
Wind and Structures, Vol. 4, No. 1 (2001) 19-30 19

ntended
general
(where

olution).
sponse

ulations,
d.

f cross
r and

is is a
tions.
the last
locities
ations
g

ainly
l

erfjord
 those

hedding
tion of

DOI: http://dx.doi.org/10.12989/was.2001.4.1.019
On the use of tuned mass dampers to suppress vortex 
shedding induced vibrations
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Abstract: This paper concerns computational response predictions when a tuned mass damper is i
to be used for the suppression of vortex shedding induced vibrations of e.g., a bridge deck. A 
frequency domain theory is presented and its application is exemplified on a suspension bridge 
vortex shedding vibrations have been observed and where such an installation is a possible s
Relevant load data are taken from previous wind tunnel tests. In particular, the displacement re
statistics of the tuned mass damper as well as the bridge deck are obtained from time domain sim
showing that after the installation of a TMD peak factors between three and four should be expecte
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1. Introduction

In the design of recent Norwegian suspension bridges a wedged shaped steel box type o
section has frequently been chosen for the bridge deck girder. With a main span between fou
eight hundred meters and with only two traffic lanes plus a narrow walkway the girders on these
bridges have a width to depth ratio between four and six. In spite of the wedged edges th
fairly bluff flow obstruction rendering some of them susceptible to vortex shedding induced vibra
Such vibrations have been observed on several of this type of suspension bridges over 
decade. Generally, the problem of vortex shedding vibrations has occurred at mean wind ve
of five to ten meters per second and usually only in fairly smooth flow. Strengthwise, the observ
so far have indicated amplitudes of motion which are not likely to represent any problems regardin
short term safety for any of the bridges concerned, but the long term fatigue effects are more
uncertain, particularly because duration and frequency of occurrence is largely unknown. It is m
unacceptable public confidence during such events on one bridge in particular (and ensuing aarming
reports) which has demanded the owner's action into an attempt to alleviate the effects.

In connection with the planning for a 1350 m long suspension bridge across the Hardang
extensive wind tunnel testing took place on a bridge girder cross section which is similar to
where vibrations have been observed today, see Hjorth-Hansen et al. (1993) and Strømmen & Hjorth-
Hansen (1995). As presented below, section model tests took place on the problem of vortex s
induced dynamic response and recorded at several levels of damping, allowing for the extrac
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valuable information regarding the fluctuating load and its motion dependency. An equally imp
point should be mentioned, that during this project the possibility of alleviating vortex shed
effects by use of guide vanes (around upper or lower corners) was investigated, first by CFD calcu
to obtain information on favourable shape and position, and afterwards by aero-elastic section
wind tunnel tests [see Strømmen & Hjorth-Hansen (1995), where the main results are pres
The investigations proved successful, and thus the possibility of using guide vanes to suppress
shedding induced bridge deck vibrations represents an attractive alternative to the use of 
several tuned mass dampers. While the use of a tuned mass damper is primarily directed at qu
the vibrations in a particular mode, the guide vanes will be effective for the reduction of excita
in any eigen-mode.

Below, the Osterøy suspension bridge has been chosen to illustrate the effectiveness of 
mass damper, as it is the latest case of such vibration observations. It has a main span (
towers) of 595 m. Video recordings have indicated amplitudes of motion of about 250 mm occ
at a vertical eigen-mode of four half-waves along the span between towers and with a pe
about 2.5 s. This corresponds to the fourth vertical eigen-mode (second asymmetric) which according
to calculations has an eigen-period of 2.55 s.

2. General theory

Several authors have presented a more or less comprehensive treatment of the effects of
mass damper (below shortened TMD), of which only three have been included in the list of references
below. Often, the theory has been simplified, either to a single harmonic or to a white noise t
loading. In the following, a general frequency domain treatment is presented, where the loading is
described within the theory for vortex shedding induced across-wind vibrations as sugges
Vickery and Basu (1983).

