in the same way, it is possible to consider γmTh= 1/4 and to
evaluate the variances υbT and υrT from the J2 - function given by Eq. (29). Besides, µFh = µVw . Thus,
the following expression is derived from Eqs. (42-43) :

(44)

Fig. 2 illustrates that the background-bending variance (υbF) is always larger than the torsional on
(υbT). In fact, for a same φb - value and in the range 3 <φ < 10, for instance, the J2 - function for
bending is about 4 to 7 times the J2 - function for torsion. In the same way, regarding the reson
variances, υrF is usually larger than υrT (the difference between υrF and υrT may be even higher than
between the background variances, depending upon fb and ft ). However, since the eccentricity ec is
typically much larger than the cross dimension of the pier (i.e., ec / b� 1), the torsional contribution
to σVw in hollow rectangular piers usually becomes the predominant term.

To obtain the characteristic value of the joint effect Vw (through Eq. 4, with κ given by Eq. 21), the
zero-upcrossing frequency (ν) may be taken as a weighted average of the structural frequencies
are involved. Taking into account Eq. (44), that describes the distinct components of variance

µVw

µF

2
------ µFh= =

σr .Vw
2 1 2⁄( )2σr.F

2 1 2b( )⁄( )2σr.T
2+=

σF µFh 2I u.ref( ) 2
γmF

-------- υbF υrF+=

σT µFh 2I u.ref( )
ec

γmTh

---------- υbT υrT+=

σVw µVw 2I u.ref( ) υbF υ rF+( ) 2ec b⁄( )2 υbT υrT+( )+=
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following expression may be considered in this case :

(45)
 

When the total variance of a combined response (such as R= a1R1 + a2R2) is a linear combination of
the variances of the individual effects, such as in the present case, the characteristic value
combined response is given by :

(46)

Despite its theoretical inconsistency, it is interesting to refer to a simplified approach that co
of estimating the characteristic value of a combined response as a linear combination 
characteristic values of the individual effects (Rk1 and Rk2), i.e. :

Rk
* = a1Rk1 + a2Rk2 (47)

Within this approach, if the individual gust factors for R1 and R2 are taken equal to κR (in fact, the
differences are usually small, since the variation of κ with frequency is slow), it follows that :

Rk
* = (a1 µR1 + a2 µR2) + κR (a1σR1 + a2σR2) (48)

The comparison between Eqs. (46) and (48) reveals that Rk
* > Rk , i.e., the simplified method leads to

a conservative estimate of the combined response.
Finally, it is worthwhile discussing the influence of the decay coefficient (Cr) in the joint analysis

of torsion and alongwind bending. In fact, the maximum torque is obtained with φ ≈ 3.4; on the
other hand, the lower is Cr the higher become the alongwind effects. Thus, the design situation sh
reflect a compromise between the different role played by Cr .

Once a certain range of variation of Cr is assumed for design purposes, such as the range propos
Solari (Eq. 20), let the minimum and maximum Cr - values be denoted by Crm and CrM , respectively.
The values of φr that correspond to the torsional frequency and to these extreme Cr - values may
also be defined (and denoted by φ rmt and φrMt , respectively). Assuming that the resona
contributions dominate over the background ones, the following situations may then occur 
analysis of the joint effects :

− if φrmt > 3.4, the assumption Cr = Crm may be adopted for design, as the structural respo
would certainly decrease if higher values were considered for Cr;

− if φrmt� 3.4� φrMt, the combined response should be assessed for Cr - values in the range [Crm,
3.4 Uref / ( ft L)] ;

− if φrMt < 3.4, it is advisable to consider the whole range [Crm , CrM], in order to attain the most
unfavourable situation.

7. Example of application

The procedure described above is applied to the bridge that crosses the Douro River at 
Portugal. This structure was designed by Eng. Armando Rito and its construction finished in
The main span of the bridge is 180.0m long and the piers are 87.0 m high. The deck is a pres
reinforced concrete box girder and presents a parabolic variation of depth between 4.0 m at mid
span and 12.0 m over the piers. At the erection stage just prior to the closure of the main sp

ν2 υrFf b
2 2ec b⁄( )2υ rT f t

2+

υbF υrF+( ) 2ec b⁄( )2 υbT υrT+( )+
----------------------------------------------------------------------------------=

Rk a1µR1 a2µR2+( ) κR a1
2σR1

2 a2
2σR2

2++=
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structure presented L = 175 m, fb = 0.304 Hz and ft = 0.122 Hz.
The drag coefficient of the deck is assumed to have a parabolic variation between CD = 1.25 at

mid-span and CD = 1.75 at the connection to the piers. The reference value of the structural damping is
taken as δs= 0.05 and the aerodynamic damping for each mode of vibration (with generic frequ
fe) is estimated by :

(49)

It is assumed that the structural parameter m / (D.CD) is constant along the entire span. The val
m / (D.CD) = 6400 kg/m2, that pertains to the tip of the overhangs, is considered.

