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1. Introduction 
 

Functionally graded materials (FGMs) are a new 

generation of composites whose composition varies 

continuously as a function of position along thickness of a 

structure to achieve a required function. FGMs are 

generally made of a mixture of ceramic and metal to satisfy 

the demand of ultra-high-temperature environment and to 

eliminate the interface problems. Typically, in an FGM, one 

face of a structural component is ceramic that can resist 

severe thermal loading and the other face is metal which has 

excellent structural strength. FGMs consisting of heat-

resisting ceramic and fracture-resisting metal can improve 

the properties of thermal barrier systems because cracking 

and delamination, which are often observed in conventional 

layered composites, are reduced by proper smooth transition 

of material properties. The technology of FGMs was an 

original material fabrication technology proposed in Japan 

in 1984 by Sendai Group. Since the concept of FGMs has 

been introduced in 1980s, these new kinds of materials have 

been employed in many engineering application fields, such 

as aircrafts, space vehicles, defense industries, electronics 

and biomedical sectors, to eliminate stress concentrations, 

to relax residual stresses, and to enhance bonding strength. 

Because of the wide material variations and applications of 

FGMs, it is important to study the responses of FGM 

structures to mechanical and other loadings. 

In recent years, with the development of technology, 

increasing demands for optimum or minimum-weight 

designed structural components makes it necessary to use 

non-linear theory of beams. Many optimum or minimum- 
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weight designed structural components are under severe  

operational conditions. In many cases, the small deflection 

linear theory is no longer applicable. It is very necessary to 

use and understand crack and fracture behaviour with non-

linear analysis.  

In the open literature, there are many studies in the 

linear analysis of the functionally graded beams. However, 

nonlinear studies of functionally graded beams are very 

limited. In the literature, studies of the nonlinear behavior 

of beams are as follows; The thermal buckling load of a 

curved beam made of FGM with doubly symmetric cross 

section was investigated by Rastgo et al. (2005). Agarwl et 

al. (2006) analysed the large deformation behaviour of 

anisotropic and inhomogeneous beams using exact linear 

static solutions. Li et al. (2006) examined the thermal post-

buckling of FGM clamped-clamped Timoshenko beams 

subjected to transversely non-uniform temperature. Based 

on Kirchhoff’s assumption of straight normal line of beams 

and considering the effects of the axial elongation, the 

initial curvature and stretching-bending coupling on the 

arch deformation, geometrically nonlinear governing 

equations of FGM arches subjected to mechanical and 

thermal loads were derived by Song and Li (2008). Kang 

and Li (2009) studied the bending of FGM cantilever beams 

with power-law non-linearity subjected to an end force. Ke 

et al. (2009) investigated the post-buckling of FGM beams 

with an open edge crack based on the Timoshenko beam 

theory and von Kármán nonlinear kinematics by using the 

Ritz method. Kang and Li (2010) examined the large 

deflections of a non-linear cantilever FGM beam. The 

thermal post-buckling behaviour of uniform slender FGM 

beams was investigated independently using the classical 

Rayleigh-Ritz formulation and versatile finite element 

analysis based on the von Karman strain-displacement 

relations by Anandrao et al. (2010). Kocatürk et al. (2011) 

investigated the full geometrically non-linear static analysis 
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of a cantilever Timoshenko beam composed of FGM under 

a non-follower transversal uniformly distributed load. 

Fallah and Aghdam (2011) studied the nonlinear free 

vibration and post-buckling analysis of FGM beams on 

nonlinear elastic foundation. Almeida et al. (2011) 

conducted the geometric nonlinear analyses of FGM beams 

by using a tailored Lagrangian formulation. The 

thermomechanical stability of FGM thin-walled cantilever 

pipes conveying flow and loading by compressive axial 

force was investigated by Hosseini and Fazelzadeh (2011). 

Li and Li (2011) analyzed post-buckling behavior of FGM 

columns under distributed loads. Yan et al. (2012) 

investigated the nonlinear flexural dynamic behavior of a 

clamped Timoshenko beam made of FGM with an open 

edge crack under an axial parametric excitation, composed 

of a static compressive force and a harmonic excitation 

force based on the Timoshenko beam theory and von 

Kármán nonlinear kinematics. 

