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Abstract. Many practical time series, including pressure signals measured on roof-corners of lo
buildings in quartering winds, consist of relatively quiescent periods interrupted by intermittent trans
The dyadic wavelet transform is used to detect these transients in pressure time series and a r
simple pattern classification scheme is used to detect underlying structure in these transients. S
analysis of the resulting pattern classes yields a library of signal “building blocks”, which are usef
detailed characterization of transients inherent to the signals being analyzed.
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1. Introduction

Recent applications of the wavelet transform in wind engineering have focused on detecting gu
quantifying intermittency in the atmospheric surface layer (ASL). Gurley and Kareem (1995) use the
wavelet transform for spectral density estimation and simulation of stochastic processes, s
wind speed, based on a given nonstationary record of that process. Their approach is u
generate an ensemble of signals whose statistics resemble those of the parent process. Dunyak and
his colleagues (1998, 1997) have published several papers regarding the detection of c
structures through statistical analysis of wavelet-transformed wind speed measurements. Jordaet al.
(1996) use the wavelet transform to reveal the pronounced intermittency of particular wavelet 
in field measurements of longitudinal velocity fluctuations. Several papers presented at the10th
International Conference on Wind Engineering (1999) feature additional wavelet-based efforts 
these and other authors to quantify the intermittency of wind speed measurements.

An equally important issue is the interaction of incident turbulence with building structu
Freestream turbulence and coherent structures often combine with building geometry to p
isolated severe suction peaks. A well-known example of this is the strong suction generated on the
corners of low-rise building roofs in winds that approximately bisect the roof-corner angle 
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Surry and Tieleman 1995). This type of flow generates a pair of relatively stable, conical vortic
reminiscent of those observed over delta wings in aeronautical applications. Moreover, turbule
the ASL causes these vortices to fluctuate both in strength and in axial direction. Tielemanet al.
(1994) describe this flow and the associated severe roof-corner pressure transients. Jordaet al.
(1996) suggest that the intermittent character of certain wavelet scales ought to correlate wit
peak suction pressures, but do not provide quantitative verification of this hypothesis.

The extreme local loads associated with these transients must be accounted for in st
design; therefore, the intermittent peak loads need to be quantified and the physical mech
responsible for their generation need to be fully understood. However, detailed analysis of thes
peaks is complicated by their transient nature.

The work described herein provides a framework for detecting and characterizing these p
transients. The wavelet transform is used to account for the nonstationary nature of these pr
because it permits the use of analysis functions that are better adapted than sinusoidal func
analyzing transient features in a signal. Whereas traditional spectral analysis smears the details of
transients across a wide frequency range and buries their temporal location in the relative
angle of the frequency components, the wavelet transform decomposes a time history onto a
of self-similar, localized functions that span the joint time-scale (or time-frequency) plane. Thr
this approach, transients are characterized by their wavelet coefficients at each time step and 

To better quantify the types of transients, as well as their rates of occurrence, that exist in
pressure measured at a particular location on a structure, the signal can be examined to
characteristic peaks associated with significant transients. Transients related to a particular
mechanism are expected to exhibit consistent temporal structure. For example, individual vortic
behind a circular cylinder are practically indistinguishable when viewed as a grouping of se
entities; thus, they can be said to constitute an equivalence class. This underlying structure 
quantified using pattern recognition techniques, so that a library of “building blocks” for
characterizing and simulating intermittent pressure signals can be assembled.

The paper emphasizes the use of these concepts to detect and characterize extreme 
transients, which are classified through their basic geometric features. Nonparametric prob
density estimates are used to summarize transient arrival intervals and to quantify the sta
variation of members within each class of transients. Validation of the detection algorithm has
describe previously (Pettit et al. 1998). This was accomplished by analyzing time series compo
of artificial transients contaminated by white noise. The current paper describes the analy
pressure signals measured on the roof-corner of a low-rise building.

