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Wavelet-based detection and classification of
roof-corner pressure transients
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Abstract. Many practical time series, including pressure signals measured on roof-corners of low-rise
buildings in quartering winds, consist of relatively quiescent periods interrupted by intermittent transients.
The dyadic wavelet transform is used to detect these transients in pressure time series and a relativel
simple pattern classification scheme is used to detect underlying structure in these transients. Statistica
analysis of the resulting pattern classes yields a library of signal “building blocks”, which are useful for
detailed characterization of transients inherent to the signals being analyzed.
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1. Introduction

Recent applications of the wavelet transform in wind engineering have focused on detecting gusts anc
guantifying intermittency in the atmospheric surface layer (ASL). Gurley aréef (1995) use the
wavelet transform for spectral density estimation and simulation of stochastic processes, such as
wind speed, based on a given nonstationary record of that process. Their approach is used ftc
generate an ensemble of signals whose statistics resemble those of the parent progaksariol
his colleagues (1998, 1997) have published several papers regarding the detection of coheren
structures through statistical analysis of wavelet-transformed wind speed measurementst Jirdan
(1996) use the wavelet transform to reveal the pronounced intermittency of particular wavelet scales
in field measurements of longitudinal velocity fluctuations. Several papers presented 18ihthe
International Conference on Wind Engineeri(@@99) feature additional wavelet-based efforts by
these and other authors to quantify the intermittency of wind speadurements.

An equally important issue is the interaction of incident turbulence with building structures.
Freestream turbulence and coherent structures often combine with building geometry to produce
isolated severe suction peaks. A well-known example of this is the strong suctevatgeéron the
corners of low-rise building roofs in winds that approximately bisect the roof-corner angle (Lin,
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Surry and Tieleman 1995). This type d&dw generates a pair of relatively stable, conical vortices
reminiscent of those observed over delta wings in aeronautical applications. Moreover, turbulence in
the ASL causes these vortices to fluctuate both in strength and in axial direction. Tielealan
(1994) describe this flow and the associated severe roof-corner pressure transientsetJatdan
(1996) suggest that the intermittent character of certain wavelet scales ought to correlate with these
peak suction pressures, but do not provide quantitative verification of this hypothesis.

The extreme local loads associated with these transients must be accounted for in structural
design; therefore, the intermittent peak loads need to be quantified and the physical mechanisms
responsible for their generation need to be fully understbiodvever, detailed analysis of these
peaks is complicated by their transient nature.

The work described herein provides a framework for detecting and characterizing these pressure
transients. The wavelet transform is used to account for the nonstationary nature of these processe
because it permits the use of analysis functions that are better adapted than sinusoidal functions t
analyzing transient features in a signal. Whereastitvadl spectral analysismgears the details of
transients across a wide frequency range and buries their temporal location in the relative phase
angle of the frequency components, the wavelet transform decomposes a time history onto a family
of self-similar, localized functions that span the joint time-scale (or time-frequency) plane. Through
this approach, transients are characterized by their wavelet coefficients at each time step and scale.

To better quantify the types of transients, as well as their rates of occurrence, that exist in wind
pressure measured at a particular location on a structure, the signal can be examined to extrac
charactestic peaks associated with significant transients. Transients related to a particular flow
mechanism are expected to exhibit dgstest temporal structure. For example, individual vortices
behind a circular cylinder are practically indistinguishable when viewed as a grouping of separate
entities; thus, they can be said to constitute an equivalence class. This underlying structure can be
guantified using pattern recognition techniques, so that maryibof “building blocks” for
characterizing and simulating intermittent pressure signals can be assembled.

The paper emphasizes the use of these concepts to detect and characterize extreme pressu
transients, which are classified through their basic geometric features. Nonparametric probability
density estimates are used to summarize transient arrival intervals and to quantify the statistical
variation of members within each class of transients. Validation of the detection algorithm has been
describe previously (Pettét al 1998). This was accomplished by analyzing time series composed
of artificial transients contaminated by white noise. The current paper describes the analysis of
pressure signals measured on the roof-corner of a low-rise building.

