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Abstract. According to research currently developed by several authors (including the present ones) a
multimode approach to the aeroelastic instability can be appropriate for suspension bridges with very long
span and so with close natural frequencies. Extending that research, this paper deals in particular with: i)
the role of along-wind modes, underlined also by means oflutier moderepresentation; ii) the effects

of a variation of the mean wind speed along the span. A characterisation of the response in the time
domain by means of an energetic approach is also discussed.
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1. Introduction

In the evaluation of the effects of wind on long span suspended bridges, it is quite usual nowadays -
along with wind tunnel tests on in scale models - to perform numerical simulations, carried out by
means of either very complex or very simplified mechanical models. Due to the large number of
degrees of freedom involved, the former, e.g., non-linear finite elements models (FEM), often tend to
obscure the essential points of the response adftine are not convenient at a preliminary design
stage; on the contrary, simplified models can give more straightforward information in most cases.
Such a simple and well known model is the two-degrees-of-freedom (2dof) sectional model, that
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can often give a satisfactory estimation of the critical wind speed for the aeroelastic instability.

In the recent scientific literature, the opportunity is widely discussed of using ltanoue
approach to the aeroelastic instability, that takes atiwount several natural modes of the system
around a reference equilibrium configuration, instead of the first pair of modes (vertical and torsional)
of the sectional model. In particular, previous papers of the authors (Sepe, Ciappi and D’Asdia
1996, D’'Asdia and Sepe 1998) underline the opportunity of the multimode approach for very long
span bridges characterised by high modal density.

Extending that papers, the research reported here deals in particular with the following aspects:

a) influence of the lateral modes on the critical ddods of aeroelastic instability; agaently
underlined (D’Asdia and Sepe 1998, Katsuchi 1997) this aspect can become very important,
depending on the deck shape; in this paper, the role of lateral modes is underlined through the
representation of th#utter mode that is obtained by means of an eigenvalue - eigenvector
procedure implementeald hocstarting from natural modes given by a FEM nonlinear analysis
programme;

b) effect of the variation along the axis of the time average of wind speed, e.g., due to different
topographical conditions, that can become relevant for an increasing length; possible implications
of such circumstance are dealt with by means of the multimode approach;

c) the convenience is also discussed of integral measures for representing the system response |
the time domain, given by a FEM model with a huge number of degrees of freedom and
therefore sometimes difficult to understand. An immediate representation of the response is
shown through théotal energyof the system or through theput energycorresponding to the
work done by forces due to fluid-structure interaction. It is Wwethwn that the character of
this wind-structure energy exchange is modifieeamto critical onditions of aeroelastic
instability, due to synchronisation mechanism between modes that extracts systematically energy
from the fluid.

2. Multimode approach

The simplest and well known way to deal with Heroelastic stability of a bridge is to consider a
rigid section model, that takes ind@count only displacements due to the first vertical and torsional
modes (2dof).

Namely, acomputational section mode&n be defined by introducing modal characteristics of the
bridge (e.g., known through a FEM analysis) and aerodynamic data of the deck; for wind tunnel
tests it is also widely used axperimental section mogéhat consists of an in-scale model of the
deck preserving its most aerodynamically relevant geometrical features, and elastically constrained
in such a way to reproduce the vertical and torsional modal frequencies of the bridge (with an
appropriate scale factor).

It is worth to stress that the correspondence between the 2dof rigid section model and the effective
behaviour of the system requires a perfect similarity ofwleemodes involved. If this hypothesis is
not completely verified but the fifrence between vertical and torsional modal shapes is not very
large, the aerodynamic coupling can still occur, but in this case appropriate corrective coefficients
should be introduced in the computational section-model.