2. Theory

The primary steps executed by the transient detection and classification algorithm described in this
paper are: (1) denoise the raw signal, (2) perform multiscale pattern detection, (3) compute a featu
vector for each pattern, and (4) use clustering in feature space to detect underlying structure
transients. When viewed as a whole, the algorithm conducts conditional sampling based on w
coefficients to extract and classify transients. After the transients are classified, a non-para
probabilistic description of the geometric features of each class is generated using a standard
based density estimation technique. Important features summarized in this manner inclu
duration and magnitude of each transient, as well as the number and location of prominent
that dominate their global structure.
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2.1. Continuous and discrete wavelet transforms

There now exists an extensive collection of available texts on wavelet transform th
Daubechies (1992) , Kaiser (1994), and Mallat (1998) are standard references that cover the
in great detail, whereas Ogden (1997) provides a compact, lucid account that also discusses s
applications.

The goal of wavelet analysis is to resolve the local behavior of a signal, x(t)�L2 (R), onto a set of
localized, oscillatory functions called wavelets. These wavelets are derived from a mother w
h(t), through translation and dilation : 

(1)

where h�C and (a, b)�R2 in general. Translation by the parameter b detects the central location
of distinct events in a signal. Dilation by the parameter a accounts for their extent or scale (in th
sense of geographic maps).

The continuous wavelet transform (CWT) of x (t) is

(2)

where the overbar denotes the complex conjugate. This transform is operationally similar 
Fourier transform; qualitatively, scale is inversely proportional to frequency. The CWT ca
inverted to yield a synthesis formula very similar to the inverse Fourier transform; hence, x(t) may be
recovered from

(3)

where

(4)

is a normalization factor that arises while inverting the continuous wavelet transform, and the cara
indicates the Fourier transform. The asterisk superscript (*) indicates the family of wavelets that 
to the original family (Kaiser 1994). Note that Eq. (4) indicates that an admissible wavelet mus
zero mean value (i.e., it must be oscillatory); otherwise Ch will not be finite and the transform will not
be invertible.

When scale information in (a, b) is available only for smaller scales, a < a0, recovery of x
requires a complementary set of information corresponding to (a, b) for a > a0. This is obtained by
introducing a scaling function (Mallat 1998), g, that is an aggregation of wavelets at scales lar
than 1. From this perspective, reconstruction may be understood qualitatively as an assem
lowpass (scaling function) and highpass (wavelet) components. This is particularly evident 
Haar wavelet and its scaling function, which are described below.

The representation of x(t) in Eq. (3) is highly redundant, in that it is a mapping from the real l
to the real plane; that is, t�R and (a, b)�R2

� A less redudant form of the wavelet transform 
used here to improve the computational efficiency. This from is the dyadic wavelet transform
(DyWT), in which the scale parameter is sampled at dyadic intervals; i.e., am= 2m, where m is an
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integer (Kadambe et al. 1992). Critical sampling in the time-scale plane is achieved by connec
the scale and translation parameters; the result is the wavelet series or discrete wavelet tr
(DWT), which is especially useful in compression and filtering applications.

Multi-scale detection of transients (Section 2.2) is performed with the piecewise-constant
wavelet (Fig. 1), which is the most elementary member of a family of compactly-suppp
wavelets formulated by Daubechies (1992) to satisfy certain polynomial reconstruction prop
The Haar wavelet and its associated scaling function are particularly well-suited to multi-scale
detection because of their highly compact support and the fact that their shapes embody th
basic elements that define the geometry of transients: duration, magnitude, and abrupt change

2.2. Multi-scale discontinuity detection

Coherent transients, which are referred to here as patterns, are detected in a signal b
relatively sharp edges and high local curvatures. These abrupt transitions are detected in the
as points with relatively large magnitude wavelet coefficients that are temporally contiguous 
multiple scales (Mallat 1998, Strang and Nguyen 1996). The conceptual basis for this lies 
impulse response of the CWT or DyWT, which (analogously to the Fourier transform) exh
energy at all scales (Fig. 2). Note that the DWT should not be used for pattern detection bec
is not translation-invariant (Daubechies 1993); hence, a given pattern can generate different 
energy distributions depending on how its inherent scales align with the dyadic grid imposed 
DWT. This implies that the DWT’s ability to detect a given transient would depend on its loc

Fig. 1 The Haar wavelet

Fig. 2 Dirac impulse (at time index 28) and the corresponding region of influence in the time-scale p
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with respect to this dyadic grid; in constrast, the DyWT, while less efficient than the DWT, doe
suffer from this weakness because it includes all available values of the translation parameter,b.