2. Theory

The primary steps executed by the transient detection asslfication algorithm described in this
paper are: (1) denoise the raw signal, (2) perforntiscale pattern detection, (3) compute a feature
vector for each pattern, and (4) use clustering in feature space to detect underlying structure in the
transients. When viewed as a whole, the algorithm conducts conditional sampling based on wavelet
coefficients to extract and classify transients. After the transients are classified, a non-parametric
probabilistic description of the geometric features of each class is generated using a standard kernel
based density estimation technique. Important features summarized in this manner include the
duration and magnitude of each transient, as well as the number and location of prominent peaks
that dominate their global structure.
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2.1. Continuous and discrete wavelet transforms

There now exists an extensive collection of available texts on wavelet transform theory.
Daubechies (1992) , Kaiser (1994), and Mallat (1998) are standard references that cover the theor
in great detail, whereas Ogden (1997) provides a compact, lucid account that also discusses statistic:
applications.

The goal of wavelet analysis is to resolve the local behavior of a sigiar, L? (R), onto a set of
localized, oscillatory functions called wavelets. These wavelets are derived from a mother wavelet,
h(t), through translation and dilation :

1 =bg
h{@(t) = —=h 1)
b |a| v2 a O
whereh < C and & b) < R in general. Transtn by the pameterb detects the central location
of distinct events in a signal. Dilation by the parameterccounts for their extent or scale (in the
sense of geographic maps).
The continuous wavelet transform (CWT)xoft) is

X(a, b) = (h{(t), x(1)) = [~ A (t)x(t)dt 2)

where the overbar denotes the complex conjugate. This transform is operationally similar to the
Fourier transform; qualitatively, scale is inversely proportional to frequency. The CWT can be
inverted to yield a synthesis formula very similar to the inverse Fourier transform; kghosgay be
recovered from

X(t) = c;ihf(ff;(hff‘)(t),x(t))h;;‘a)(t)d'f%(:1 o
where
Ch = ZI:MV%EdW @

is a normalizatiorfiactor that arises while inverting the continuous wavelet transform, and the ‘carat ( )
indicates the Fourier transform. The asterisk superscript (*) indicates the family of wavelets that is dual
to the original family (Kaiser 1994). Note that Eq. (4) indicates that an admissible wavelet must have
zero mean value (i.e., it must be oscillatory); othen@sevill not be finite and the transform will not

be invertible.

When scale information irx a( b) is available only for smaller scalea<a,, recovery ofx
requires a complementary set of information corresponding apb) for a> a,. This is obtained by
introducing a scaling function (Mallat 1998), that is an aggregation of wavelets at scales larger
than 1. From this perspective, reconstruction may be understood qualitatively as an assembly of
lowpass (scaling function) and highpass (wavelet) components. This is particularly evident in the
Haar wavelet and its scaling function, which are described below.

The representation oft) in Eqg. (3) is highly redundant, in that it is a mapping from the real line
to the real plane; that i$=R and &, b)=R% A less redudant form of the wavelet transform is
used here to improve the computatiomdficiency. This from is the dyadic wavelet transform
(DyWT), in which the scale parameter is sampled at dyadic intervalsaj®2", wherem is an
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Fig. 1 The Haar wavelet

integer (Kadambeet al. 1992). Critical sampling in the time-scale plane is achieved by connecting
the scale and translation parameters; the result is the wavelet series or discrete wavelet transforn
(DWT), which is especially useful in compression and filtering applications.

Multi-scale detection of transients (Section 2.2) is performed with the piecewise-constant Haar
wavelet (Fig. 1), which is the most elementary member of a family of compactly-suppported
wavelets formulated by Daubechies (1992) to satisfy certain polynomial reconstruction properties.
The Haar wavelet and its associated scaling function are particularly well-suited to multi-scale edge
detection because of their highly compact support and the fact that their shapes embody the mos
basic elements that define the geometry of transients: duration, magnitude, and abrupt changes.