Given a two-degree-of-freedom system (i.e., a minimum symbolic structural representation
displacement components x1{ t} and x2{ t} and corresponding time invariant mass-, stiffness- a
damping-properties Mj , Kj and Cj ( j = 1,2), and where the element associated with x1{ t} is subject
to the load F1{ t}. The equations of motion for this system is given by :

(1)

where x = [x1{ t} x2{ t}] T and F = [F1{ t} 0] T. If the absolute degrees of freedom x1 and x2 are replaced
by relative degrees of freedom defined as y1 = x1 and y2 = x2−x1, i.e.,

x = T� y where   and    y = [ y1 y2] T (2)

then, after introduction of Eq. (2) and pre-multiplication with T T, the equilibrium condition above
may be written on the following form :

M1 0

0 M2

x··
C1 C2+ C2–

C2– C2

x·
K1 K2+ K2–

K2– K2

x+ + F=

T
1 0

1 1
=
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where : 

This equation is applicable to any system with a TMD attached to it where a single mode an
is considered, if its symbolic quantities are replaced by the corresponding modal quantities. E.g., 
the response calculations associated with a particular mode (whose direction of motion is ind
by a subscript co-ordinate axis z), the transition from a two degree of freedom symbolic representa
to the equivalent modal quantities are given in Table 1.

The modal frequency-response-functions associated with the degrees of freedom rz and rTMDrel may
then be determined from :

(4)

M y··⋅ C y·⋅ K y⋅+ + F=

M
M1 M2+ M2

M2 M2

= C
C1 0

0 C2

= og K
K1 0

0 K2

=

Hrz f{ }
HTMDrel f{ }

D 1– d⋅=

Table 1 Transition from two degree of freedom system to modal quantities

Two degree of
freedom symbolic

representation
Equivalent modal quantities

  where:  

M1

0
Mz= mz0      where : 

M2 MTMD = µMz where : µ is the mass-ratio

Cl Cz= 2Mz(2πfz)ζz where : 

C2 CTMD = 2MTMD (2πfTMD) ζTMD where : 

K1 and K2 Kz= (2π fz)
2Mz and KTMD = (2πfTMD)2MTMD, respectively

y1

y2

r z

r TMDrel

rz

rTMDrel is the TMD displ. relative to r z

 is the main system modal displ.,

is the TMD displ. relative to rz

φz s{ }( )2ds
0

Ltot

∫

Mz is the modal mass,

mz0 is evenly distributed modal mass,

φz is the relevant mode shape function

s is a spanwise coordinate,

Ltot is total mode shape length







 is the modal mass,

is evenly distributed modal mass,

is the relevant mode shape function,

is a spanwise coordinate,

is total mode shape length





 fz is the main system eigenfrequency

associated with φz (with TMD absent),

ζz is the corresponding damping ratio





 fTMD is the TMD eigen-freq.

(with main system fixed),

ζTMD is the TMD damping ratio
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where : D = −(2πf )2M + i(2πf )C + K and d = [1 0]T, and where . Choosing rz to coincide
with the position of the TMD along the span, i.e., at sTMD, then the spectral densities S{ f } of the rz

and rTMDrel displacements are given by

(5)

where φz{sTMD} is the mode shape value at s = sTMD and SF{ f } is the spectral density of the moda
load, and where H*{ f } is the complex conjugated version of H{ f }. The corresponding root mean
square values (below shortened RMS) may be obtained from :

(6)

The spectral density of the modal load on the primary system is given by

(7)

where Sqz{ f } is the spectral density of the cross-sectional loading process qz{ t} (i.e., fluctuating
load per unit length), cos Φqz is the corresponding normalised co-spectrum, Lexp is the
flow exposed length, and where sa and sb are symbolic representation of two arbitrary positions w
separation ∆s= |sa − sb| along the span.

3. Dynamic load due to vortex shedding

It is in the following taken for granted that the analysis concerns across-wind vibrations d
vortex shedding of a slender (and line-like) civil engineering structure, and although the t
below is applicable to any direction of motion, it is essentially assumed that it is intended app
for the vertical motion of a (more or less) horizontal bridge deck. It is also taken for granted
the fluctuating loading may be described within the theory developed by Vickery and Basu (1
Then the net motion-independent cross sectional load spectrum and the corresponding co-s
may be expressed by

(8)

(9)

where q
V

= ρV 2 / 2, ρ is the density of air, V is the mean wind velocity, D is the cross sectional
depth (assumed constant along the span), σCL is the RMS lift coefficient, fs is the shedding
frequency (fs = VSt/D, where St is the Strouhal number), B is a non-dimensional load spectrum
bandwidth parameter, and λ is a non-dimensional coherence length-scale. Thus, the modal load spe
is given by :