The signal is first denoised by thresholding the DWT; in essence, this is a localized low
filtering process (Strang and Nguyen 1996). Then the shorter scales in the Haar-based DyWT
denoised signal are examined for localized values that exceed a pre-determined threshold
contiguous scales. In this way, the boundaries and extrema of individual transients, referred
regions-of-sharp-change (rsc) are detected. Finally, empirically-devised criteria are applied 
signal segments between each pair of rscs to determine whether the segments correspond
transients or to quiescent regions between transients. Space limitations preclude description 
criteria; an extensive discussion is given by Pettit (1998).

If regions of sharp change were detected using only the local modulus maxima of the w
coefficients instead of the multi-scale approach used here, the sharp changes detected
correspond to true edges, or singularities, in the signal. This is because the Haar wavelet h
vanishing moment, and Mallat (1998) shows that a wavelet h(t) with k vanishing moments can be
written as the k-th order derivative of a function θ (t), which can be shown to have fast decay in t
time domain (i.e., θ (t) is localized). This property can be used to show that the correspon
wavelet transform based on h(t) is equivalent to a multi-scale differential operator, which represe
the k-th order derivative of the signal when it is convolved with θ (t). Because θ (t) has fast decay,
this convolution yields a smoothed version of the original signal, so that for a wavelet with
vanishing moment (e.g., the Haar wavelet), the wavelet modulus maxima detect discontin
Because a threshold approach is used here, the sets of detected “edges” tend to be a m
regions having quasi-singular behavior (i.e., sharp increases or decreases in signal level) and
of sharp curvature, such as transient peaks.

2.3. Pattern classification and recognition

The concept of pattern is accepted as a primitive from which a supporting theory is d
(Looney 1998); this concept has already been specialized for the current application to pr
transients. The goal of pattern recognition is to determine whether an object from populaP
belongs to a well-defined subpopulation or equivalence class Sn , such that P =�n

N Sn. Hence,
recognition is distinct from classification, in which we must decide if multiple patterns constitu
equivalence class. That is, classification is an inductive learning process whereas recogn
deductive.

In the current application, patterns are comprised of segments from discrete time signals; 
they reside in a relatively high-dimensional vector space and are contaminated by noise. B
these traits complicate the comparison of observed patterns. Classification and recognition th
are implemented in a lower-dimensional feature space: a vector of feature components is compu
for each pattern, and the relative similarity of each feature vector to the others is judged via
determined metric. Selecting these features and the comparison metric is application-specif
goal of feature selection is to summarize the essential nature of each pattern while simultan
disregarding superfluous aspects, such as background noise.

2.4. Estimation of probability density functions

Nonparametric estimates of probability density functions (pdfs) are used extensively here to d
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the characteristics of detected pattern classes. Baxter and Beardah (1995) and Ogden (1997)
useful summaries of the underlying theory and also provide references to more extensive te
the subject.

The appproach used is essentially the standard kernel function method, in which a Ga
kernel function is used to measure the local density of points in the chosen feature spac
feature space is discretized using a regular grid, with v denoting a point on this grid. For each gri
point, a mountain function (Jang et al. 1997) is constructed : 

(5)

where xn is an individual feature vector, Np is the number of patterns detected (i.e., the numbe
feature vectors), and σ is and application-specific constant known as the kernel bandwidth, w
controls the smoothness of the resulting mountain function. The pdf is then estimate
normalizing the mountain function to unit volume.

The choice of a proper kernel bandwidth value involves a certain degree of empiricism. Sta
approaches are available (see Baxter and Beardah 1995) for selecting an appropriate bandwi
they were found (after the fact) to yield bandwidths recommendations similar to those chos
trial and error.

