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On the use of tuned mass dampers to suppress vortex
shedding induced vibrations

Einar Stremmen' and Erik Hjorth-Hansen*

Department of Structural Engineering, Norwegian University of Science and Technology,
N-7491 Trondheim, Norway

Abstract:  This paper concerns computational response predictions when a tuned mass damper is intendec
to be used for the suppression of vortex shedding induced vibrations of e.g., a bridge deck. A general
frequency domain theory is presented and its application is exemplified on a suspension bridge (where
vortex shedding vibrations have been observed and where such an installation is a possible solution).
Relevant load data are taken from previous wind tunnel tests. In particular, the displacement response
statistics of the tuned mass damper as well as the bridge deck are obtained from time domain simulations
showing that after the installation of a TMD peak factors between three and four should be expected.
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1. Introduction

In the design of recent Norwegian suspension bridges a wedged shaped steel box type of cros
section has frequely been chosen for the bridge deck girder. With a main span between four and
eight hundred meters and with only two traffic lanes plus a narrdkwasg the girders on these
bridges have a width to depth ratio between four and six. In spite of the wedged edges this is a
fairly bluff flow obstruction rendering some of them susceptible to vortex shedding induced vibrations.
Such vibrations have been observed on several of this type of suspension bridges over the las
decade. Generally, the problem of vortex shedding vibrations has occurred at mean wind velocities
of five to ten meters per second and usually only in fairly smooth flow. Strengthwise, the observations
so far have indicated amplitudes of motion which arelikely to represent any problems regarding
short term safety for any of the bridges concerrimd, the long érm fatigue effects are more
uncertain, particularly because duration and frequency of occurrence is largely unknown. It is mainly
unacceptable public confidence during such events on one bridge in particular (and easuimg al
reports) which has demanded the owner's action into an attempt to alleviate the effects.

In connection with the planning for a 1350 m long suspension bridge across the Hardangerfjord
extensive wind tunnel testing took place on a bridge girder cross section which is similar to those
where vibrations have been observed today, see Hjorth-Hahs#n(1993) and Stremmen & Hjorth-
Hansen (1995). As presented below, section model tests took place on the problem of vortex shedding
induced dynamic response and recorded at several levels of damping, allowing for the extraction of
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valuable information regarding the fluctuating load and its motion dependency. An equally important
point should be mentioned, that during this project the possibility of alleviating vortex shedding
effects by use of guide vanes (around upper or lower corners) was investigated, first by CFD calculations
to obtain information on favourable shape and position, and afterwards by aero-elastic section model
wind tunnel tests [see Streammen & Hjorth-Hansen (1995), where the main results are presented].
The investigations proved successful, and thus the possibility of using guide vanes to suppress vorte:
shedding induced bridge deck vibrations represents an attractive alternative to the use of one ol
several tuned mass dampers. While the use of a tuned mass damper is primarily directed at quenchin
the vibrations in a particular mode, the guide vanes will be effective for the reduction of excitations
in any eigen-mode.

Below, the Ostergy suspension bridge has been chosen to illustrate the effectiveness of a tune
mass damper, as it is the latest case of such vibration observations. It has a main span (betwee
towers) of 595 m. Video recordings have indicated amplitudes of motion of about 250 mm occurring
at a vertical eigen-mode of four half-waves along the span between towers and with a period of
about 2.5s. This corresponds to the fourth vertical eigen-mode (second asymmetricdasbicling
to calculations has an eigen-period of 2.55 s.

2. General theory

Several authors have presented a more or less comprehensive treatment of the effects of a tune
mass damper (below shortened TMD), of which only three have been included in the listesfoes
below. Often, the theory has been simplified, either to a single harmonic or to a white noise type of
loading. In the following, a gemal frequency domain treatment is presented, where thdentpas
described within the theory for vortex shedding induced across-wind vibrations as suggested by
Vickery and Basu (1983).