i 1–=

Srz f{ }
STMDrel f{ }

φz sTMD{ } 2 Hrz
* f{ } Hrz f{ }⋅

HTMDrel
* f{ } HTMDrel f{ }⋅

SF f{ }⋅ ⋅=

σrz
2

σTMDrel
2

Srz f{ }
STMDrel f{ }

df
f∫=

SF f{ } φz sa{ } φz sb{ } Sqz f{ } Cohqz ∆s{ }cosΦqz dsadsb⋅ ⋅ ⋅ ⋅∫
Lexp

∫=

Cohqz ∆s{ }

Sqz f{ }
q

VDσCL( )2

π fsB
-------------------------- exp

1 f– fs⁄
B

------------------ 
 

2

–⋅=

Cohqz ∆s{ }cosΦqz cos
2
3
--- ∆s

λD
------- 

  exp
∆s

3λD
----------- 

 
2

–⋅=
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(10)

which for most structures where the integral length scale of the vortices is small as compared
wind exposed length Lexp [see Hjorth-Hansen et al. (1993)] may be simplified into

(11)

What then remains is to express the (negative) aerodynamic damping which is characteristic to the
problem of vortex shedding induced vibrations at “lock-in”. Vickery and Basu (1983) have sugg
that this effect may be described by

(12)

where Ka is an aerodynamic damping parameter (whose maximum value is Ka max), aL is a parameter
limiting “lock-in” displacements and σrz is the RMS value of structural displacement in the acro
wind direction. The motion dependent total damping ratio of the main system is then given by

ζz= ζz0 − ζae{ σrz / D} (13)

where ζz0 is the structural eigen-damping (may also contain amplitude dependency). Thus, the calc
procedure demands iterations, because total damping is motion dependent.

Based on the theory above, a computer programme (written in Matlab) has been prepared. Because
there is no automatic warning against the possibility of negative damping in the calculations of sared
frequency-response-functions, the procedure of displacement iteration has been given special a
The chosen strategy involves alternating iterations with continuously decreasing displacemen
from above (starting with DaL) and with continuously increasing steps from below (starting w
zero, or a very low value). Iterations are terminated when the difference between the two ite
branches becomes sufficiently small. An example of its application is given below.

4. Computational predictions

Computational predictions have been carried out for the possible installation of TMDs insi
the bridge deck girder hull at Osterøy suspension bridge. As shown on Fig. 1, the bridge dec
depth of 2.5 m, limiting the available space to about 2 m.

In order to perform predictions of bridge deck girder and TMD displacements due to v
shedding induced vibrations it is necessary to provide relevant data regarding the loading proce
As mentioned above, wind tunnel tests of vortex shedding induced across-wind vibrations
place during the planning period of the Hardangerfjord bridge [Hjorth-Hansen et al. (1993) and
Strømmen and Hjorth-Hansen (1995)], a 1325 m long suspension bridge with a bridge deck
shapewise similar to that of the Osterøy bridge but with a width-to depth-ratio of 20/4.5., i.e
Hardangerfjord deck girder is somewhat more bluff, and thus, its vortex shedding propertie
likely to be conservative as compared to a less bluff section, but this is not considered an impedim
the application of the Hardangerfjord test data to a loading model for the case Osterøy bridge

SF f{ }
q

VDσCL( )2

π fsB
--------------------------exp

1 f– fs⁄
B

------------------ 
 

2

– φz∫
Lexp

∫ sa{ }φz sb{ }cos
2
3
--- ∆s

λD
------- 

  exp
∆s

3λD
----------- 

 –
2

dsadsb=

SF f{ }
2q

V
2D3σCL

2 λ
π fsB

------------------------------- exp
1 f– fs⁄

B
-------------------- 

 
2

– φ s{ }( )2ds
0

Lexp

∫⋅ ⋅=

ζae Ka
ρD

2

mz0

------------ 1
σrz

DaL

---------- 
 

2

–=
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The interpretation and application of model scale test results is shown on Fig. 2. The open 
shown on the top graph are section model test data from the Hardangerfjord wind tunnel obser
of resonant vortex shedding response at various levels of damping. (Model scale data are g
the diagram; Iu≈8%, Iw≈7.5%.) Least-square fitting renders: Ka= 2.41, aL = 0.233 and σCL� (λ / B)0.5

= 3.92. Applying these results to the Osterøy suspension bridge an equivalent response cur
be obtained, as shown on the lower graph of Fig. 2. Since there are full scale observations of r
vortex shedding at (rz/ D)max≈0.1, the structural damping ratio must for these observations h
been at about ζ0 = 0.24%. This is certainly low but not unreasonable, and checking is impossib
without expensive full scale tests.