The contribution of an increasing number of natural modes becomes more and more important
with an increasing length of the bridge, and in particular lateral displacements can play a significant
role (D'Asdia and Sepe 1998). Nevertheless, a multimode approach to the aeroelastic instability,
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Fig. 1 Coordinates and aeroelastic actions on the deck

described since 70’'s (Scanlan and Tomko 1971, Scanlan 1978), has only recently been used ir
technical applications (Tanaka, Yamamura and Tatsumi 1992, Jain, Jones and Scanlan 1996, Katsuch
Jones, Scanlan and Akiyama 1997, D’Asdia and Sepe 1998). It extends the 2dof model and consist
in describing sélexcited oscillions around a significant equilibrium configuration through linearised
equations, taking into account an adequate number of natural modes. In the approach described il
D’'Asdia and Sepe (1998) and summarised here, the natural modes are obtained by a FEM analysi
taking into account geometrical non-linearities and stiffnesses, and the critical wind speed is found
by means of an eigenvalue - eigenvector procedure implemadtedc

Denoted byx the coordinate along the axis, bgx, t) andp(x, t) the non-dimensional vertical and
transversal dlong-wing displacements (displacements scaled with the width of the Blécknd by
a(x, t) the torsional rotation (Fig. 1), b¥(x), pi(x), aj(x) the corresponding displacement
components of thgth natural mode shape and Bythe j-th modal coordinate, the displacement
response is described by

h(x 9 =% §OX); p(x 1) =% §Op(x); alx 1) =% &(1)aj(x) (1)
] ] ]

Denoting by €) the derivative with respect to the timheby I;, {;, and ¢ the j-th modal inertia,
structural damping and angular frequency, respectively, and taking into account the ricedes,
the dynamics is described by the equations

L& +20wé + wRE]= Qs ;s 1 =1,2, ...N. )

In Eq. (2) Q)se are generalised self-excited forcing terms that depend on thebatatrs of the
whole set of natural modes. The lift and drag forces and the aeroelastic moment per unitslength
Dse Mg (Fig. 1) can be expressed in the classical Scanlan formulation (Scanlan and Tomko 1971,
Scanlan 1978, Scanlan 1987, Simiu and Scanlan 1996) as a function of cooldipadesi a and
corresponding velocitesh p  and through coefficierts, P;" and A" known asflutter
derivatives

L(h, & a) = %pUZB[KHI(K)E + KH;(K)BUG + K2H§(K)a}
. B
D . @) = 5pU°B[ KPL(K)§ + KP3(K)T) + KP3(K)a] ©)

Mo(h, &, a) = %pUZBZ[KAI(K)E + KA;(K)BUG + K2A§(K)a}
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Here, p, B andU denote air density, deck width and mean wind speed, respectively, the latter assumed
as horizontal and orthogonal to the bridge axis. Eq. (3) corresponds to the “basic” representation of
aeroelastic forces; the contributions of “added-mass” terms related to the accelerations, included by som
authors (e.g., Katsuchi, Jones, Scanlan and Akiyama 1997), are expected to play a negligible role
for the example under consideration, and have therefore been omitted.

Flutter derivativeH;’, P,” andAj can be obtained by experiments in wind tunnel and expressed as
a function of thereduced frequencK =Bw/ U, where w denotes the angular frequency of the
imposed motion.

It results

Qse = [ [Lse(X)B + Dsdj(X)B + Mserj(x)] dx (4)

span

Defining ascritical the wind speed corresponding to harmonic oscillations (that is, not decreasing
nor diverging for given initial conditions), the equations governing the motion can be expressed in
the frequency domain assuming the following notations

E= &y ... &) = &™ = £, e0CY, &0C", wOR, s= %‘ 5)
wherei?=-1, & are complex amplitudes containing also information on the phase-lag between motion
components and"C R denote complex and real spaces.

In matrix form, the equations of motion turn out

[C(K, @) +ID(K, w)]éo=0 (6)

where the coefficient€;, D; of the respectivé\ x N matrices are reported in Appendix.

The existence of steady-state oscillations with amplitfidis only possible if both the real and
imaginary part of the determinant de iD) vanish, that leads to equations Knand &3 whose
solution can be sought merically. Finally, the critical (oflutter) speedUc = B/ Kc comes out,
where ax denotes the angular frequency of the critical oscillating configurafiotie( mod¢, to
which several natural modes contribute, possibly out of phase but synchronised to each other due t
aerodynamic forces; the critical shafigcorresponds to the eigenvector of the problem

[C(Kc, ax) +ID(Ke, wo)léoc=0 (7)

As underlined for the 2dof rigid section model, the similarity between modal shape®,(e.gd
in Fig. 3) is a necessary condition for the aerodynamic coupling; if there is an appropriate phase-lag
between motion components, coupling can also raise even if the aerodynamic damping is positive in
each mode.