2.2. Multi-scale discontinuity detection

Coherent transients, which are referred to here as patterns, are detected in a signal by thei
relatively sharp edges and high local curvatures. These abrupt transitions are detected in the DyWT
as points with relatively large magnitude wavelet coefficients that are temporally contiguous across
multiple scales (Mallat 1998, Strang and Nguyen 1996). The conceptual basis for this lies in the
impulse response of the CWT or DyWT, which (analogously to the Fourier transform) exhibits
energy at all scales (Fig. 2). Note that the DWT should not be used for pattern detection because i
is not translation-invariant (Daubechies 1993); hence, a given pattern can generate different wavele
energy distributions depending on how its inherent scales align with the dyadic grid imposed by the
DWT. This implies that the DWT’s ability to detect a given transient would depend on its location

4

Fig. 2 Dirac impulse (at time index 28) and the corresponding region of influence in the time-scale plane
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with respect to this dyadic grid; in constrast, the DyWT, while less efficient than the DWT, does not
suffer from this weakness because it includes all available values of the translation pabameter,

The signal is first denoised by thresholding the DWT,; in essence, this is a localized low-pass
filtering process (Strang and Nguyen 1996). Then the shorter scales in the Haar-based DyWT of the
denoised signal are examined for localized values that exceed a pre-determined threshold acros
contiguous scales. In this way, the boundaries and extrema of individual transients, referred to as
regions-of-sharp-change (rsc) are detected. Finally, empirically-devised criteria are applied to the
signal segments between each pair of rscs to determine whether the segments correspond to tru
transients or to quiescent regions between transients. Space limitations preclude description of thes
criteria; an extensive discussion is given by Pettit (1998).

If regions of sharp change were detected using only the local modulus maxima of the wavelet
coefficients instead of the multi-scale approach used here, the sharp changes detected woulc
correspond to true edges, or singularities, in the signal. This is because the Haar wavelet has on
vanishing moment, and Mallat (1998) shows that a wavétetwith k vanishing moments can be
written as thek-th order derivative of a functioé (t), which can be shown to have fast decay in the
time domain (i.e.,0(t) is localized). This property can be used to show that the corresponding
wavelet transform based dft) is equivalent to a multi-scale differential operator, which represents
the k-th order derivative of the signal when it is convolved vditt). Becaused (t) has fast decay,
this convolution yields a smoothed version of the original signal, so that for a wavelet with one
vanishing moment (e.g., the Haar wavelet), the wavelet modulus maxima detect discontinuities.
Because a threshold approach is used here, the sets of detected “edges” tend to be a mixture
regions having quasi-singular behavior (i.e., sharp increases or decreases in signal level) and region
of sharp curvature, such as transient peaks.

2.3. Pattern classification and recognition

The concept of pattern is accepted as a primitive from which a supporting theory is derived
(Looney 1998); this concept has already been specialized for the current application to pressure
transients. The goal of pattern recognition is to determine whether an object from popRlation
belongs to a well-defined subpopulation or equivalence $sssuch thatP=UY S, Hence,
recognition is distinct from classification, in which we must decide if multiple patterns constitute an
equivalence class. That is, classification is an inductive learning process whereas recognition is
deductive.

In the current application, patterns are comprised of segments from discrete time signals; hence,
they reside in a relatively high-dimensional vector space and are contaminated by noise. Both of
these traits complicate the comparison of observed patterns. Classification and recognition therefore
are implemented in bwer-dimensionafeature space: a vector of feature components is computed
for each pattern, and the relative similarity of each feature vector to the others is judged via a pre-
determined metric. Selecting these features and the comparison metric is application-specific. The
goal of feature selection is to summarize the essential nature of each pattern while simultaneously
disregarding superfluous aspects, such as background noise.

2.4. Estimation of probability density functions

Nonparametric estimates of probability density functions (pdfs) are used extensively here to describe



164 Chris L. Pettit, Nicholas P. Jones and Roger Ghanem

the characteristics of detected pattern classes. Baxter and Beardah (1995) and Ogden (1997) provic
useful summaries of the underlying theory and also provide references to more extensive texts on
the subject.