What then remains is a suitable choice of the band-width parameter B and the velocity variation
of Ka . The choice of these parameters will mainly affect the broad- or narrow-bandedness 
response (with respect to frequency as well as mean wind velocity), and not significantly 
the prediction of maximum RMS-values, which is of main interest in the design of a TMD 
most other cases as well). From tests the typical width of the vortex shedding response
with respect to its variation with V is known, and based on this information B has been chosen a

Fig. 1 Bridge deck girder on the Osterøy suspension bridge

Fig. 2 Interpretation of wind tunnel test results
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a value of 0.2, and

Ka / Ka max= [0.9/(V/Vcr − 0.25)2] � exp[−1 / (V/Vcr+0.02)24] − 0.18 (14)

where Vcr = Dfz / St (which for the relevant mode at Osterøy suspension bridge is about 6 m/s)
where the equation for the Ka - variation is limited to 0.6�V / Vcr� 2.5. Thus, a complete set o
input parameters to the loading as given in Eqs. (11) and (12) has been established, as 
structural eigen-damping (inferred from observation of vortex shedding induced vibrations as des
above, and assumed amplitude independent).

For the Osterøy bridge these data have been applied to investigate the effects of a tuned mass
damper according to the theory presented in Chapters 2 and 3 above. Main structural parame
given in the lower diagram of Fig. 2, apart from the mode shape that has been taken at fou
waves in accordance with observations, i.e., φz{s} = sin(4πs / L). For the tuned mass damper optim
properties according to Luft (1979) have been chosen, i.e.,

(15)

(These formulae have been obtained for a white-noise loading assumption, but as shown belo
are largely applicable also to the present general frequency domain solution.)

The various steps in the calculation routine is shown on Fig. 3. Top left diagram shows the m
of the two frequency response functions, top right hand side diagram shows the load va
spectrum, lower left diagram shows the corresponding response spectra, and lower right ha
diagram shows the iteration step development of the bridge deck RMS response. The re

fTMD fz⁄ 1 1 1.5µ+⁄=

ζTMD 0.25µ 1 0.75µ–( )=






Fig. 3 The effects of a TMD (data re. Osterøy suspension bridge); µ = 0.3%, fTMD= 0.391 Hz, ζTMD = 2.73%
and V = Vcr
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number of iterations is in this case large (but not unduly time consuming). The reason for 
that iterations are performed on the main system modal displacement, which is very small 
the presence of the tuned mass damper.

The variation with the mean wind velocity is shown on Fig. 4 (same TMD properties as tho
Fig. 3), where also the vortex shedding response prior to the TMD installation has been inc
The calculations show that a TMD with a mass ratio µ = 0.3% and optimal properties will reduce
the largest RMS bridge deck displacement from about 0.2 m to 0.005 m and with a corresp
TMD displacement (relative to the bridge deck) of about 0.065 m. The results also show th

Fig. 4 Prediction of vortex shedding response before and after a TMD installation

Fig. 5 Largest RMS displ. response at optimum TMD properties and various µ - settings
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largest dynamic response occurs at a mean wind velocity of about 1.06� Vcr . The reason for this is
that the Strouhal number (from model tests observed at 0.16) is here defined at onset of “lock

From a TMD design point of view the most interesting diagrams are shown on Figs. 5 and 6
where largest RMS displacements are shown for various settings of the relevant TMD properties an
structural eigen-damping. As can be seen, in the presence of a mass damper tuned to propert
to optimum, the main system eigen-damping is of little importance. In the mass-ratio region be
0.3 and 0.5%, the TMD relative RMS displacement is ten to twelve times the corresponding
displacements of the parent system.

It is of great interest to keep the TMD displacements within limits. At the cost of theore
effectiveness, this can be obtained by some de-tuning of its properties. The effects of choosin
properties different from optimum are shown on Fig. 6, where the two upper diagrams illustra
significance of de-tuning the damping ratio while the two lower diagrams illustrate the signific
of de-tuning the frequency ratio. As can be seen, considerably lower TMD displacements can be o
by increasing its damping, without affecting the main system displacements beyond what is accept

5. Response statistics

Since the response due to vortex shedding will be more or less broad-banded after the ins
of a TMD, it is of vital interest to obtain estimates of peak displacements