The basic wind characteristics are taken from EC1 assuming the terrain category II conditions
(typical of farmland with occasional small obstacles) and a reference wind speed Ubas= 20 m/s (10
min. mean wind speed at 10 m above ground). The lateral length scale of turbulence is ta
Lu

y = (1/3)Lu
x (Dyrbye and Hansen 1996). The input parameters and the corresponding results 

torsional moment on the pier are listed in Table 1. The values shown for κ (and for ϕ ) correspond
to a duration T = 10 minutes. The values of the NBCC coefficients are also presented at the b
of the table.

All the gust factors shown in Table 1 have been obtained as if the deck had a constant cross sec
The gust factor obtained for the basic situation (denoted by Case 1) is equal to 2.37. 

parabolic variations of the depth and of the drag coefficient are taken into account (consi
ΨD = 12.0/4.0 = 3.0 and ΨC = 1.75/1.25 = 1.4), the gust factor decreases from 2.37 to 2.22. The 
involved is conservative and of only 7%, that illustrates the validity of considering a constant 
section in design practice.

In order to assess the influence of some parameters in the structural response, three oth
were considered. In each case all the data are equal to those of Case 1 except for one pa
The influence of the structural damping is illustrated in Case 2: if δs= 0.10 is considered, for
instance, the gust factor is reduced from 2.37 to 1.90.

The value φr = 8.7 in Case 1 corresponds to Cr = 11.5, which is in accordance to EC1 but 
beyond the range of values for which the joint acceptance function is maximum (vd. Fig. 
Case 3, the decay coefficient Cr is taken as the lower limit of the range proposed by Solari (i
Cr = 5.0� (175/87)0.25= 6.0) and φr = 4.5 is obtained. As this value is closest to the “critical” range
for torsion (3 <φr < 4), the gust factor becomes higher than in Case 1 (2.65 instead of 2.37). 
value φr = 3.4 is considered (the value at which J r

2 is maximum), the gust factor becomes eve
higher; in this case, the result ϕ = 2.68 would then be obtained.

The significant height of the piers and the long span of this structure (in terms of frame br
make it rather flexible during the erection stages, as the low structural frequencies reveal. For this
the resonant effects of the wind gusts are much more important than the background turbulence effects
(in Case 1, for instance, υrT = 0.441 is 87% of total variance). Case 4 illustrates the importance o
structural frequency in the response: if a larger value is given to ft (namely 0.3 Hz), the relative
contribution of the resonant effects becomes lower, as well as the gust factor (1.75 instead of 2.37

In all the cases shown, the zero-upcrossing frequency (ν) of the torsional response is very close 
the structural frequency (ft). This fact is typical in flexible structures and rather small differenc
would be obtained if ν had been identified directly with ft instead of using Eq. (22) (in Case 1, fo
instance, the gust factor would change from 2.37 to 2.39).

Regarding the alongwind effects, the main results obtained by the same methodology for 

δa

ρUDCD

2mfe
--------------------=
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drag force on the deck (F) are summarised in Table 2 (only Case 1 is considered).

To illustrate the joint analysis of alongwind and torsional effects, the pier is assumed to h

Table 1 Input parameters and results for torsional effects

INPUT Case 1 Case 2 Case 3 Case 4

Basic wind speed, Ubas [m/s] 20 " " "
Roughness length, zo [m] 0.05 (*) " " "
Terrain factor, kT 0.19 (*) " " "
Exponent for scale of turbulence, ε 0.26 (*) " " "
Air density, ρ [kg/m3] 1.25 " " "
Total length of the structure, L [m] 175 " " "
Height of the deck above ground, H [m] 87 " " "
Reference depth (tip of the arms), Dref [m] 4 " " "
Reference drag coefficient, CD.ref 1.25 " " "
Torsional frequency, ft [Hz] 0.122 " " 0.3
Structural damping, δs 0.05 0.10 0.05 0.05
Equivalent mass per unit area, (m/D) [kg/m2] 8000 " " "
Decay coefficient, Cr 11.5 (*) " 6.0 11.5

RESULTS Case 1 Case 2 Case 3 Case 4

Wind speed at deck level, Uref = kTln(H/zo)Ubas [m/s] 28.4 (*) " " "
Intensity of turbulence, Iu.ref = 1/ln(H/zo) 0.134 (*) " " "
Longitudinal scale of turbulence, L u

x (H) = 300(H/300)ε  [m] 217.4 (*) " " "
Lateral scale of turbulence, Lu

y (H) = (1/3) L u
x(H) [m] 72.5 " " "