3. Example: The proposed bridge on the Messina Strait

The multimode approach described in previous section has been applied to the current design o
the proposed bridge on the Messina Strait, with main span of 3300 m (Fig. 2).

The first 20 natural modes around the equilibrium configuration in avestafe)(wind flow have
been evaluated through a FEM model (5000 dof) and a computer code able to take into accoun
geometrical non-linearities and stiffnesses (relevant modes in Fig. 3). Aeroelastic derivatives in Fig.
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Fig. 2 Current design of the proposed bridge on the Messina Strait (measures expressed in meters)

mode angular frequency @; (rad/s) period T; (s) main component
a 0.195 322 Ist lateral
b 0.352 17.8 2nd lateral
c 0.380 16.5 1st vertical
d 0.500 12.6 Ist torsional
e 0.501 12.5 3rd lateral
f 0.508 12.4 2nd vertical
g 0.606 10.4 2nd torsional
h 0.626 10.0 4th lateral
i 0.677 93 3rd vertical
l 0.705 8.9 5th lateral
m 0.803 7.8 3rd torsional

vertical torsional lateral

Fig. 3 Natural modes around the dead loads equilibrium configuration
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Fig. 4 Flutter derivatives of the Messina Bridge. Data from design reports and from Zassdgf @ 896)277))

4 and average values of magsper unit length and torsional mass moment of indrieer unit
length M = 5.5- 10* kg/m, | = 2.8- 10" kg- m%¥m) have been used, and a structural damgjngrying
from 0.6% to 0.8% has been assumed, depending on the mode.

With these values the multimode approach gives (D’Asdia and Sepe 1998) the critical values
Uc=94 m/s,Kc=0.276,a-=0.418. In the example under consideration, the solution obtained through
the multimode approach including several vertical, lateral and torsional modes is almost coincident
with the solution given by the 2dof rigid section model, probably as a consequence of the excellent
aerodynamic behaviour of the proposed three-box deck, and is also in good agreement with wind
tunnel tests on rigid section model and full bridge aeroelastic mbldeever, different bridge
geometry could amplify such differences, or even show phenomena not forecast by the rigid section
model. The role of lateral modes is underlined in recent papers (Katsuchi 1997, Katsuchi, Jones,
Scanlan and Akiyama 1997) on the Akashikga bridge, opened in 1998, with the 1990 meters
main span the longest so far built; in such a case, in fact, the multimode analysis gives an
unacceptable overestimation of the flutter speed (more of 135 m/s instead of 75 m/s) if it is performed
neglecting the cross aeroelastic derivatives corresponding to the drag, i.e., those associated to th
torsional mode R, , P; in Eq. 3) and to the vertical mode, according to the extended formulation
introduced in (Katsuchi, Jones, Scanlan and Akiyama 1997).

In any case, the multimode approach should notaberiori excluded whenever aerodynamic
coupling between modes is expected to arise due to closeness of natural frequencies, as it is likely
to occur for so deformable systems.

The critical eigenvectoéy,c of Eq. (7), normalised to unitary modulus, is reported in Table 1. The
contributions of the first three modes are represented graphically in Fig. 5; it can be observed that
the amplitudes andp of vertical and lateral modes, representing the ratios between corresponding
displacements and the deck widh(cf. Sec. 2), are comparable also in quantitative terms with the
amplitude of torsional mode. It is worth to remember that the aerodynamic coupling leading to
flutter requires a phase-lag between the components of motion, so that the work done by aeroelasti
forces turns out to be, in the average, larger than the energy dissipated by mechanical damping.

As expected, the prominent role of modeandd is evident from Table 1 and Fig. 5, while the
contribution of higher modes is negligible. It can also be observed that the only significant
contribution of lateral modes is given by the skew-symmetric ntpdgproximately one tenth of
the vertical modec contribution; moreover, the lateral mode is only relevant to the flutter mode
shape, while the flutter speed is only modified of a few meters per second.