The appproach used is essentially the standard kernel function method, in which a Gaussian
kernel function is used to measure the local density of points in the chosen feature space. The
feature space is discretized using a regular grid, witkenoting a point on this grid. For each grid
point, a mountain function (Jareg al 1997) is constructed :

m(v) = Z expB—“;X”-D (5)

O

whereXx, is an individual feature vectoN, is the number of patterns detected (i.e., the number of
feature vectors), and is and application-specific constant known as the kernel bandwidth, which
controls the smoothness of the resulting mountain function. The pdf is then estimated by
normalizing the mountain function to unit volume.

The choice of a proper kernel bandwidth value involves a certain degree of empiricism. Standard
approaches are available (see Baxter and Beardah 1995) for selecting an appropriate bandwidth, an
they were found (after the fact) to yield bandwidths recommendations similar to those chosen by
trial and error.

3. Detection of pressure transients
3.1. Application to field measurements

The detection and classification algorithm described above has been applied successfully to
signals consisting of artificial transients (Pettit al 1998). Next, the algorithm is applied to
intermittent pressure time seriegeasured on the roof-corner of a low-rise building. These data were
obtained from the Wind Engineering Research Field Laboratory (WERFL) at Texas Tech University
(TTU), which is described by Levitan and Mehta (1992). The work described herein concentrates on
pressure measured with a three-by-three grid of transducers on the roof-corner (Fig. 3). Information
regarding the type and exact location of each transducer is available in the references cited above

® ® ®

® ® ®
V8

.V1 ® ®
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Fig. 3 Schematic of the transducer grid on the roof-corner of the Texas Tech WERFL. The wind direction
approximately bisects the roof-corner angle
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The results presented here are for two pressure time secesled during a period in which the
mean wind direction only approximately bisected the roof-corner ake34.4 in Fig. 3). The

first signal is taken from the transducer closest to the roof corner, which is denoted as V1 in the
WERFL documentation; the second is from transducer V8. Both signals were recorded during the
same test.

The pressure signals consist of 36,000 points obtained at a sampling rate of 40 Hz. These dat:
were povided as pressure coefficient time histories, which were computed by divdiog
pressure value by the mean dynamic pressure observed over the entire recording period of fifteer
minutes. For the present study, Signals V1 and V8 are truncated to 32,768 samples, and ther
denoised by thresholding the DWT. This pre-conditioning process, which essentially eliminates
wavelet components with relatively small magnitudes, removes a sizable fraction of the background
noise in the signals without noticeably reducing the magnitude or sharpness of the significant
transients. Processing the resulting signals using the multi-scale detection algorithm produces a tota
of 67 transients in V1 and 89 in V8.

Preliminary visual examination of the detected transients indicated some potential for
classification based on the number of suction peaks in smoothed versions of the transients. With this
in mind, small-scale (noise-like) behavior in the patterns is decreased through the following steps:

1. Each pressure coefficient pattern is normalized such that its mean absolute value is unity anc
resampled to a duration of 50 samples. The normalization is implemented to compensate for
difference between patterns that had similar shigoegifferent magnitudes. The resampling
yields patterns with the same duration, so that the relative location of individual peaks in patterns
can be stored as separate features. The original pattern’s duration (before resampling) is alsc
retained as a separate feature to be used in generating simulated time series (Pettit 1998).

2. The normalized and resampled patterns are then approximated using 12-th order Chebyshe
polynomials. These approximate patterns generally provide good matches to the underlying

Original Resampled Chebyshev

0 0 0
05 0.5 0.5
-1 \/\/ -1 -
-1.5 -1.5 -1.5
-2 -2 -2

0 5 10 0 20 40 60 0 20 40 60
0 0 0
0.5 0.5 0.5
1 -1 1
1.5 1.5 1.5
-2 -2 2

0 10 20 0 20 40 60 0 20 40 60

Fig. 4 Processing of two patterns detected in Signal V1. The first column contains the two original patterns,
the second column shown the same patterns after resampling to a duration of 50 samples, and the thirc
column depicts the 12th-order Chebyshev approximation of the resampled patterns
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global shape of each pattern while simultaneouslyowmg the local peaks that appear to
correspond to incoherent hulence, as opposed to coherent gusts.