φb Eq. (10) 2.414 " " "
Background variance, υb = Jb

2 (φb) Eq. (29) (Fig. 2) 0.066 " " "
φr Eq. (19) 8.659 " 4.518 21.293
Joint acceptance function, Jr

2(φr) Eq. (29) (Fig. 2) 0.052 " 0.067 0.027
N = ft . Lu

x / U(H) 0.936 (*) " " 2.301
Non-dimensional spectral density, E(N) = 6.8N / (1+10.2N)5/3 0.126 (*) " " 0.076
Aerodynamic damping, δa Eq. (49) 0.023 " " 0.009
Total damping, δ = δs + δa 0.073 0.123 " 0.059
Resonant variance, υr Eq. (13) (with M1=M2) 0.441 0.261 0.567 0.170
Zero-upcrossing frequency, ν Eq. (22) [Hz] 0.114 0.109 0.115 0.255
Peak factor, κ Eq. (21) 3.105 3.091 3.110 3.354
Gust factor, ϕ Eq. (26) (with γmh= 1/4) 2.37 1.90 2.65 1.75
Mean torsional moment (one overhang), µTh [kN.m] 14022 " " "
Characteristic torsional moment, Tk [kN.m] 33232 26642 37158 24539

NBCC

Turbulence coefficient, β 6 (*) " " "
Roughness/exposure factor, K / CeH Eq. (34) 0.048 " " "
Background factor, B Eq. (36) 1.581 " " "
Gust energy ratio, F Eq. (35) 0.188 " " 0.114
Size reduction factor, S Eq. (37) 0.650 " 0.836 0.338

Gust factor, ϕ = κ 2.37 1.90 2.65 1.75

(* - values taken according to Eurocode 1)

K CeH B SF.2π δ⁄+( )⁄
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hollow rectangular section with b(z) = 6.00 m and the shear force in the alongwind walls (Vw) is
considered (“pier-drag” is neglected).

According to Eq. (44), the equivalent eccentricity ec must be evaluated in order to assess σVw .
From Fig. 5, for ΨD = 3.0 and ΨC = 1.4, χ = ec / (L/2) ≈ 0.37. Thus, ec ≈ 0.37� (175/2) = 32.4 m and
ec / b ≈ 5.4. The same result can be obtained through ec = µTh / (µF / 2).

The main results obtained for Vw in Case 1 are presented in Table 3. The value obtained for (υbF +
υrF) is almost the double of (υbT+υrT); however, as ec / b = 5.4�1, the torsional contribution to σVw

becomes clearly predominant over the alongwind one (in fact, the torsional contribution corres
to 98% of the total Vw - variance). This fact is reflected by the high value of the gust factor forVw,
namely ϕ = 7.47. 

To illustrate the influence of “pier-drag”, if the cross section of the pier is considered w
crosswind outer dimension equal to 6.60 m and with a drag coefficient of 1.7, the value obtain
the total “pier-drag” due to mean wind speed is 329 kN (38% of µF) and the corresponding bendin
moment at the base of the pier is only 19% of the moment µFH. Thus, if the “pier-drag” had been
considered in the joint analysis, the torsional effects would still clearly predominate on Vw and the
characteristic response (Vw.k) would be little affected.

Finally, if the characteristic response is estimated through Eq. (47), the result would be V*
w.k = (1/2)Fk

+ 1/(2� 6.0)Tk = 3599 kN. As it was referred before, this is a conservative estimate of the characteristic
response (Vw.k= 3229 kN).

Table 2 Main results for alongwind and torsional effects (Case 1)

Drag force on the deck (F) Torsional moment on the pier (T)

fe (Hz) 0.304 0.122
φb 2.414
φr 21.577 8.659
υb 0.516 0.066
υr 0.555 0.441
k 3.308 3.105
ϕ 1.92 2.37

µF = 865 kN µTh = 14022 kN.m
σF = 240 kN σT = 10703 kN.m
Fk = 1660 kN Τk = 33232 kN.m

Table 3 Main results for the combined response Vw (Case 1, with ec / b = 5.4)

(υbF + υrF) 1.071
(υbT + υrT) 0.507

(2ec / b)2 (υbT + υrT) 59.092
σVw / µVw (Eq. 44) 2.08

ν (Eq. 45) 0.116 Hz
κ (Eq. 21) 3.112
ϕ (Eq. 6) 7.47

µVw = µF / 2 (Eq. 39) 432 kN
Vw.k = ϕ µVw (or Eq. 46) 3229 kN
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8. Conclusions

The torsional effects induced on bridge piers by unbalanced wind buffeting on the deck d
double cantilever erection stages may be significant and should be considered in the design 
bridges. The Sir Benjamin Baker's rule-of-thumb (ϕ = 1) may give a reasonable estimate of su
effects if the torsional frequency is high (namely for typical short-span bridges, say L less than 60 to
80 m) but it is rather incorrect for flexible cantilever bridges (ϕ�1).