3. Detection of pressure transients

3.1. Application to field measurements

The detection and classification algorithm described above has been applied successf
signals consisting of artificial transients (Pettit et al. 1998). Next, the algorithm is applied to
intermittent pressure time series measured on the roof-corner of a low-rise building. These data w
obtained from the Wind Engineering Research Field Laboratory (WERFL) at Texas Tech Univ
(TTU), which is described by Levitan and Mehta (1992). The work described herein concentra
pressure measured with a three-by-three grid of transducers on the roof-corner (Fig. 3). Infor
regarding the type and exact location of each transducer is available in the references cited

m v( )
v xn– 2

2σ2
--------------------–

 
 
 

exp
n 1=

Np

∑=

Fig. 3 Schematic of the transducer grid on the roof-corner of the Texas Tech WERFL. The wind dir
approximately bisects the roof-corner angle
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The results presented here are for two pressure time series recorded during a period in which the
mean wind direction only approximately bisected the roof-corner angle (θ = 34.4o in Fig. 3). The
first signal is taken from the transducer closest to the roof corner, which is denoted as V1 
WERFL documentation; the second is from transducer V8. Both signals were recorded duri
same test.

The pressure signals consist of 36,000 points obtained at a sampling rate of 40 Hz. The
were provided as pressure coefficient time histories, which were computed by dividing each
pressure value by the mean dynamic pressure observed over the entire recording period o
minutes. For the present study, Signals V1 and V8 are truncated to 32,768 samples, an
denoised by thresholding the DWT. This pre-conditioning process, which essentially elimi
wavelet components with relatively small magnitudes, removes a sizable fraction of the backg
noise in the signals without noticeably reducing the magnitude or sharpness of the sign
transients. Processing the resulting signals using the multi-scale detection algorithm produces
of 67 transients in V1 and 89 in V8.

Preliminary visual examination of the detected transients indicated some potentia
classification based on the number of suction peaks in smoothed versions of the transients. W
in mind, small-scale (noise-like) behavior in the patterns is decreased through the following ste

1. Each pressure coefficient pattern is normalized such that its mean absolute value is un
resampled to a duration of 50 samples. The normalization is implemented to compens
difference between patterns that had similar shapes but different magnitudes. The resamplin
yields patterns with the same duration, so that the relative location of individual peaks in pa
can be stored as separate features. The original pattern’s duration (before resampling) 
retained as a separate feature to be used in generating simulated time series (Pettit 1998).

2. The normalized and resampled patterns are then approximated using 12-th order Che
polynomials. These approximate patterns generally provide good matches to the unde

Fig. 4 Processing of two patterns detected in Signal V1. The first column contains the two original pa
the second column shown the same patterns after resampling to a duration of 50 samples, and 
column depicts the 12th-order Chebyshev approximation of the resampled patterns
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global shape of each pattern while simultaneously removing the local peaks that appear t
correspond to incoherent turbulence, as opposed to coherent gusts.

The patterns are then classified according to the number of suction peaks in the smoothed p
Hence, the feature space upon which classification is based is one-dimensional and discret
as noted above, the duration and normalization factors are retained as separate featu
subsequent analysis.

Fig. 4 illustrates the pattern-smoothing procedure for two patterns detected in V1. The
column of plots contains the original time series for each pattern, the second column depi
resampled patterns, and the third column contains the Chebyshev approximations to the o
patterns. From these smoothed patterns, the global suction peaks are counted. The top p
Fig. 4 is judged to have two suction peaks, and the bottom pattern is characterized as ha
single suction peak. Peak counting is performed automatically by counting zero crossings in the
first-order finite difference of each smoothed pattern.

3.2. Describing the shape of TTU patterns

After classifying the patterns according to the number of suction peaks, it was found use
have an economical means of summarizing their basic shape that still retains importan
geometric properties, such as the location and magnitude of each peak. This is achiev
imposing control points at the start, end, and local extrema of each smoothed pattern. Each 
peak is assumed to be bordered by a suction “valley” on both sides. This is illustrated for a g
two-peak pattern in the top portion of Fig. 5. For those peaks not bordered by a valley on one 

Fig. 5 (a) Control point locations for a generic transient pattern (b) Another generic transient, but w
imposed control point
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control point is imposed as depicted in the bottom portion of Fig. 5. Each pattern in a numb
peak class is thus assigned the same number of control points.

Because each smoothed pattern consists of the same number of samples and is scaled
mean absolute value, the time index and value of a particular control point, such as
corresponding to the first suction peak in the two-peak class, can be used to judge the 
similarity of the individual patterns within each class. In particular, if this peak happens to e
similar location and values in most of the patterns within each class, this indicates an additional
degree of structure (i.e., beyond that indicated by the qualitative shape similarity) within the nu
of-peaks class.