Given a two-degree-of-freedom system (i.e., a minimum symbolic structural representation) with
displacement componentg{t} and x{t} and corresponding time invariant mass-, stiffness- and
damping-propertied/;, K; andC; (j = 1,2), and where the element associated wifl} is subject
to the loadF,{t}. The equations of motion for this system is given by :

0 M, -C, GC, -K; Ky

wherex = [%{t} %{t}] " andF = [F{t} 0]". If the absolute degrees of freedamandx, are replaced
by relative degrees of freedom definedyas x; andy,=x—X,, i.e.,

x=Ty where T = E j y=[y: wid 2)

then, after introduction of Eq. (2) and pre-multiplication with the equilibrium condition above
may be written on the following form :
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Table 1 Transition from two degree of freedom system to modal quantities

Two degree of

freedom symbolic Equivalent modal quantities
representation

4

Or, i - ,
{ 2 } where: [] r'; is the main system modal displ.,
r

TMDrel U I'tmprel is the TMD displ. relative to,

E] M, is the modal mass,
Liot 4 M, is evenly distributed modal mass, S
2
M; M, = mzo_[ (g{s})"ds  where 5% @ is the relevant mode shape function, on
0

0 s is a spanwise coordinate,
E]] L.t is total mode shape length

M, Mrmp = UM, where :u is the mass-ratio
U £, is the main system eigenfrequency

C C,= 2M,(21) ¢, where :[] associated withg, (with TMD absent),
E]]ZZ is the corresponding damping ratio

E] frwp is the TMD eigen-freq.
C Crmp = 2Mtmp (27frvp) {rmp - where :[J (with main system fixed),

E]] {rvp is the TMD damping ratio
K; andK, K,= (27sz)2MZ andKqyp = (27‘[fTMD)2MTMD, reSpeCtively

My+CLy+Ky = F 3)

where :M = {MHMZ MZ} C= {Cl 0} og K= {Kl 0}
M, M, 0 C, 0 K,

This equation is applicable to any system with a TMD attached to it where a single mode analysis
is considered, if its symbolic quaties are re@ced by the corresponding modal quantities. E.g., for
the response calculations associated with a particular mode (whose direction of motion is indicated
by a subscript co-ordinate axds the transition from a two degree of freedom symbolic representation
to the equivalent modal quantities are given in Table 1.

The modal frequency-response-functions associated with the degrees of fre@hoinype Mmay
then be determined from :

{ it 1 } - D' (4)
HTMDreI{f}
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where :D = —=(27f )M +i(27f)C + K andd =[1 0]", and wherei = ./~1 . Choosing to coincide
with the position of the TMD along the span, i.e.s@i, then the spectral densiti€&f} of the r,
andrrvprel displacements are given by

SAf} — 2 H{f} OH{ f}
= |@{Srwp}|" O (5:{ T} (®)
{STMDreI{ f}:| | | {H;’MDrel{ f} Ij_|TMDreI{ f}}

where @ {srvp} is the mode shape value st syp andS{ f} is the spectral density of the modal
load, and wheréd'{ f} is the complex conjugated version Bf f}. The corresponding root mean
square values (below shortened RMS) may be obtained from :

2
|:20-I‘Z :| :If|: S’Z{f} :|df (6)
O-TMDreI Sl'MDreI{ f}
The spectral density of the modal load on the primary system is given by
SH T} = [ [eds) Hp{s} [5,{f} /Coh,{As} cos®y, [Hs,ds, (7)
Lexp

where §{ f} is the spectral density of the cross-sectional loading proggsk (i.e., fluctuating
load per unit length),/Coh, {As} co@. is the corresponding normalised co-spectrugy, is the
flow exposed length, and whesgands, are symbolic representation of two arbitrary positions with
separatios = |s,— S| along the span.

3. Dynamic load due to vortex shedding

It is in the following taken for granted that the analysis concerns across-wind vibrations due to
vortex shedding of a slender (and line-like) civil engineering structure, and although the theory
below is applicable to any direction of motion, it is essentially assumed that it is intended applicable
for the vertical motion of a (more or less) horizontal bridge deck. It is also taken for granted that
the fluctuating loading may be described within the theory developed by Vickery and Basu (1983).
Then the net motion-independent cross sectional load spectrum and the corresponding co-spectrur
may be expressed by

yDoc, 2 —f/f4t
Sul ) = P22 ol B0 ®
[Con {25050, = 00522 w12 1] ©

whereq, = pV?/2, pis the density of airV is the mean wind velocityD is the cross sectional
depth (assumed constant along the spam), is the RMS lift coefficient,f; is the shedding
frequency ¢s=VSt/D, whereStis the Strouhal number] is a non-dimensional load spectrum
bandwidth parameter, aridis a non-dimensional coherence length-scale. Thus, the modal load spectrum
is given by :