(16)

where rj are mean values (here taken at zero) and gj are peak factors (j = z or TMDrel), particularly

rz max, r z grz σrz⋅+=

r TMDrel max, r TMDrel gTMDrel σTMDrel⋅+= 



Fig. 6 Largest RMS displacement response at µ = 0.3% and at other TMD properties different from optimum
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in cases where the available space for a TMD is limited. One of the main advantages with
frequency domain solution is that it is possible to retrieve such information. Having determine
displacement response spectra Srz{ f } and STMDrel{ f } due to vortex induced vibrations, time serie
simulations of rz and rTMDrel may be obtained from

(17)

where N is the chosen number of frequency segments ∆fn , θn is a random phase angle, and ∆θn is
the phase lag between rz{ t} and rTMDrel{ t}. Information regarding ∆θn is contained in Eq. (4), and
has been included in the time domain simulations. (Thus, the diagrams below show simulations of
simultaneous events.)

At a mass ratio of µ = 0.3% and a mean wind velocity of V = 1.06 � Vcr (i.e., where the largest
response may be expected) such a simulation is shown on Fig. 7 (with full scale data fro
Osterøy suspension bridge). As can be seen, this particular simulation rendered peak fac
about three (with ∆f = 0.4/200 Hz between 0.3 and 0.5 Hz, ∆f = 0.4/100 elsewhere). Other simulation
may render different peak factors due to random phase. The simulation on Fig. 7 was perfor
a mass-ratio of µ = 0.3%, which in this case was considered relevant for the design of a TMD.
results from simulations at mass-ratios between 0.1 and 0.8 are shown on Fig. 8. Twelve simu
have been performed at each µ-setting, from which peak factor mean values and standard deviat
have been calculated. From these simulations there does not seem to be any particular tre
respect to the mass-ratio variation.

To shed more light on the peak factor statistics a total of thirty-six simulations have been perform
µ = 0.3%). The results are presented in Fig. 9, where the data have been fitted to a Weibull distribu

(18)

r j t{ } 2Sj fn{ }∆fn

n 1=

N

∑ cos 2πfnt θn ∆θn+ +( ) j r z or r TMDrel==

F gj{ } 1 exp
gj αj–

β j

--------------- 
 

γj

– j r z or r TMDrel=–=

Fig. 7 Time domain response simulations, µ = 0.3%
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and where the estimated Weibull parameters αj , β j and γ j are given in the upper diagrams.
The skewness and kurtosis properties of the data indicate a somewhat unsymmetrical dist

with higher probabilities on the upper tail, but with extreme value properties below what can b
predicted from a Gaussian distribution. The 98% confidence intervals are given on the lower diarams,

Fig. 8 Peak factors from simulations at different mass-ratios

Fig. 9 Peak factor statistics (µ = 0.3%)
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indicating peak factors of about 3.75 if such a criterion is chosen. However, the occurrence of
with such a peak factor are likely to be rare and of little consequence if the TMD is adeq
designed to stop at a sufficiently large amplitude of motion.

6. Conclusions

In this paper a general procedure is presented for frequency domain response calculations when
mass damper is intended to suppress vortex induced vibrations. The dynamic loading is describe
form of cross-spectra, and the “lock-in” effects are ascribed to a motion-dependent aerodynamic d
term. Thus, the usual simplification of a single harmonic or white noise type of loading has been a

The necessary input parameters have been taken from interpretations of section model wind
tests. The broad-bandedness of the motion-independent loading process was observed in win
tests on a fixed model in turbulent flow, while the motion-dependent part of the loading has
inferred from corresponding tests with an aeroelastic model.

The idea of retaining a net motion-independent loading term (see e.g., Eq. 7) seems fundamentally
sound and ought to have a future in the modelling of other flow induced vibration problems 
self-limiting motion-dependency is the typical behaviour (e.g., rain-wind induced cable vibration

Based on the interpretation of wind tunnel test results, the procedure has been applied to
predictions of a tuned mass damper for the Osterøy suspension bridge. This bridge has a ma
of 595 m and an evenly distributed equivalent modal mass of about 7500 kg/m. A mass ra
0.3% seems a suitable choice, implying that a TMD modal mass of about 6700 kg is require
optimum frequency ratio is close to one, and the corresponding TMD damping ratio has
calculated at 2.74%, implying a total TMD damping coefficient of about 900 Ns/m. From 
domain simulations the characteristic statistics of the dynamic displacement response is pre
indicating that peak factors between three and four can be expected (with a 98% confidence 
of about 3.75). Based on a peak factor of 3.75, the maximum vortex induced modal displace
have been predicted at 0.02 m for the bridge deck and 0.37 m for the TMD.
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