3.3. Results from the detection and classification algorithm

3.3.1. Signal V1

As noted earlier, 67 significant transients were detected in Signal V1. The top portion of F
illustrates the original signal and a pattern indicator function, which is defined to be unity for 

Fig. 6 (Top) Signal V1 and its pattern indicator function. (Bottom) Nonparametric arrival interval 
estimate for Signal V1
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time segments that contain a detected transient and zero otherwise. Note that the pattern i
function exhibits good visual correlation with the clearly visible transients and also indicates
some noise-obscured transients are present.

The bottom frame of Fig. 6 contains a non-parametric estimate of the arrival-interval proba
density function (pdf). The dominant primary peak in the pdf indicates that many of the tran
occur in dense clusters and are separated by relatively short time intervals, whereas the 
peaks reflect the longer, more quiescent periods between these clusters of transients.

Of the 67 patterns detected in Signal V1, 17 are found to have one suction peak, 33 ha
suction peaks, and 17 have three suction peaks. Fig. 7 depicts three patterns that are judged
a single suction peak. Although each of these patterns exhibits different local behavior from the
others, they share a common underlying single-peak shape. Thus, they are classified toget
their unique characteristics, such as their duration, peak value, and peak location, are stored a
dependent features.

Fig. 8 and Fig. 10 display nonparametric probability density functions (pdfs) associated
several of these class-dependent features. The top frame in Fig. 8 shows a contour plot of t
pdf of duration and magnitude scale factor for the single peak class in V1. The tight clus
contours reflects the presence of a dominant peak in the pdf, which is more vividly illustrat
Fig. 9. This demonstrates that the majority of the single-peak patterns have similar duratio
peak magnitude, and is indicative of additional underlying structure in the single-peak pattern
That is, most of the patterns in this class have more in common than just a global 
characteristic; they also have similar magnitude and duration.

The second and third frames in Fig. 8 contain nonparametric pdfs for the magnitude of th
and end control points, respectively, of the single-peak transients in V1. The relatively large p
each plot indicates that many of the normalized patterns in the single-peak class had 
beginning and ending values. This simply indicates that the mean value of the background
(i.e., without the transients included) did not change significantly during the recording period.

Fig. 7 Three single-peak patterns detected in Signal V1
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Fig. 8 (Top) Joint pdf of pattern duration and normalization factor for Signal V1: single-peak trans
(Center and bottom) Pdfs of start and end control point value.

Fig. 9 Surface plot of the joint duration and Cp magnitude factor pdf. This plot corresponds to the conto
plot in Fig. 8
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The three contour plots in Fig. 10 portray the joint time index and value pdfs for the th
intermediate control points corresponding to the normalized single-peak patterns in Signal V
particular, the center control-point pdf (middle frame of Fig. 10) corresponds to the single su
peak. The large peak indicated by the tight clusters simply reflects the structure noted abov
regard to the duration and magnitude scale factors.

As noted above, approximately one-half of the transients detected in V1 (i.e., 33 out 
transients) have two suction peaks. The top frame in Fig. 11 shows that most of these patterns have
similar duration and magnitude. This is a clear indication of some underlying similarity amon
patterns in this class. Given that a similar degree of structure is present in the single-peak pat
appears that specific flow mechanisms are responsible for generating these transients.

3.3.2. Signal V8

Signal V8 (Fig. 12) contains several regions of intense activity, although signal levels
generally lower than for V1. This is attributed to the radial expansion of the approximately coni

Fig. 10 Joint pdfs of intermediate control point time indices and values for Signal V1
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corner vortices, which reduces streamline curvature, thereby decreasing the local suction.
Signal V1, the transients tend to occur in bursts separated by quiescent periods; conseque
arrival interval pdfs for Signals V1 and V8 are qualitatively similar. As noted previously, 
pressure transients measured on the roof corner ought to correlate with coherent structure
incident wind. There are significant challenges in trying to assess this correlation because th
incident wind measurements are taken 160 ft away from the building; hence, unless the anemomet
tower happens to be situated on a direct line between the mean flow direction and the buildi
detailed flow structure upstream of the building cannot be identified accurately.