Two different representations in time-history of the flutter mode for the Bridge on the Messina
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Table 1 Eigenvectofy corresponding to the flutter mode for the current design of the Messina Bridge

Mode Re€ ) IM(& oc) Modulus Phase [°] main component
a 0.00060 0.00013 0.00061 125 1st Lateral
b -0.08085 0.06067 0.10108 143.2 2nd Lateral
c 0.91437 0.00000 0.91437 0.0 1st Vertical
d 0.19645 -0.33917 0.39195 -59.9 1st Torsional
f 0.00104 0.00481 0.00493 77.8 2nd Vertical
g -0.00699 -0.00004 0.00699 180.3 2nd Torsional
i -0.00052 0.00054 0.00075 1341 3rd Vertical
m -0.00005 0.00076 0.00077 93.5 3rd Torsional

(Reg Im: real and imaginary parts)
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Fig. 5 Polar representation of the most significant contributions to the flutter mode for the current design of
the Messina Bridge

Strait are reported in Fig. 6 and Fig. 7, where subsequent configurations are separated by time
intervals of duratiorT¢/ 8, T¢ being the period of the critical oscillation (approximately equal to 15
seconds). In Fig. 6 drag force, lift force and aerodynamic moment are also represented, according tc
Eq. (3).

Fig. 7 confirms that the main contributions to flutter mode are given by the skemvetyic
modesb(lateral), c(vertical), d(torsional). However, due to the higher modes, the time history of
displacement and rotationa are not perfectly similar, although this cannot be appreciated due to
the scale factor of the representation.

3.1. A different example

In the previous section it was shown that a truss-type deck (as for the Akashi-Kaykio Bridge),
very stiff and with relatively baderodynamic performances, requires the multimode technique as
the only way to get a correct flutter speed; in fact, either the 2dof section-model or a simplified
multimode approach performed by neglecting some terms of aerodynamic coupling, turned out to be
insufficient.
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Om,=0.4179 rad/s — T,=15.04 s — U =94 m/s

Section n.29 [1/4 span]
U % U

0.00 1.88 76 5.64 7.52 9.40 e 13,16 15.04

- = T

Fig. 6 Flutter modefor the current design of the Messina Bridge (motion of a quarter-span section,
subsequent configurations separated by a time int€/@ , whereTc = 211/wc); aeroelastic lift, drag
and moment, according to Eg. (3), are also shown

0 1650 3300

/\

P 30

Fig. 7 Flutter modefor the current design of the Messina Bridge (motion of the axis in the central span,
subsequent configurations separated by a time int€a@B, whereTc= 21 /w )
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Fig. 9 Polar representation of the most significant contributions to the flutter mode for the example described

in Sec. 3.1 (single-box “Humber-type” cross section)

In order to show the differences that may occur between the section model andltimodau
method in the presence of very stiff decks, and since detailed data on the Akashi-Kaykio Bridge
were not available, an example wasilt ad hocstarting from the original design of the Messina
Bridge.

Namely, it was analysed a finite elements model with the same structural characteristics of the
actual design, except for the deck, which has been substituted by a single-box girder with the same
weight of the original one and with a cross-section similar to the Humber Bridge, and thus with the
same aerodynamic characteristics (Fig. 8). In this case, while the first vertical and first torsional
skew-symmetric modes (modes 3 and 17 in Fig. 9, respectively) are similar, the first couple of
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symmetric modes (modes 4 and 12 in Fig. 9, respectively) have instead different shapes; in fact,
while for the skew-symmetric modes and for the vertical symmetric one the shape is still dominated
by the cable stiffness notwithstanding the increased stiffness of the girder deck, for the torsional
symmetric mode the deck stiffness prevails on that of the cables.

As already said, the simplest formulation of the rigid section model (in writers' opinion the only
one worth to be used for a preliminary assessment of the critical flutter speed) requires that the two
modes considered (torsional and vertical) are perfectly similar; therefore for the example in this
Section, this method can rigorously be applied only to the skew-symmetric modes 3 and 17, that
turns a critical wind speeds "= 62 m/s.

On the contrary, the multimode analysigrfprmed by including both the above mentioned
symmetric and skew-symmetric couples and the first three lateral modes, turns out a solution
dominated by the symmetric modes (Fig. 9) and a lower critical wind $pg€&54 m/s, with a
difference that is small but certainly not negligible compared 6"

Also by introducing in the section model the frequency and damping values corresponding to the
first symmetric couple of modes (so pretending the perfect similarity among them) gives an error
with the same order of magnitude, although on the safe side. In this case in fact the critical speed
resultsUs¥™= 50 m/s.

It can be observed from Fig. 9 that also in this example the contribution of lateral modes cannot
be neglected.