On the use of tuned mass dampers to suppress vortex shedding induced vibrations 23

(qﬁ"fB) x5 ] f o) a5 cotE A o] 25 M usds, (10)

which for most structures where the mtegral length scale of the vortices is small as compared to the
wind exposed length,, [see Hjorth-Hansest al (1993)] may be simplified into

S} =

_ 202D°02, A L=1/f F7 _ Lew )
S{1) = == e g h |, s s CED

What then remains is to express the (negative) aerodynamic damping which is detcaicighe
problem of vortex shedding induced vibrations at “lock-in". Vickery and Basu (1983) have suggested
that this effect may be described by

2
_ « ODT, _0%:(f
fao = K2 1-F2F | (12)

whereK, is an aerodynamic damping parameter (whose maximum vakig,ig, a_ is a parameter
limiting “lock-in" displacements andy, is the RMS value of structural displacement in the across-
wind direction. The motion dependent total damping ratio of the main system is then given by

Zzz ZZO_ Zae{ O'rz/ D} (13)

wherey is the structural eigen-damping (may also contain amplitude dependency). Thus, the calculation
procedure demands iterations, because total dampingtisnrdependent.

Based on the theory above, a computer programme (written in Matlab) has been pBauaese
there is no automatic warning against the possibility of negative damping in the calculatiorer®ed squ
frequency-response-functions, the procedure of displacement iteration has been given special attentior
The chosen strategy involves alternating iterations with continuously decreasing displacement steps
from above (starting wittba, ) and with continuously increasing steps from below (starting with
zero, or a very low value). lterations are terminated when the difference between the two iteration
branches becomes sufficiently small. An example of its application is given below.

4. Computational predictions

Computational predictions have been carried out for the possible installation of TMDs inside of
the bridge deck girder hull at Ostergy suspension bridge. As shown on Fig. 1, the bridge deck has &
depth of 2.5 m, limiting the available space to about 2 m.

In order to perform predictions of bridge deck girder and TMD displacements due to vortex
shedding induced vibrations it is necessary tvige relevant data regarding the loading process.

As mentioned above, wind tunnel tests of vortex shedding induced across-wind vibrations took
place during the planning period of the Hardangerfijord bridge [Hjorth-Haesext (1993) and
Stremmen and Hjorth-Hansen (1995)], a 1325 m long suspension bridge with a bridge deck girder
shapewise similar to that of the Ostergy bridge but with a width-to depth-ratio of 20/4.5., i.e., the
Hardangerfjord deck girder is somewhat more bluff, and thus, its vortex shedding properties are
likely to be conservative as compared to a less bluff section, but this is not considered an impediment fol
the application of the Hardangerfjord test data to a loading model for the case Ostergy bridge.
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Fig. 2 Interpretation of wind tunnel test results

The interpretation and application of model scale test results is shown on Fig. 2. The open circles
shown on the top graph are section model test data from the Hardangerfjord wind tunnel observations
of resonant vortex shedding response at various levels of damping. (Model scale data are given or
the diagram;|,=8%, 1,=7.5%.) Least-square fitting rendeis;=2.41, a_=0.233 andog, - (A/B)%®
=3.92. Applying these results to the Ostergy suspension bridge an equivalent response curve ma
be obtained, as shown on the lower graph of Fig. 2. Since there are full scale observations of resonar
vortex shedding atr{/ D)max=0.1, the structural damping ratio must for these observations have
been at abouf, = 0.24%. This is certainly low but not rgasonable, and checking is impossible
without expensive full scale tests.

What then remains is a suitable choice of the band-width paraBieted the velocity variation
of K,. The choice of these parameters will mainly affect the broad- or narrow-bandedness of the
response (with respect to frequency as well as mean wind velocity), and not significantly affect
the prediction of maximum RMS-values, which is of main interest in the design of a TMD (and
most other cases as well). From tests the typical width of the vortex shedding response curve
with respect to its variation withl is known, and based on this informatiBrhas been chosen at
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a value of 0.2, and
Ka/ Ka max= [0.9/(V/Ver— 0.25¥] - exp[-1/ (V/V+0.02f% - 0.18 14)

where V= Df,/ St (which for the relevant mode at Ostergy suspension bridge is about 6 m/s), and
where the equation for thi€, - variation is limited to 0.6 V/V,=2.5. Thus, a complete set of

input parameters to the loading as given in Eqgs. (11) and (12) has been established, as well a
structural eigen-damping (inferred from observation of vortex shedding induced vibrations as described
above, and assumed amplitude independent).