Mohanty et al. (2012) studied static and dynamic 

stability of FGM ordinary and sandwich beams by using 

finite element method based on the Timoshenko beam 

theory. Kocatürk and Akbaş (2012) presented the post-

buckling analysis of FGM Timoshenko beams made of 

functionally graded material under thermal loadings. Akbaş 

and Kocatürk (2013) presented post-buckling analysis of 

FGM three-dimensional beams under the influence of 

temperature. Kocatürk and Akbaş (2010, 2011, 2013), 

Akbaş and Kocatürk (2012) investigated the nonlinear 

analysis of FGM and homogenous beams. Akbaş (2013) 

presented the geometrically nonlinear static analysis of edge 

cracked FGM Timoshenko beams subjected to a non-

follower transversal point load. Nonlinear bending and 

thermal post-buckling of FGM beams resting on an elastic 

foundation investigated by (Hui-Shen and Wang (2014), Li 

and Shao (2014), Zhang and Zhou (2014), Sun et al. (2016), 

Trinh et al. (2016)). Babilio (2014) investigated the 

nonlinear dynamics of FGM beams resting on a linear 

viscoelastic foundation under the axial time-dependent 

excitation. Nguyen et al. (2014) analyzed geometrically 

nonlinear of FGM planar beam and frame structures by 

using finite element method. Ebrahimi and Salari (2015) 

investigated free vibration and buckling of FGM size-

dependent nanobeams based on nonlocal elasticity theory of 

Eringen and the physical neutral axis position by using a 

semi-analytical differential transform method. Akbaş 

(2015a, b) analyzed post-buckling of cracked and axially 

graded FGM beams. Elmaguiri et al. (2015) studied the 

large-amplitude free vibration of clamped immovable thin 

FGM beams. Kolakowski and Teter (2015) studied static 

coupled buckling of thin-walled FGM columns with 

trapezoidal and square cross-sections. Akbaş (2013b, 2014a, 

b, 2015a, b, c, d, 2017a, b, 2018b, c) investigated nonlinear, 

vibration post-buckling of FGM and composite structures. 

Amara et al. (2016) investigated post-buckling of simply 

supported FGM beams using various shear deformation 

theories. Akbarzadeh Khorshidi et al. (2016) analyzed post-

buckling of shear deformable FGM nanobeams based on 

modified couple stress theory with von-Karman geometric 

nonlinearity.  

Porosity is a measuring of the voids in the space of the 

materials. Porosity is defined as a fraction of the volume of 

voids over the total volume in the material, and its value 

varies between 0 and 1. During the processing in the 

fabrication of functionally graded materials, it can occur 

micro-voids and porosities in the material body due to 

technically problems, curing or poor quality productions. 

Especially, the part of ceramic in the functionally graded 

materials occurs voids more frequently. After the 

production, porosities and voids can increase in the material 

depending on environmental and other conditions. It is 

known that porosities in structural materials introduces a 

low-strength, becomes more low-strength and its 

mechanical behaviors will be changed seriously. Therefore, 

the effect of the porosity must be considered in the safe 

design of the FGM structures. 

In the literature, studies of the porosity effect in the 

FGM structures are as follows; Wattanasakulpong and 

Ungbhakorn (2014) studied linear and nonlinear vibration 

FGM beams with porosity effects. Mechab et al. (2016a, b) 

examined free vibration analysis of a FGM nano-plate 

resting on elastic foundations with the porosities effect. 

Yahia et al. (2015) studied wave propagation of FGM 

porous plates with different plate theories. Şimşek and 

Aydın (2017) examined forced vibration of FGM 

microplates with porosity effects based on the modified 

couple stress theory. Mouaici et al. (2016) studied free 

vibration of FGM porous plates within hyperbolic shear 

deformation theory. Ebrahimi and Habibi (2016b) 

investigated deflection and vibration of porous plates by 

using finite element method. Benferhat et al. (2016b) 

analyzed static behavior of FGM porous plates by using a 

new refined plate theory. Benferhat et al. (2016a) examined 

static and vibration of FGM porous plates resting on 

Winkler-Pasternak foundations. Jahwari and Naguib (2016) 

investigated FGM viscoelastic porous plates with a higher 

order plate theory and statistical based model of cellular 

distribution. Vibration analysis of FGM beams with 

porosity effect are investigated by (Ebrahimi and Jafari 

(2016a, b), Ebrahimi et al. (2016), Atmane et al. (2015a, b), 

Hadji et al. (2015), Ebrahimi and Salari (2015a, b), 

Ebrahimi et al. (2015), Hadji and Bedia (2015), Hadji 

(2016, 2017), Hadji et al. (2017), Bellifa et al. (2016), 

Galeban et al. (2016), Ebrahimi and Barati (2016a, b, c), 

Ebrahimi and Farzamandnia (2016), Ebrahimi and Hosseini 

(2016), Zouatnia et al. (2017), Akbaş (2017c, d, e, f, g, 

2018a)). 

As seen from literature, post-buckling behavior of FGM  

beams with porosity effects has not been investigated so far. 