4. Variations of time-average wind speed along the bridge axis

In previous sections the wind speed has been assumed as constant. However, as well known, th
atmospheric turbulence and the consequent wind speed fluctuations can play a very significant role
on the dynamic response.

Critical conditions of incipient aeroelastic instability are usually sought neglecting such fluctuations,
that are considered as perturbations that can start auto-excited oscillations when mean wind speed
higher than the critical one; some of these aspects are taken into account by measurirgfiaeroela
derivatives in wind tunnel with a given intensity of turbulence of the approaching flow.

For very long span bridges, however, it can be appropriate to take into account a variation of time-
average wind speed along the bridge axis, due for example to different topograplitiorenioh
such a case, denoting hy a reference value of the wind speed (e.g., at mid-span) the time-average
speed can be expressed as

U() = U [1+y (¥)] (8)
with an obvious meaning af(x); as a consequence, also aeroelastic forces are a functiormral
with the notationK =Bw/U, they become (Eq. 3):

L., = %pUZB[RHI(K)% ¥ RH;(K)%“ - RZH&(K)G}
D.. = 5PU7B[KPIKOE + KP3(K)Z + KPi(K)a] ©)

Mse = %PUZBZ[RAI(K)% + RA;(K)%“ + RZAé(K)a}

Therefore, the forces corresponding to the reference wind dpeed  and those corresponding to th
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actual time averagéJ(x) variable along thex-axis differ from each other only because of the
variation of aeroelastic derivatives with respect to their vahiesd;, P« Kds .
The structure of Egs. (Al) in Appendix is then unchanged, with the only difference that coefficients

Cy, Dy of Egs. (A2) have to be evaluated on the basis of the reference Walue , and integral
coefficientsG(syn, qn) in EQ. (A3) should be re-defined as follows
G(Sn On) = _|’ AXsOndx; s, g=h,p,a;mn=12,...N; (20)

span

A(¥) in Eg. (10) denotes the ratio between the aeroelastic derivatives correspondixy amd to
U; for example, the coefficiertd(a,, a;) appearing in the evaluation G6f; (Eq. A2) becomes
_ Az(X)
G(ar, a) = [ A(¥aradx, AX)=—"=— (11)
span /\3
Referring to the usual representation of aeroelastic derivatives as a function of the reduced velocity

v=2m/K (cf. Sec. 5 and Fig. 4), and truncating the Taylor's series to the first dpden Eq. (11)
becomes

Ax) = A’*(X(X)) = [A +E1§A*E] (v(x)—\‘/)} = 1+ Ag(X) (12)
3 =V

The constant\ s the ratio between the slopes of the tangent to theAggwe v for =/ =2
K and the slope of the secant to the same point, that is

0d .0
EUVA3D v
/\3//V

In an analogous way, defining the constdnt  on the basis of the appropriate aeroelastic derivative,
it turns out in any case (Egs. 10 and 12) that

(13)

G(sm Gn) = [ [1+AP(X)]snndx;s,q=hp,a;mn=12..N (14)

span

As a consequence, when modal shapep;, o, are similar to each other (as thoseolwed in the
aerodynamic coupling leading to aeroelastic instgpcf. Sec. 2), only a variatiog/(x) symmetric

f—a—+E4£

x=0 absissa (x) <3200 K0 seissa () x=3300
2x 2
=gl1-=2 =B sin| £&
w(x) [3[ . J vix)=p sm( 7 xj

(@ (b)

Fig. 10 Variation along the main span of the wind speed time-average
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with respect to the bridge mid-span (Fig. 10c) (or at least with an average value different from zero)
can affect coefficient$(sy, g,) and therefore can have some influence on thelisfabonditions;
on the opposite, skew-symmetric variations of the wind speed (Fig. 10a,b) cannot produce any
effect, if they are so small that the first order approximation (Eq. 12) of the series expansion of
aeroelastic derivatives can be accepted.

In any case, in the example under consideration the reduction of the critical wind speed amounts
only to few meters per second, everyik) is assumed as in Fig. 10c with a maximum wind speed
variation of 10% with respect to the reference vallie

5. Analysis in the time-domain

The values of flutter wind speed found in Sec. 3 and Sec. 4 are confirmed by numerical
investigations performed in the time domain, using the same finite elements model of the bridge and
increasing mean wind speeds until diverging oscillations are observed. Thiégati@s has been
conducted with a FORTRAN numerical code already implemented by one of the authors and tested
for more than ten years, aimed to step-by-step analysis in the range of large displacements of
nonlinear systems made up by linearly elastic one-dimensional finite elements, and improved with
routines implementedd hocfor wind-structure interaction.