For the Ostergy bridge these data have been applied to investigatéethe ef a tuned mass
damper according to the theory presented in Chapters 2 and 3 above. Main structural parameters ar
given in the lower diagram of Fig. 2, apart from the mode shape that has been taken at four half-
waves in accordance with observations, ig.s} = sin(4rs/L). For the tuned mass damper optimal
properties according to Luft (1979) have been chosen, i.e.,

O
frwp/f, =1/ J1+ 1.5u E]] (15)
{rmp = +/0.25u(1 - 0.75) E]]

(These formulae have been obtained for a white-noise loading assumption, but as shown below, the
are largely applicable also to the present general frequency domain solution.)

The various steps in the calculation routine is shown on Fig. 3. Top left diagram shows the modulus
of the two frequency response functions, top right hand side diagram shows the load variance
spectrum, lower left diagram shows the corresponding response spectra, and lower right hand side
diagram shows the iteration step development of the bridge deck RMS response. The required
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Fig. 4 Prediction of vortex shedding response before and after a TMD installation

number of iterations is in this case large (but not unduly time consuming). The reason for this is
that iterations are performed on the main system modal displacement, which is very small due to
the presence of the tuned mass damper.
The variation with the mean wind velocity is shown on Fig. 4 (same TMD properties as those of
Fig. 3), where also the vortex shedding response prior to the TMD installation has been included.
The calculations show that a TMD with a mass rate0.3% and optimal properties will reduce
the largest RMS bridge deck displacement from about 0.2 m to 0.005 m and with a corresponding
TMD displacement (relative to the bridge deck) of about 0.065 m. The results also show that the
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Fig. 5 Largest RMS displ. response at optimum TMD properties and variossttings
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Fig. 6 Largest RMS displacement responsg at0.3% and at other TMD properties different from optimum

largest dynamic response occurs at a mean wind velocity of about Y.06The reason for this is
that the Strouhal number (from model tests observed at 0.16) is here defined at onset of “lock-in".

From a TMD design point of view the most interesting diags are shown on Figs. 5 and 6,
where largest RMS displacements are shown for varidtisgseof the relevant TMD properties and
structural eigen-damping. As can be seen, in the presence of a mass damper tuned to properties clo:
to optimum, the main system eigen-damping is of little importance. In the mass-ratio region between
0.3 and 0.5%, the TMD relative RMS displacement is ten to twelve times thesgonding
displacements of the parent system.

It is of great interest to keep the TMD displacements within limits. At the cost of theoretical
effectiveness, this can be obtained by some de-tuning of its properties. The effects of choosing TMD
properties different from optimum are shown on Fig. 6, where the two upper diagrams illustrate the
significance of de-tuning the damping ratio while the two lower diagrams illustrate the significance
of de-tuning the frequency ratio. As can be seen, considerably lower TMD displacements can be obtainec
by increasing its damping, without affecting the main system displacements beyond what is acceptable.

5. Response statistics

Since the response due to vortex shedding will be more or less broad-banded after the installatior
of a TMD, it is of vital interest to obtain estimates of peak displacements

r.Z, max = rZ + gI‘Z Eer % (16)

I'tmprel, max = tmorel + Ormorel (OTmprer O

wherer; are mean values (here taken at zero) grate peak factorsjE z or TMDrel), particularly
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in cases where the available space for a TMD is limited. One of the main advantages with a full
frequency domain solution is that it is possible to retrieve such information. Having determined the
displacement response spec&d f} and Spypref f} due to vortex induced vibrations, time series
simulations ofr, andrryper Mmay be obtained from

N
I’J{t} = Z /25{ fn} AfnCOS( 27'lfnt+ Bn +A6n) J =TI, or I'tmprel (17)
n=1

whereN is the chosen number of frequency segmdfis 6, is a random phase angle, afA§, is
the phase lag betweelt} and rrvpre{t}. Information regardingAg, is contained in Eq. (4), and
has been included in the time domain simulations. (Thus, the diagrdoms sk®w simulations of
simultaneous events.)