The primary purpose of this study is to fill this gap for FGM 

beams. It is seen from literature that geometrically 

nonlinear behavior of FGM beams with porosity effects has 

not been investigated so far. The primary purpose of this 

study is to fill this gap for FGM beams. The distinctive 

feature of this study from previous study for the author 

Akbaş (2013) is investigation the porosity effect in the 

geometrically nonlinear analysis of FGM Timoshenko 

beams. A better understanding of the mechanism of how the 

porosity and material distribution change response of 

nonlinear behavior FGM beam is necessary, and is a 

prerequisite for further exploration and application of the 
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FGM beams. In the present study, the geometrically 

nonlinear static analysis of a FGM Timoshenko beam 

studied with porosity effect by using the total Lagrangian 

finite element method by taking into account full geometric 

nonlinearity.  

The effects of material distribution and porosity 

parameters on the nonlinear static responses FGM beams 

are investigated with different porosity models. Also, the 

difference between the geometrically linear and nonlinear 

analysis of FGM porous beam is investigated in detail. 

 

 

2. Theory and formulation 
 

A simple supported FGM beam of length L, width b, and 

height h, as shown in Figure 1. One of the supports of the 

beam is assumed to be pinned and the other is rolled. The 

beam is subjected to a transversal point load (F) at the 

midpoint of the beam in the transverse direction as seen 

from Fig. 1. The FGM beam is made porous materials and 

vary though height direction. It is assumed that the bottom 

surface of the FGM beam is metal rich, whereas the top 

surface of the FGM beam is ceramic rich. 

The effective material properties of the FGM beam, P, 

i.e., Young’s modulus E, Poisson’s ratio ν and shear 

modulus G vary continuously in the thickness direction (Y 

axis) according to a power-law function as follows 

𝑃(𝑌) = (𝑃𝑐 − 𝑃𝑚)(
h

Y
+
1

2
)

𝑘

+ 𝑃𝑚 (1) 

where Pm and Pc are the material properties of the metal and 

the ceramic surfaces of the beam, k is the non-negative 

power-law exponent which dictates the material variation 

profile through the thickness of the beam. It is clear from 

Eq. (1) that when Y=-h/2, P=Pm, and when Y=h/2, P=Pc. 

When k=0 (full ceramic) or k=∞ (full metal), the material of 

the beam is homogeneous. according to Eq. (1). 

In the porosity effect for imperfect FGM beam, two 

porosities models (even and uneven) are used which were 

given by Wattanasakulpong and Ungbhakorn (2014) for the 

power law distribution. In the first porosity model (even), 

the porosity spread uniformly though height direction. In 

the second porosity model (uneven), the porosity spread 

functionally though height direction. The distributions of 

the even and uneven porosity distributions are shown in Fig. 

2. 

According to the power law distribution, the effective 

material property for the even porosity can be expressed as 

follows 

𝑃(𝑌, 𝑎) = (𝑃𝑐 − 𝑃𝑚)(
h

Y
+
1

2
)

𝑘

+ 𝑃𝑚 − (𝑃𝑚 + 𝑃𝐵𝑐)
𝑎

2
 (2) 

where a (a<<1) is the volume fraction of porosities. When 

a=0 , the beam becomes perfect FGM. For uneven porosity 

distribution, the effective material property can be 

expressed as follows according to the power law 

distribution    

𝑃(𝑌, 𝑎) = (𝑃𝑐 − 𝑃𝑚)(
h

Y +
1

2
)

𝑛

+ 𝑃𝑚 − (𝑃𝑚 + 𝑃𝑐)
𝑎

2
(1 −

h

Y2 ) (3) 

In the comparison of the two models: In uneven porosity 

model, the voids stack in the middle of the beam or the 

neutral of the beam. So, the stiffness of the cross-section is 

less effected from negative influences of the porosity 

because the neutral axis and its adjacent areas have low 

stress. However, the voids stack uniformly in the whole area 

of the beam in the even porosity model. Hence, the stiffness 

of the cross-section seriously decreases seriously in the 

even model. As result, the rigidity of the beam in even 

porosity model is lower than the rigidity of the beam in 

uneven porosity model. 

In the nonlinear kinematic model of the beam, the total 

Lagrangian approach is used within Timoshenko beam 

theory. The Lagrangian formulations of the problem are 

developed for porosity FGM beam by using the 

formulations given by Felippa (2017) for isotropic and 

homogeneous beam material. The finite beam element of 

the problem is derived by using a two-node beam element 

shown in Fig. 3, of which each node has three degrees of 

freedom, i.e., two displacements uxi and  uyi , and one 

rotation θi about the Z axis. 

 

 

 

Fig. 1 A simple supported FGM beam with porosity 

subjected to a non-follower transversal point load 

 

 

 

Fig. 2 Porosity models for FGM material 

 

 

Fig. 3 Two-node C
0
 beam element 
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In the deformation process, a generic point of the beam 

located at P0(X,Y) in the previous configuration C0 moves to 

P (x,y) in the current configuration C, as shown in Fig. 4. 