The patterns are then classified according to the number of suction peaks in the smoothed patterns
Hence, the feature space upon which classification is based is one-dimensional and discrete. Also
as noted above, the duration and normalization factors are retained as separate features fo
subsequent analysis.

Fig. 4 illustrates the pattern-smoothing procedure for two patterns detected in V1. The first
column of plots contains the original time series for each pattern, the second column depicts the
resampled patterns, and the third column contains the Chebyshev approximations to the original
patterns. From these smoothed patterns, the global suction peaks are counted. The top pattern |
Fig. 4 is judged to have two suction peaks, and the bottom pattern is characterized as having &
single suction peak. Peak ceting is performed automatically by countizgro crossings in the
first-order finite difference of each smoothed pattern.

3.2. Describing the shape of TTU patterns

After classifying the patterns according to the number of suction peaks, it was found useful to
have an economical means of summarizing their basic shape that still retains important local
geometric properties, such as the location and magnitude of each peak. This is achieved by
imposing control points at the start, end, and local extrema of each smoothed pattern. Each suctior
peak is assumed to be bordered by a suction “valley” on both sides. This is illustrated for a generic
two-peak pattern in the top portion of Fig. 5. For those peaks not bordered by a valley on one side, &

. ! /&@

A\

V & = Control Point

(b)

Y

/
/ @ = Control Point

W & = Imposed Control
v Point

Fig. 5 (a) Control point locations for a generic transient pattern (b) Another generic transient, but with an
imposed control point
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control point is imposed as depicted in the bottom portion of Fig. 5. Each pattern in a number-of-
peak class is thus assigned the same number of control points.

Because each smoothed pattern consists of the same number of samples and is scaled to ur
mean absolute value, the time index and value of a particular control point, such as that
corresponding to the first suction peak in the two-peak class, can be used to judge the relative
similarity of the individual patterns within each class. In particular, if this peak happens to exhibit
similar location and values in most of the patterns within each class, this indicatesitamadd
degree of structure (i.e., beyond that indicated by the qualitative shape similarity) within the number-
of-peaks class.

3.3. Results from the detection and classification algorithm
3.3.1. Signal V1

As noted earlier, 67 significant transients were detected in Signal V1. The top portion of Fig. 6
illustrates the original signal and a pattern indicator function, which is defined to be unity for those
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Fig. 6 (Top) Signal V1 and its pattern indicator function. (Bottom) Nonparametric arrival interval pdf
estimate for Signal V1
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Fig. 7 Three single-peak patterns detected in Signal V1

time segments that contain a detected transient and zero otherwise. Note that the pattern indicatc
function exhibits good visual correlation with the clearly visible transients and also indicates that
some noise-obscured transients are present.

The bottom frame of Fig. 6 contains a non-parametric estimate of the arrival-interval probability
density function (pdf). The dominant primary peak in the pdf indicates that many of the transients
occur in dense clusters and are separated by relatively short time intervals, whereas the smalle
peaks reflect the longer, more quiescent periods between these clusters of transients.

Of the 67 patterns detected in Signal V1, 17 are found to have one suction peak, 33 have two
suction peaks, and 17 have three suction peaks. Fig. 7 depicts three patterns that are judged to ha
a single suction peak. Although each of these patterns exhibisedifflocal behavior from the
others, they share a common underlying single-peak shape. Thus, they are classified together an
their unique characteristics, such as their duration, peak value, and peak location, are stored as clas
dependent features.

Fig. 8 and Fig. 10 display nonparametric probability density functions (pdfs) associated with
several of these class-dependent features. The top frame in Fig. 8 shows a contour plot of the join
pdf of duration and magnitude scale factor for the single peak class in V1. The tight cluster of
contours reflects the presence of a dominant peak in the pdf, which is more vividly illustrated in
Fig. 9. This demonstrates that the majority of the single-peak patterns have similar duration and
peak magnitude, and is indicative of additional underlying structure in the single-peak pattern class.
That is, most of the patterns in this class have more in common than just a global shape
charactestic; they also have similar magnitude and duration.