Of the 89 transients detected in Signal V8, 20 are found to have a single suction peak, 4
two peaks, 24 have three peaks, and two have four peaks. The relative distribution of patterns
among the number-of-peak classes is similar to that for V1. Nonparametric pdfs for the c
points of single-peak patterns in V8 are presented in Fig. 13 and Fig. 14. The tight clus
contours in the first frame of Fig. 13 demonstrates that single-peak patterns in V8 tend to
similar duration and magnitude. This trait was also noted earlier in Signal V1.

Fig. 11 (Top) Joint pdf of pattern duration and normalization factor for Signal V1: double-peak trans
(Center and Bottom ) Pdfs of start and end control point value
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 Pdfs

 pdf
Fig. 13 (Top) Joint pdf of pattern duration and normalization factor for Signal V8. (Center and Bottom)
of start and end control point value

Fig. 12 (Top) Signal V8 and its pattern indicator function. (Bottom) Nonparametric arrival interval
estimate for Signal V8
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Aside from the tight contour cluster in the top frame of Fig. 14, little additional structur
evident in the patterns from Signal V8. Although not described here, little structure was obser
Signal V6 transients, either. Physically, this can most likely be explained as follows. Transduce
and V8 are located on either side of the roof- corner bisector, which approximates the mea
direction (Fig. 3). The sharp edges of the roof-corner are fixed lines of flow separation, w
produce vortex sheets that roll up to from the conical vortices. These vortices expand radially
their central axes in the neighborhood of the corner. The quasi-symmetry of this with respect
bisector − perfect local symmetry is precluded by the fact that θ �45o and by the turbulence
embedded within the incident wind − is responsible for the generation of these roof-corner vortic
so it follows that it should be reflected also in the character of the time-varying pressure field
the roof-corner.

In general, the control-point pdfs from V6 and V8 tend to exhibit greater variance (i.e., bro
less defined peaks) than those from V1. This is believed to be a manifestation of turbulent mix
the roof-corner vortices, such that the downstream transducers (e.g., V6 and V8) are expo
flow in which the turbulent energy has been spread across a broader range of scales than in the 
over V1. The vortical mixing severely alters the local character of coherent structures present

Fig. 14 Joint pdfs of intermediate control point time indices and values for Signal V8
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incident flow, and thus increases the variation in the associated pressure transients.

4. Conclusions

A wavelet-based, multi-scale detection and classification algorithm was designed to facilita
analysis of intermittent, or transient-dominated, time series, with the ultimate goal of perce
underlying structure in the detected transients. The joint time-scale localization built into the w
transform allows transients to be readily detected by choosing to retain portions of the sig
which the magnitudes of wavelet coefficients exceed a pre-specified threshold across con
scales.

The algorithm was applied to several intermittent pressure time series measured on the roo
of a low-rise building. The detected transients were sorted into three or four classes according to 
number of suction peaks exhibited by smoothed versions of the original patterns. Class-dep
probability density functions were estimated nonparametrically for several features that summ
the shape of each transient.

The detection and classification algorithm provide quantitative insight into the characteristics of
intermitternt pressure time series, particularly those associated with roofs of low-rise buildig
quartering winds. In the published literature, there does not appear to have been a concerte
to examine the statistics of individual pressure transients as distinct entities, even though th
responsible for generating the peak loads on structures subjected to intermittent wind 
therefore, an immediate application of the algorithm would be to develop a database of
pressure transients measured on the roofs of low-rise buildings. From this database, su
statistical information regarding transient loads could be extracted to improve or fine-tune exsting
design codes. Furthermore, with appropriate upstream flow measurements, analysis of ind
transients could be used to enhance understanding of the mechanics by which these lo
created.

A related use would be to improve the fidelity of wind-tunnel modeling, especially in 
simulation of intermittent turbulent flows. Current wind-tunnel procedure emphasizes primarily the
scaled reproduction of turbulence spectra observed in the field, a practice that is predicated
stationarity of the flow. Unfortunately, atmospheric flows are rarely stationary, so it is suggeste
an extensive statistical description of the types of transients that should be reproduced coul
more insight into the quality of the wind tunnel modeling process.
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