The solution of the elastic problem is performed in terms of “total Lagrange’s coordinates”, taking
into account system non-linearity through a discretization of the structure in a set of “cable-type”
finite elements, with parabolic or rdatear shape, while deck’s elements areedm-type”. The
associated system of equations (static problem) is solved by a second-order analysis, by means of a
iterative procedure involving a succession of load steps, during which geometrical stiffness of the
elements is continuously updated.

The dynamical analysis is performed through a step-by-step integrdtier0@2s) of the motion
equations, using the Newmark’s procedure. The mechanical damping has been assutedamce
with Rayleigh’s method (coefficientstz= 0.0015 andfz=0.0219); the corresponding damping
ratios ; assume values between 0.6% and 0.8% for the principal modes responsible for aeroelastic
instability (angularfrequencies in the range 0.35-0.50 rad/s).

As concerns wind actions (drag, lift and moment), they have been concentrated on the deck, which
has been divided in elements whose length is equal to the distance among hangers. The associat
interaction forces depend on the instantaneous motion of the single section (Fig. 1).

Denoted byf = w/(2r) the frequency of oscillation of the structure, the non-dimensieuokiced
velocity can be defined as

v 21
T Bf K

and it turns to be equal to the ratio between the period of oscillatohf and the time spent by
the wind to across the wid® of the deck.

It is worth to observe that for very aerodynamic bridges, as the one under consideration, the
reduced critical velocity is very high/.(> 20-30); therefore, the oscillation corresponding to the
flutter mode is so slow with respect to the time spent by the wind to cross the deck daath at
time, the aerodynamic forces can be defined by means of the static lift, drag and moment
coefficients (Fig. 11), measured in wind tunnel (quasi-stationary approach, Zasso 1996).

Comparing the slopes of the curves in Fig. 1la,c it is evident that the already good behaviour

(15)



Aeroelastic instability of long-span bridges: contributions to the analysis in frequency and time ddBains

C
mom
C :
drag 027 Humber
0.2 Messina
Humb 0.1+
4 umoer Messina
} } | =a 7 ; 4
-10 -5 0 a -10 -5 0 5 10
0.2 Messina 44 5 "o 5 10 o1l
Humber
-0.4
02l

Lift force per unit length

Drag force per unit length

Moment per unit lenght

1 2 1 2 l 2R
= — = = — B
L 5 pU BChﬁ D 2 pU BCdmg M 2 pU Cmcm
Fig. 11 Static coefficients of lift, drag and moment for the Humber and Messina bridgesigle of attack
[deg]
15.00 arll 15.00 ol 15.00 ol
0.00 . L1s] 0.00 i e 0.00
500 1000 500 500
15.00 -15.00

-15.00

(@ (b) (©

Fig. 12 Torsional rotatiom [deg] of the cross section at a quarter of the main span=a80 m/s; b)U = 90
m/s; c)U =100 m/s

found for the single-box deck of the Humber Bridge has been further improved for the three-box
deck designed for the Messina Bridge.

Fig. 12 shows the rotation of a significant cross section of the bridge evaluated by time domain
analyses, for wind speed equal to 80, 90 and 100 m/s, respectively, without turbulence. During the
rising time of 100 seconds, when wind speaztaases linearly from zero to its maximum value, the
process can be considered as quasi-static; dynamic effects are found in the following part of the
response for a wind speéd larger than approximately 90 m/s, and they correspond to self-excited
oscillations with a period close to the one already found with the multimode analysis (about 15
seconds - Sec. 3).

The difference, very small indeed, between such critical value and those found in Sec. 3, can be
attributed to the diérent characterisation of the aerodynamic forces (quasi-stationary approach in
this section, aeroelastic derivatives in Sec. 3) and to the differences in their experimental evaluation.

6. Energetic approach

The multimodal approach discussed in previous sections allows to obtain a satisfactory and
relatively simple evaluation of the critical wind speed for aeroelastic instability.
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As shown, this critical value is also canfied by numerical investigations in the time domain
developed by means of a finite elements model.