The second and third frames in Fig. 8 contain nonparametric pdfs for the magnitude of the start
and end control points, respectively, of the single-peak transients in V1. The relatively large peak in
each plot indicates that many of the normalized patterns in the single-peak class had similar
beginning and ending values. This simply indicates that the mean value of the background signal
(i.e., without the transients included) did not change significantly during the recording period.
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Fig. 10 Joint pdfs of intermediate control point time indices and values for Signal V1

The three contourlpts in Fig. 10 portray the joint time index and value pdfs for the three
intermediate control points corresponding to the normalized single-peak patterns in Signal V1. In
particular, the center control-point pdf (middle frame of Fig. 10) corresponds to the single suction
peak. The large peak indicated by the tight clusters simply reflects the structure noted above with
regard to the duration and magnitude scale factors.

As noted above, approximately one-half of the transients detected in V1 (i.e.,, 33 out of 67
transients) have two suction peaks. The top frame in Fig. 11 showsdkabfrthese patterns have
similar duration and magnitude. This is a clear indication of some underlying similarity among the
patterns in this class. Given that a similar degree of structure is present in the single-peak patterns, i
appears that specific flow mechanisms are responsible for generating these transients.

3.3.2. Signal v8

Signal V8 (Fig. 12) contains several regions of intense activity, although signal levels are
generally lower than for V1. This is attuted to the radial expansion of the approximately conical
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Fig. 11 (Top) Joint pdf of pattern duration and normalization factor for Signal V1. double-peak transients.
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corner vortices, which reduces streamline curvature, thereby decreasing the local suction. As in
Signal V1, the transients tend to occur in bursts separated by quiescent periods; consequently, the
arrival interval pdfs for Signals V1 and V8 are qualitatively similar. As noted previously, the
pressure transients measured on the roof corner ought to correlate with coherent structures in the
incident wind. There are significant challenges in trying to assess this correlation because the only
incident wind measurements are taken 160 ft away fronbufiding; hence, unless the anemometry
tower happens to be situated on a direct line between the mean flow direction and the building, the
detailed flow structure upstream of the building cannot be identified accurately.

Of the 89 transients detected in Signal V8, 20 are found to have a single suction peak, 43 have
two peaks, 24 have three peaks, and two have four peaks. The relatilritdistrof patterns
among the number-of-peak classes is similar to that for V1. Nonparametric pdfs for the control
points of single-peak patterns in V8 are presented in Fig. 13 and Fig. 14. The tight cluster of
contours in the first frame of Fig. 13 demonstrates that single-peak patterns in V8 tend to be of
similar duration and magnitude. This trait was also noted earlier in Signal V1.



172 Chris L. Pettit, Nicholas P. Jones and Roger Ghanem

0.0024
0.0022
0.0020
0.0018
0.0016
0.0014
0.0012
0.0010
0.0008
0.0006
0.0004
0.0002

ASAASAARARRAARAALY

PDF

LILEREN RN LN N BN BN BN LN B £

T [ |
[E— 1000 2000 3000 4000
L wvees indicator Arrival Interval (samples)

(=]

Time (sec)

Fig. 12 (Top) Signal V8 and its pattern indicator function. (Bottom) Nonparametric arrival interval pdf
estimate for Signal V8

Class 1
T T T T T T T T T
15 L i
g P
& o4 B00s
@ - B
3 [C001
=
"s& A
05 i
8 @)
\_/
- f . L . L : L 1
05 1 15 2 25 3 35 4 45
Duration (sec)
2 T T T T T T
15 | N
w
e 1l i
05 | 4
1 L 1 I ! !
-1.4 1.2 -1 -0.8 -0.6 0.4 0.2 [
Normalized Cp Value at Pattern Start
6 T T T T T T T
\
4 4
w
£
2L i
e ——— //
0 1 ! ) | 1 1 1
-0.8 07 0.6 -0.5 0.4 03 -0.2 -0.1 0