The projections of P0 and P along the cross sections at C0 

and C upon the neutral axis are called C0 (X,0) and C(x0,y0), 

respectively. It is assumed that the cross section of the beam 

remains unchanged, such that the shear distortion  𝛾 ≪ 1  

and cos 𝛾 can be replaced by 1 Felippa (2017). 

The coordinates of the beam at the current C configuration 

are 

𝑥 = 𝑥𝑐 − 𝑌(𝑠𝑖𝑛𝜓 + 𝑠𝑖𝑛𝛾 𝑐𝑜𝑠𝜓) 

=  𝑥𝑐 − 𝑌[sin(𝜓 + 𝛾) + (1 − 𝑐𝑜𝑠𝜓)𝑠𝑖𝑛𝜓]

=  𝑥𝑐 − 𝑌𝑠𝑖𝑛𝜃 

(4) 

 
𝑦 = 𝑦𝑐 + 𝑌(𝑐𝑜𝑠𝜓 − 𝑠𝑖𝑛𝛾 𝑠𝑖𝑛𝜓) 

=  𝑦𝑐 + 𝑌[cos(𝜓 + 𝛾) + (1 − 𝑐𝑜𝑠𝛾)𝑐𝑜𝑠𝜓]

=  𝑦𝑐 + 𝑌𝑐𝑜𝑠𝜃 

(5) 

where, 𝑥𝑐 = 𝑋 + 𝑢𝑋𝐶 and 𝑦𝑐 = 𝑢𝑌𝐶 .  

Consequently,  𝑥 = 𝑋 + 𝑢𝑋𝐶 − 𝑌𝑠𝑖𝑛𝜃 and 𝑦 = 𝑢𝑌𝐶 + 𝑌𝑐𝑜𝑠 . 

From now on, we shall call 𝑢𝑋𝐶 and 𝑢𝑌𝐶   simply 𝑢𝑋 and 

𝑢𝑌, respectively. Thus the Lagrangian representation of the 

coordinates of the generic point at C is 

⌈
𝑥
𝑦⌉ = ⌈

𝑋 + 𝑢𝑋 − 𝑌𝑠𝑖𝑛𝜃
𝑢𝑌 + 𝑌𝑐𝑜𝑠𝜃

⌉ (6) 

 

 
(a) Motion of plane beam 

 
(b) Reduction to one-dimensional element 

Fig. 4 Lagrangian kinematics of the C
0 

beam element 

with X-aligned reference configuration Felippa (2017) 

in which 𝑢𝑋 , 𝑢𝑌  and θ are functions of X only. This 

concludes the reduction to a one-dimensional model, as 

sketched in Fig. 4(b). For a two-node C0 element, it is 

natural to express the displacements and rotation as linear 

functions of the node degrees 

⌈

𝑢𝑋(𝑋)

𝑢𝑌(𝑋)

𝜃(𝑋)
⌉ =
1

2
[

1 − ξ 0 0
0 1 − ξ 0
0 0 1 − ξ

  

1 + ξ 0 0
0 1 + ξ 0
0 0 1 + ξ

]

[
 
 
 
 
 
𝑢𝑋1
𝑢𝑌1
𝜃1
𝑢𝑋2
𝑢𝑌2
𝜃2 ]
 
 
 
 
 

= 𝐍𝐮 (7) 

in which ξ=(2X/L0)-1  is the isoparametric coordinate that 

varies from ξ=-1 at node 1 to ξ=1 at node 2.  

The Green-Lagrange strains are given as follows Felippa 

(2017) 

⌈𝒆⌉ = ⌈
𝑒1
𝑒2
⌉ = ⌈

𝑒𝑋𝑋
2𝑒𝑋𝑌
⌉ 

= ⌈
(1 + 𝑢𝑋

′ )𝑐𝑜𝑠𝜃 + 𝑢𝑌
′  𝑠𝑖𝑛𝜃 − 𝑌𝜃′ − 1

2𝑒𝑋𝑌
⌉ = ⌈

𝑒 − 𝑌𝜅
𝛾
⌉ 

(8) 

 

𝑒 = (1 + 𝑢𝑋
′ )𝑐𝑜𝑠𝜃 + 𝑢𝑌

′  𝑠𝑖𝑛𝜃 − 𝑌𝜃′ − 1 

          𝛾 =(1 + 𝑢𝑋
′ )𝑠𝑖𝑛𝜃 + 𝑢𝑌

′  𝑠𝑖𝑛𝜃; 𝜅 = 𝜃′ 
(9) 