Indeed, very detailed finite element models are often necessary and are in fact currently used alsc
to evaluate the stress in the structural elements and the service-condition behaviour; such model
give the response of the system to appropriate artificial wind time histories by means of step by step
integration in the time domain, taking also into account non-linearities.

In this case, however, due to the large number of degrees of freedom (about 5000 in this example’
it is often difficult to assess the critical wind speed on the base of displacementigiore of
selected cross sectiorss priori assumed as representative of the behaviour of the whole bridge.

It has deemed therefore interesting to discuss thétsesf the step by step merical integration
in terms of integral quaities, as the total energy of the structure at a given time or the work done
by aerodynamic forces. As it will be shown in the following, in fact, the energy characterisation of
the response gives an immediate clue to find not only the flutter wind speed, but also to evaluate the
trend of divergence of critical oscillations and the contribution of the single components to the
energy balance.

The direct evaluation of the energetidegral quantities is performed through the FORTRAN
computer code described in Sec. 5, using routines and algorithms devatbed The different
components of mechanical energy and the total work done by external aerodynamic loading are
evaluated, and the energy dissipated by mechanical damping is found agetieaddfbetween the
external work and the total energy.

The figures from 13 to 16 report the results of numerical simulations for three different values of
the mean wind speet; = 80 m/s,U, =90 m/s andJ;= 100 m/s.

During the rising time interval (100 seconds), the total energy grows with an almost linear trend as
a consequence of the work done by the “static” aerodynamic forces, that lead the structure from its
initial equilibrium configuration to the deformed equilibrium configuration.

This is evident from Fig. 13, where the energy content at the end of the rising time interval is
almost proportional taJ?. This energy is mainly of the gravitational type, depending on the lateral
displacement due to the quasi-static wind forces and on the consequent uplift of the deck. At this
stage, in fact, lateral modes play a prominent role (@.gndb in Fig. 3), as it is confirmed by the
“period” of the oscillation, of about 30 seconds.
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4] 500 L0 1500 0 500 1000 1500
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Fig. 13. Total energ¥ of the system (irGJ= 10° Jouleg for wind speedJ = 80, 90 and 100 fa
a) time-history, b) moving averages on 40 seconds
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In presence of a sufficiently high wind speed (more than about /80, progressive and
continuous transfer of energy from the fluid to the structure takes place, with a consequent
amplification of structural oscillations. It is also evident (Fig. 13a) that these auto-excited oscillations
have a shorter natural period (approximately equal to 15 seconds) with respect to those at the
beginning of the loading process; in fact at this stage oscillations are prevalently due to the first pair
of vertical and torsional modes, synchronised to a frequency comprised within the two natural
frequencies as a consequence of the aerodynamic coupling.

In Fig. 13b it is shown the movingre-average of the total energy on a 40 secamdsval, that
is sufficiently long to filter the fluctuations of the input energy during each oscillation period.

It is also evident from Fig. 13 that an accurate dedimiof the critical value of the wind speed
cannot leave the duration of the time history out of consideration; in fact, a relatively smaller
velocity applied for a longer period can produce larger effects than a higher velocity applied for a
shorter time (1500 seconds at 90srand 750 secondg 100 ms).

Fig. 14 shows the single components (moving averages on 40 seconds) of the total-energy for ar
oncoming flow withU =100 m/s. It must be underlined that, although the wind action is only
applied to the deck, the progressive growth of its oscillations induces a continuos enefgy twans
the vertical towers and to the main suspension cables, where the greatest part of potential energy i
concentrated (sum of the potential gravitational energy and the elastic deformation one).

It can be also observed that the elastic energy of the deck is much smaller with respect to that of
the main cables, in the average less than 20%.

In a more recent release of the computer code, still being tested, it is also possible to consider
wind action on the main cables, on the tower and on the hangers. Such effects, certainly relevant fou
the long span bridges recently built or designed, will be studied in the following part of this
research.