Normalized Cp Value at Pattern End

Fig. 13 (Top) Joint pdf of pattern duration and normalization factor for Signal V8. (Center and Bottom) Pdfs
of start and end control point value



Wavelet-based detection and classification of roof-corner pressure transients 173

POF for Control Point #2

-05

| [T
i/

1 ) ) 1 ) 1 L
6 8 10 12 14 16 18 20 22
PDF for Control Point #3

K/CQL <]
R |

-1.4

18 >

Normalized Cp Value

. e . . .
20 25 30 35 40

PDF for Control Point #4

| N

\/”_\‘v

11 -1 0.8 0.8 0.7 0.8 -0.5 0.4 -0.3 -0.2 -0.1
Normalized Cp Value

Fig. 14 Joint pdfs of intermediate control point time indices and values for Signal V8

Aside from the tight contour cluster in the top frame of Fig. 14, little additional structure is
evident in the patterns from Signal V8. Although not described here, little structure was observed in
Signal V6 transients, either. Physically, this can most likely be explained as follows. Transducers V6
and V8 are located on either side of the roof- corner bisector, which approximates the mean wind
direction (Fig. 3). The sharp edges of the roof-corner are fixed lines of flow separation, which
produce vortex sheets that roll up to from the conical vortices. These vortices expand radially along
their central axes in the neighborhood of the corner. The quasi-symmetry of this with respect to the
bisector — perfect local symmetry is precluded by the fact tBat 45’ and by the turbulence
embedded within the incident windis responsible for the generation of these roof-corner vortices,
so it follows that it should be reflected also in the character of the time-varying pressure field near
the roof-corner.

In general, the control-point pdfs from V6 and V8 tend to exhibit greater variance (i.e., broader,
less defined peaks) than those from V1. This is believed to be a manifestation of turbulent mixing in
the roof-corner vortices, such that the downstream transducers (e.g., V6 and V8) are exposed tc
flow in which the turbulent energy has beenesyl across a broader range of scales than in the flow
over V1. The vortical mixing severely alters the local character of coherent structures present in the
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incident flow, and thus increases the variation in the associated pressure transients.
4. Conclusions

A wavelet-based, multi-scale detection and classification algorithm was designed to facilitate the
analysis of intermittent, or transient-dominated, time series, with the ultimate goal of perceiving
underlying structure in the detected transients. The joint time-scale localization built into the wavelet
transform allows transients to be readily detected by choosing to retain portions of the signal in
which the magnitudes of wavelet coefficients exceed a pre-specified threshold across contiguous
scales.

The algorithm was applied to several intermittent pressure time series measured on the roof-cornel
of a low-rise building. The detected transientsravsorted into three or four classes according to the
number of suction peaks exhibited by smoothed versions of the original patterns. Class-dependen
probability density functions were estimated nonparametrically for several features that summarize
the shape of each transient.

The detection and classification algorithm provide quantitative insight into thractérstics of
intermitternt pressure time series, particularly those associated with roofs of low-rise buildigns in
guartering winds. In the published literature, there does not appear to have been a concerted effor
to examine the statistics of individual pressure transients as distinct entities, even though they are
responsible for generating the peak loads on structures subjected to intermittent wind loads;
therefore, an immediate application of the algorithm would be to develop a database of wind
pressure transients measured on the roofs of low-rise buildings. From this database, sufficient
statistical information regarding transient loads could be extracted to improve or fine-tsiirggexi
design codes. Furthermore, with appropriate upstream flow measurements, analysis of individual
transients could be used to enhance understanding of the mechanics by which these loads ar
created.

A related use would be to improve the fidelity of wind-tunnel modeling, especially in the
simulation of intermittent turbulent flows. Current wind-tunnel procedure emphasizeariprithe
scaled reproduction of turbulence spectra observed in the field, a practice that is predicated on the
stationarity of the flow. Unfortunately, atmospheric flows are rarely stationary, so it is suggested that
an extensive statistical description of the types of transients that should be reproduced could yield
more insight into the quality of the wind tunnel modeling process.
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