where e is the axial strain, 𝛾 is the shear strain, and 𝜅 is 

curvature of the beam, 𝑢𝑋
′ = 𝑋/𝑑𝑋 , 𝑢𝑌

′ = 𝑑𝑢𝑌/𝑑𝑋 , 

𝜃′ = 𝑑𝜃/𝑑𝑋. By assuming that the material of the FGM 

beam obeys Hooke’s law, the second Piola-Kirchhoff 

stresses in the beam become 

𝑺 = [
𝑆𝑋𝑋
𝑆𝑋𝑌
] = [

𝑆1
𝑆2
] = [

𝑠1
0 + 𝐸(𝑌, 𝑎)𝑒1
𝑠2
0 + 𝐺(𝑌, 𝑎)𝑒2

]=𝒔0 + 𝑬𝒆 (10) 

where E is the modulus of elasticity, G is the shear modulus 

and their dependence on the Y coordinate and porosity 

parameter a are given by Eqs. (2) and (3) with porosity 

effect. Using the constitutive equations, the axial force N, 

shear force V and bending moment M can be obtained as 

  = ∫ 𝑠1 𝑑  
= ∫ 𝑠1

0 +
 

𝐸(𝑌, 𝑎)(𝑒 − 𝑌𝜅)𝑑  

                =  0 + ( 𝑥𝑥𝑒 − 𝐵𝑥𝑥𝜅   

(11) 

 

  = ∫ 𝑠2 𝑑  
= ∫ 𝑠2

0 +
 

𝐸(𝑌, 𝑎)𝑒2𝑑  

                =  0 +  𝑥𝑧𝛾 
(12) 

 

  = ∫ −𝑌𝑠1 𝑑  
= ∫ −𝑌(𝑠1

0 +
 

𝐸(𝑌, 𝑎)𝑒1)𝑑  

           = 0 − 𝐵𝑥𝑥𝜅+ 𝑥𝑥𝑒 + 𝐷𝑥𝑥𝜅  
(13) 

where 

 0 = ∫ 𝑠1
0𝑑 

 
,  0 = ∫ 𝑠2

0𝑑 
 

,  0 = ∫ −𝑌𝑠1
0𝑑 

 
  (14) 

 

( 𝑥𝑥, 𝐵𝑥𝑥 , 𝐷𝑥𝑥) = ∫ 𝐸(𝑌, 𝑎)(1, 𝑌, 𝑌
2)𝑑 

 
    (15) 

 

  𝑥𝑧 = ∫ 𝐺(𝑌, 𝑎)𝑑 = ∫
𝐸(𝑌,𝑎)

2(1+𝜈(𝑌,𝑎))
𝑑 

  
    (16) 
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with ( 𝑥𝑥 , 𝐵𝑥𝑥 , 𝐷𝑥𝑥  and  𝑥𝑧  denoting the extensional, 

coupling, bending, and transverse shear rigidities 

respectively, ν is Poisson ratio.  

For the solution of the geometrically nonlinear problem in 

the total Lagrangian coordinates, a small-step incremental 

approach based on Newton-Raphson iteration method is 

used. In the Newton-Raphson solution for  the problem, the 

applied load is divided by a suitable number of increments 

according to its value. After completing an iteration process, 

the previous accumulated load is increased by a load 

increment. 

The solution for the n+1 st load increment and i th  

iteration is performed using the following relation 

𝑑𝒖𝑛
𝑖 = (𝑲𝑇

𝑖 )
−1
𝑹𝑛+1
𝑖  (17) 

where 𝑲𝑇
𝑖

 
is the tangent stiffness matrix of the system at 

the i th iteration, 𝑑𝒖𝑛
𝑖  is the displacement increment vector 

at the i th iteration and n+1 st load increment, (𝑹𝑛+1
𝑖 )𝑆 is 

the residual vector of the system at the i th iteration and 

n+1 st load increment. This iteration procedure is continued 

until the difference between two successive solution vectors 

is less than a preset tolerance in the Euclidean norm, given 

by 

√
[(𝑑𝒖𝑛

𝑖+1−𝑑𝒖𝑛
𝑖 )
𝑇
(𝑑𝒖𝑛

𝑖+1−𝑑𝒖𝑛
𝑖 )]
2

[(𝑑𝒖𝑛
𝑖+1)

𝑇
(𝑑𝒖𝑛

𝑖+1)]
2 ≤ 𝜉𝑡𝑜𝑙   (18) 

A series of successive iterations at the n+1 st 

incremental step gives 

𝒖𝑛+1
𝑖+1  𝒖𝑛+1

𝑖 + 𝑑𝒖𝑛+1
𝑖 = 𝒖𝑛 + ∆𝒖𝑛

𝑖  (19) 

where 

  

∆𝒖𝑛
𝑖 = ∑ 𝑑𝒖𝑛

𝑘𝑖
𝑘=1   (20) 

The residual vector 𝑹𝑛+1
𝑖  for the structural system is 

given as follows 

 
𝑹𝑛+1
𝑖 = 𝐟 − 𝐩  (21) 

Where f is the vector of total external forces and p is the 

vector of total internal forces, as given in the Appendix. 