The evaluation of the gust factor on cantilever bridges that present a deck with variable dep
be performed as if the depth were constant. In fact, neither the variation of the depth n
variation of the drag coefficient have any relevant influence on the gust factor for along
bending or for torsional effects. However, it should be clear that the mean response m
evaluated by considering the real geometry of the deck.

The combination of alongwind and torsional effects should be considered in the design 
piers. The importance of the torsional component was illustrated for the case of shear in the alo
walls of a pier with hollow rectangular cross section.

The method illustrated in this paper is suitable for design practice and for implementation in
structural codes.
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Appendix A - Background variance of a combined response

Consider a structural response (R) that results from a linear combination of two other responses (R1 and R2), i.e. :
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n, the

in Eq.
e and

its of
R(s) = a1R1(s) + a2R2(s) (A.1)

where a1 and a2 are constants. In the case of a horizontal line-like structure with constant cross sectio
Eq.(5a) corresponds to :

(A.2)
 

where r = |s1 − s2|. Considering that IR(s) = a1IR1(s) + a2IR2(s), and omitting subscript R from the background
variances of the responses, the following expression may be derived :

σ b
2= a1

2 σ2
b1 + a2

2 σ2
b2 + a1 a2 [ ρU(H)DCDσu(H) ]2 (IR1.ref IR2.ref)

(A.3)

The generalisation of this expression for any line-like structure is straightforward. The result is :

σb
2= a1

2 σ2
b1 + a2

2 σ 2
b2 + [ ρUref Dref CD.ref σu.ref IR.refL ]2 J2

b.12 (A.4)

where I 2
R.ref and J2

b.12 are defined through :

I 2
R.ref = (a1IR1.ref a2IR2.ref) (A.5)

(A.6)

Just like the double integral in Eq. (7) can be solved through Eqs. (11), (12), the double integral 
(A.6) can be solved by the following procedure (the demonstration is similar to the one given in Dyrby
Hansen 1996 for a single gb - function):

(A.7)

(A.8)

If the origin of the s-axis is located at the middle of the structure and not at one of the tips, the lim
integration in Eq. (A.8) change from (0, L−r) to (−L / 2, L / 2−r). Taking into account that :

(A.9)

the Eq. (A.8) can be rewritten in the form :

(A.10)

It is clear that if one of the gb - functions is even and the other is odd, the corresponding Gb.12- function is
zero and so is J2

b.12. Thus, the background components of the R1 and R2 contributions to R behave as uncorre-
lated, in the sense that :

σ b
2= a1

2 σ 2
b1 + a2

2 σ 2
b2 (A.11)

σb.R
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	Characteristic torsional moment, Tk�[kN.m]
	33232
	26642
	37158
	24539
	NBCC
	Turbulence coefficient, b
	6�(*)
	"
	"
	"
	Roughness/exposure factor, K�/�CeH Eq. (34)
	0.048
	"
	"
	"
	Background factor, B Eq. (36)
	1.581
	"
	"
	"
	Gust energy ratio, F Eq. (35)
	0.188
	"
	"
	0.114
	Size reduction factor, S Eq. (37)
	0.650
	"
	0.836
	0.338
	Gust factor, j�=�k
	2.37
	1.90
	2.65
	1.75
	Drag force on the deck (F)
	Torsional moment on the pier (T)
	fe (Hz)
	 0.304
	 0.122�
	fb
	2.414
	fr
	21.577
	 8.659
	ub
	 0.516
	 0.066
	ur
	 0.555
	 0.441
	k
	 3.308
	 3.105
	j
	1.92
	2.37
	mF�=�865 kN
	mTh�=�14022 kN.m
	sF�=�240 kN
	sT�=�10703 kN.m
	Fk�=�1660 kN
	Tk�=�33232 kN.m
	(ubF + urF)
	   1.071
	(ubT + urT)
	   0.507
	(2ec / b)2 (ubT + urT)
	  59.092
	sVw / mVw (Eq. 44)
	   2.08
	n (Eq. 45)
	   0.116 Hz
	k (Eq. 21)
	   3.112
	j (Eq. 6)
	   7.47
	mVw = mF�/�2 (Eq. 39)
	 432 kN
	Vw.k�=�j mVw (or Eq. 46)
	3229 kN