Fig. 15 reports the comparison between the work done by aerodynamic forces and the total energy
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Fig. 14 Moving averages on 40 seconds of the components of the total Enfergwind speedJ = 100 nis:
kinetic energyK, gravitational potential energ$ and deformation energigsc (cable elements)pd
(deck beams)@t (towers)
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Fig. 15 Comparison between the wafkdone by the aerodynamic forcasplt energy and the total energy
E. Time-history (thin line) and moving averages on 40 seconds (thick line). Mean wind speed
U =100 m/s

of the bridge forU =100 m/s. It can be observed that in the last part of the time history both curves
show diverging oscillations, corresponding to the passage from the quasi-static to the dynamic
behaviour; the difference between the two functions represents the energy dissipated by the
mechanical damping and it is more and more relevant for an increasing amplitude of the
oscillations, reaching approximately the 25% of the aerodynamic work.

Finally, Fig. 16 shows the work done by each component of the aerodynamic interaction: lift, drag
and moment. It is evident that during the wind speed rising interval, when the bridge displaces
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0.0 .

0 750 1500

Fig. 16 Work W done by the aerodynamic forces and its components du&/lfpdrag Wd and moment
(Wm). Time-history (thin line) and moving averages on 40 seconds (thick line). Mean wind speed
U =100 m/s
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mainly in the lateral direction, only the drag forces make a significant work; at the opposite, also
this representation of the response confirms that the aeroelasticlitystzvi be mainly attributed

to the work done by the aerodynamic forces during vertical and torsional displacements, although
the contribution of the lateral component is not negligible.

7. Conclusions

The multimode approach to the aeroelastic instability of long-span suspension bridges is able to
assess more accurately thétical wind speed and the shape of fhdter modecompared to the
extremely simplified section model, with only a slightly larger computational cost. It has also been
shown that this method can easily take into account phenomena that cannot be included within the
section model, as the wind speed variability along the bridge’s span. Further extensions of this
method, currently under implementation, will allow to consider, with a limited increase of computational
costs, the influence of semi-deterministic components of the turbulence and of the elastic local
deformation of the deck cross section, an aspect that cannotitbedofor decks with an esegmely
complex behaviour, as the “multi-box” ones.

The paper describes also the convenience of representing the response in the time domain b
means of integral measures, as the total energy of the system or the input energy, corresponding t
the work done by forces due to fluid-structure interaction. This technique allows also to evaluate the
beginning of the diverging oscillations related to aeroelastic instability more accurately than the
usual representation of displacement components in the time-domain.
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Appendix

Defining the generalised force;)s. according to Eq. (3) and Eq. (4), the set of Egs. (2) governing the
dynamics can be derived in the frequency domain (Eq. 5), and in matrix form it reads
[C(K, @) +ID(K, @)]é=0; (A1)
coefficientsC;;, D; of NN matricesC, D are defined as follows

= §[-K*+ Kﬁ]—— PBKTH3 (K)G(ar,h) + P3 (K)G(ar. ) + As (K)G(at, )]
=5, [ZZJKJK]—— BB HE (KIG (hn, h) + H (KIG (3, ) (A2)
FIPLOOG (B, )+ P (G (@ ]+ A7 (KIG (. @) + AS (K)G (@, @)}

In Eq. (A2), 4 is the Kronecker symboK;=Bw /U andG(sn ¢, denotes the scalar product betweensthe
andg components of therth andn-th natural modes, that is

G(sn G = [ SmOndX;s, g=hp a; mn=1,2 ..N (A3)
span
The cross product$(s,, ¢, Wwith m#n correspond to the contribution given by displacements and
velocities in then-th mode to than-th generalised force, and so they take into account the modal coupling
due to aerodynamic forces.
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	Mode
	Re(x 0C)
	Im(x 0C)
	Modulus
	Phase [˚]
	main component
	a
	0.00060
	0.00013
	0.00061
	 12.5
	1st Lateral
	b
	-0.08085
	0.06067
	0.10108
	143.2
	2nd Lateral
	c
	0.91437
	0.00000
	0.91437
	  0.0
	1st Vertical
	d
	0.19645
	-0.33917
	0.39195
	 -59.9
	1st Torsional
	f
	0.00104
	0.00481
	0.00493
	 77.8
	2nd Vertical
	g
	-0.00699
	-0.00004
	0.00699
	180.3
	2nd Torsional
	i
	-0.00052
	0.00054
	0.00075
	134.1
	3rd Vertical
	m
	-0.00005
	0.00076
	0.00077
	 93.5
	3rd Torsional