The element tangent stiffness matrix for the total 

Lagrangian Timoshenko beam element as given by Felippa 

(2017) is 

𝑲𝑇 = 𝑲𝑀 + 𝑲𝐺  (22) 

where 𝑲𝐺 is the geometric stiffness matrix, and 𝑲𝑀 is the 

material stiffness matrix given as follows 

𝑲𝑀 = ∫ 𝐵𝑚
𝑇 𝑆

𝐿0

𝐵𝑚𝑑𝑋 (23) 

The explicit expressions of the terms in Eq. (22) are given 

in the Appendix. After integration of Eq. (23), the matrix 

𝑲𝑀can be expressed as follows 

 𝑲𝑀 = 𝑲𝑴
𝒂 +𝑲𝑴

𝒄 + 𝑲𝑴
𝒃 + 𝑲𝑴

𝒔   (24) 

where 𝑲𝑴
𝒂  is the axial stiffness matrix, 𝑲𝑴

𝒄  the coupling 

stiffness matrix arising for the FGM material, 𝑲𝑴
𝒃  the 

bending stiffness matrix, and 𝑲𝑴
𝒔  the shearing stiffness 

matrix, of which the explicit expressions are given in the 

Appendix. The geometric stiffness matrix 𝑲𝐺, the matrix 

𝑩𝑚 and the internal nodal force vector p remains the same 

as those given by Felippa (2017), which are reproduced in 

the Appendix. 
 
 
3. Numerical results 

 

In the numerical study, geometrically non-linear 

deflections, namely, large deflections of the simple 

supported FGM beam are calculated and presented for 

different power-law exponents, porosity coefficients under a 

transversal point load (F) at the midpoint of the beam (Fig. 

1). Also, geometrically linear and nonlinear results are 

presented and discussed for porosity effects. Using the 

conventional assembly procedure for the finite elements, the 

tangent stiffness matrix and the residual vector are obtained 

from the element stiffness matrices and residual vectors in 

the total Lagrangian sense. After that, the solution process 

outlined in the preceding section is used to obtain the 

solution for the problem of concern.  

The FGM porous beam considered in numerical 

examples is made of metal material; Aluminum (Al; E = 70 

GPa, ν = 0.3) and ceramic material : Alumina (Al2O3 ; E = 

380 GPa, ν = 0.3). The bottom surface of the FGM beam is 

metal rich, whereas the top surface of the FGM beam is 

ceramic rich. When k=0 and k=∞, the material of the beam 

gets homogeneous Alumina and homogeneous Aluminum, 

respectively, according to Eqs. (2) and (3). The dimensions 

of the beam are considered as follows: b = 0.3 m, h = 0.3 m, 

L = 4 m. 

In order to obtain the optimum number of the finite 

element for the numerical calculations, the convergence 

study is performed in Fig. 5. In Fig. 5, nonlinear maximum 

vertical displacements (at the midpoint of the beam) of the 

FGM porous beam are calculated for different numbers of 

finite elements for the point load F=200000 kN, the power-

law exponent k=3, the porosity parameter a=0.2 for uneven 

porosity model. 

It is seen from Fig. 5 that the nonlinear maximum 

displacements converge perfectly after the finite element 

n=60. In order to obtain sensitive results, the number of 

finite elements is taken as 100 in the numerical calculations. 

 

 

Fig. 5 Convergence study for nonlinear vertical 

displacements at the midpoint of the beam 
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In Table 1, the maximum vertical deflections of the 

FGM porous beam are presented for different values of the 

porosity parameter (a), the power-law exponent (k) for 

different porosity models in both linear and nonlinear 

analysis for the point load F=100000 kN.  

As can be seen from Table 1, the deflections of the beam 

increase with increase in the power-law exponents in both 

linear and nonlinear deflections. With increase in the k, the 

beam gets to full Aluminum. The Young modulus of the 

Aluminum is smaller than Alumina’s. This is as expected, 

due to the fact that an increase in the k can increase the 

elasticity modulus and bending rigidity of the beam 

decrease according to Eqs. (2) and (3). As a result, the 

strength of the material increases. In addition, it is seen 

from Table 1 that increasing porosity parameter (a), yields 

increasing the deflections of the FGM beams, as expected. 

This is because, with increase in the porosity parameter, the 

intermolecular distances of the material increase and 

intermolecular forces decrease. As a result, the strength of 

the material decreases. Another result of Table 1 that the 

results of the even porosity model are bigger than uneven 

model’s. It is mentioned before that, the rigidity of the beam 

in even porosity model is lower than the rigidity of the 

beam in uneven porosity model. So, the deflections in even 

porosity model are bigger than uneven model’s. 