At a mass ratio oft=0.3% and a mean wind velocity bf= 1.06 - V. (i.e., where the largest
response may be expected) such a simulation is shown on Fig. 7 (with full scale data from the
Ostergy suspension bridge). As can be seen, this particular simulation rendered peak factors o
about three (wittAf = 0.4/200 Hz between 0.3 and 0.5 H¥# = 0.4/100 elsewhere). Other simulations
may render different peak factors due to random phase. The simulation on Fig. 7 was performed ai
a mass-ratio ofi = 0.3%, which in this case was considered relevant for the design of a TMD. The
results from simulations at mass-ratios between 0.1 and 0.8 are shown on Fig. 8. Twelve simulations
have been performed at egefsetting, from which peak factor mean values and standard deviations
have been calculated. From these simulations there does not seem to be any particular trend witl
respect to the mass-ratio variation.

To shed more light on the peak factor statistics a total of thirty-six simulations have been performed (at
U =0.3%). The results are presented in Fig. 9, where the data have been fitted to a Weibull distribution

F{g} = 1—exp[—Egj_—aiDq

0 ﬁj 0 jzrz or rTMDreI (18)

Main system response
T

0.1 . T Y Y
p=0.3 %, §=0.24 %, V=1.06V_ - © 0,/D=0.0021239
0.05} PN SRR RS D .
%N [o] W m I onsttersttiporee=-]
005 PP A .
. Peak factof:2.4708
-0 ; i ; ; ;
0 100 200 300 400 500 600

TMD response relative to bridge deck
0.1 T T T T

: GTMDreI/D=°"°2 9177

: . Peak facto§:2.6

1 1 1 1 1
o] 100 200 300 400 500 600
Time (s)

Fig. 7 Time domain response simulatiops; 0.3%
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and where the estimated Weibull parametgrsf; and y; are given in the upper diagrams.

The skewness and kurtosis properties of the data indicate a somewhat unsymmetrical distribution
with higher probabilities on the upper tail, but withrerte value properties below what can be
predicted from a Gaussian distribution. The 98% confidence intervals are given on the loveensliag
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indicating peak factors of about 3.75 if such a criterion is chosen. However, the occurrence of events
with such a peak factor are likely to be rare and of little consequence if the TMD is adequately
designed to stop at a sufficiently large amplitude of motion.

6. Conclusions

In this paper a general procedure is presented for frequency domain response calculations when a tune
mass damper is intended to suppress vortex induced vibrations. The dynamic loading is described in th
form of cross-spectra, and the “lock-in" effects are ascribed to a motion-dependent aerodynamic dampinc
term. Thus, the usual simplification of a single harmonic or white noise type of loading has been avoided.

The necessary input parameters have been taken from interpretations of section model wind tunne
tests. The broad-bandedness of the motion-independent loading process was observed in wind tunne
tests on a fixed model in turbulent flow, while the motion-dependent part of the loading has been
inferred from corresponding tests with an aeroelastic model.

The idea of retaining a net motion-independent loading term (see e.g., Eq. 7) seantehially
sound and ought to have a future in the modelling of other flow induced vibration problems where
self-limiting motion-dependency is the typical behaviour (e.g., rain-wind induced cable vibrations).

Based on the interpretation of wind tunnel test results, the procedure has been applied to desigr
predictions of a tuned mass damper for the Ostergy suspension bridge. This bridge has a main spa
of 595 m and an evenly distributed equivalent modal mass of about 7500 kg/m. A mass ratio of
0.3% seems a suitable choice, implying that a TMD modal mass of about 6700 kg is required. The
optimum frequency ratio is close to one, and the corresponding TMD damping ratio has been
calculated at 2.74%, implying a total TMD damping coefficient of about 900 Ns/m. From time
domain simulations the characteristic statistics of the dynamic displacement response is presented
indicating that peak factors between three and four can be expected (with a 98% confidence interval
of about 3.75). Based on a peak factor of 3.75, the maximum vortex induced modal displacements
have been predicted at 0.02 m for the bridge deck and 0.37 m for the TMD.
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