In order to investigate the effect of porosity parameter (a) 

and porosity models on the geometrically linear and 

nonlinear responses of the FGM porous beam, the 

maximum transverse displacements obtained versus load 

rising (F) in Fig. 6 for the power-law exponent k=3. 

As seen from Fig. 6, the displacements of the even 

porosity model are bigger than the displacements of uneven 

porosity model because the rigidity of the beam in even 

porosity model is lower than the rigidity of the beam in 

uneven porosity model. In Fig. 6(a), the results of the two 

models coincide with each other in case of a=0 because the 

porosity effect is not considered. Increase in porosity 

parameter a, the displacements increase considerably. 

Another result of Fig. 6 that the increase in load causes 

increase in difference between the displacement values of 

the linear and the nonlinear solutions. Increase in load is 

more effective in the vertical displacements and rotations of 

the linear solution. Also, the difference between FGM beam 

in the linear case is bigger than in the nonlinear's. This 

situation may be explained as follows: In the linear case, 

arm of the external forces or arm of the external resultant 

force do not change with the magnitude of the external  

 

 

 

forces, and therefore the displacements depend on the 

external forces linearly. However, in the case of nonlinear 

analysis, the arm of the external forces change with the 

magnitude of the external force and, as the magnitude of the 

force increases the arm of these external forces decrease. 

However, as the forces increase the configuration of the 

FGM beam become close to vertical direction and therefore 

increase in the load does not cause a significant increase in 

displacements after certain load level in which the 

configuration of the beam is close to the vertical direction.  

Fig. 7 displays the relationship between of porosity 

parameter a and the material distribution parameter k in the 

linear and nonlinear solution for two porosity models for 

the value of load F=200000 kN.  

It is seen from Fig. 7 that increase in the k causes 

increase in the displacements. It is mentioned before that, 

with increase in the k, rigidity of the beam decrease 

according to Eqs. (2) and (3). Also, as seen from Fig. 7, the 

difference between the even and uneven porosity models 

increases with increase in k parameter. The difference of 

two models is quite large in the linear analysis. However, 

there is almost no difference in nonlinear analysis for two 

porosity models. It shows that the difference of the two 

models can be neglect in the nonlinear analysis. In the 

linear analysis, this difference is large to be. Another result 

of the Fig. 7 that the material distribution is very effective 

in the porosity effect. It can be concluded from here: with 

the suitable choice of parameter, the negative effects of the 

porosity can be reduced. It is observed from results that the 

material distribution plays an important role on the 

mechanical behaviour of the porous FGM beam. 

Fig. 8 shows that the relationship between of porosity 

parameter a and the maximum displacements of the FGM 

porous beam in the geometrically linear and nonlinear 

analysis for k=2 and F=200000 kN. In Fig. 8, the porosity 

parameter k- maximum vertical displacements curves 

plotted for two porosity models. 

It is seen from Fig. 8 that increase in the porosity parameter 

a, the difference between the even and uneven porosity 

models increases considerably. The difference between the 

even and uneven porosity models in the linear results is 

very large in comparison with the nonlinear results. The 

results of the linear analysis are bigger than the nonlinear's 

for all value of porosity parameters. Also, as seen from Fig. 

8, the even porosity model is very sensitive in the linear 

analysis large in comparison with the nonlinear analysis and 

the results of the uneven model.  

Table 1 The effects of porosity and material graduation on the maximum vertical deflections of FGM porou

s beam in the linear and nonlinear analysis (meter). 

Porosity 

Model 
a 

k=0 k=0.5 k=1 k=8 

Linear Nonlinear Linear Nonlinear Linear Nonlinear Linear Nonlinear 

even 

porosity 

0 0.5289 0.4960 0.8140 0.7176 1.0582 0.8753 1.7112 1.1675 

0.1 0.5622 0.5233 0.9022 0.7767 1.2292 0.9678 2.2561 1.3276 

0.2 0.5999 0.5534 1.0133 0.8456 1.4768 1.0811 3.5731 1.5521 

uneven 

porosity 

0 0.5289 0.4960 0.8140 0.7176 1.0582 0.8753 1.7112 1.1675 

0.1 0.5370 0.5027 0.8359 0.7329 1.1020 0.9007 1.8418 1.2137 

0.2 0.5453 0.5096 0.8594 0.7490 1.1509 0.9282 2.0082 1.2676 
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(a) for a=0 (Perfect FGM beam) (b) for a=0.1 

  
(c) for a=0.2 

Fig. 6 Load-maximum vertical displacements curves for different the porosity parameter on the geometrically linear and 

nonlinear 

 
 

(a) for a=0 (Perfect FGM beam) (b)  for a=0.1 

  
(c) for a=0.2 

Fig. 7 The relationship between of porosity parameter a and the material distribution parameter k in the geometrically 

linear and nonlinear displacements of the FGM porous beam 
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However, uneven model display same characteristic feature 

in both linear and nonlinear solution. It shows that even and  

uneven models display different behavior in linear and  

nonlinear analysis. 

Figs. 9 and 10 show that effect of material distribution 

parameter k on the deflected shape of the FGM porous 

beam for even and uneven porosity models, respectively for 

a=0.2 and F=200000 kN. 

It is seen from Figs. 9 and 10 that different material 

distributions are very effective of the deflection of the beam. 

Increase in the k, the deflections of the FGM beam increase 

considerably. Also, the difference between the linear shape 

and the nonlinear shapes are displayed in Figs. 9 and 10. In 

the even porosity model, the beam more deflects in 

comparison with the uneven porosity model. In the 

nonlinear solution, the horizontal displacements of the FGM 

beam are high values because of geometrically nonlinear 

effect. However, the horizontal displacements are very 

small in the linear solution because the kinematic relations 

are based on initial position, so the displacements increase 

linearly. 

Fig. 11 displays that effect of porosity parameter a on the 

deflected shape of the FGM porous beam for even and 

uneven porosity models in the linear and nonlinear case for 

k=0.2 and F=200000 kN. 

 

 

 
(a) Geometrically linear analysis 

 
(b) Geometrically nonlinear analysis 

Fig. 8 The effect of porosity parameter (a) and porosity 

models on the geometrically linear and nonlinear 

displacements of the FGM porous beam 

 

 

(a) Linear solution 

 
(b) Non-linear solution 

Fig. 9 The effect of material distribution parameter k on 

the deflected shape of the FGM porous beam for even 

porosity model 

 

 
(a) Linear solution 

 
(b) Non-linear solution 

Fig. 10 The effect of material distribution parameter k on 

the deflected shape of the FGM porous beam for uneven 

porosity model 

 

66



 

Geometrically nonlinear analysis of functionally graded porous beams 

 
(a) Even porosity model 

 
(b) Uneven porosity model 

Fig. 11 The effect of porosity parameter a on the 

deflected shape of the  FGM  porous beam for linear 

and Non-linear case 

 

 

As seen from Fig. 11, the differences of porosity 

parameters in the even porosity model are bigger than the 

uneven model's. Comparably, the differences of porosity 

parameters in the linear analysis are bigger than the 

nonlinear solution. It shows that porosity parameter play 

important role in the mechanical behavior of FGM beams. 

 

 

4. Conclusions 
 

Geometrically linear and nonlinear static responses of a 

FGM Timoshenko beam are investigated with porosity 

effect by using Total Lagrangian finite element method by 

taking into account full geometric nonlinearity. The effects 

of material distribution and porosity parameters on the 

deflections of the FGM porous beam are studied and 

discussed in both linear and nonlinear cases. The considered 

non-linear problem is solved by using incremental 

displacement-based finite element method in conjunction 

with Newton-Raphson iteration method. Convergence study 

was performed. The shortcomings of this study, the material 

nonlinearity and elasto-plastic behavior are not considered. 

It would be interesting to demonstrate the ability of the 

procedure through a wider campaign of investigations 

concerning elasto-plastic or material nonlinear analysis of 

FGM porous beams with geometrically nonlinearity. 

From these results presented and discussed, the main 

conclusions are as follows: 

 With increase in the power-law exponents leads to a rise on 

the deflections of the FGM beam in both linear and 

nonlinear deflections. 

 With increase in porosity parameter, the deflections of the 

FGM beams increase considerably in both even and uneven 

porosity models. 

 It is found that the deflections of the FGM beam by the 

even porosity are always larger than those by the uneven 

porosity models. 

 With decrease in the power-law exponent, the difference 

between even and uneven porosity models decrease 

considerably.  

 The porosity is very effective for the mechanical behavior 

of FGM porous beams. 

 With the suitable choice of parameter, the negative effects 

of the porosity can be reduced. 

 The porosity effect in the linear analysis is more sensitive 

than nonlinear analysis's. The difference between even 

porosity model and uneven porosity model can be neglect in 

the nonlinear analysis. In the linear analysis, this difference 

can not be neglected.  

 The material distribution have a very important role on the 

mechanical behaviour of the FGM porous beam. 

It is believed that the tabulated results will be a 

reference with which other researchers can compare their 

results. 
 
 
References 
 

Agarwal, S., Chakraborty, A. and Gopalakrishnan, S. (2006), 

“Large deformation analysis for anisotropic and 

inhomogeneous beams using exact linear static solutions”, 

Compos. Struct., 72(1), 91-104. 

Akbarzadeh Khorshidi, M., Shariati, M. and Emam, S.A. (2016), 

“Postbuckling of functionally graded nanobeams based on 

modified couple stress theory under general beam theory”, Int. 

J. Mech. Sci., 110(1), 160-169. 

Akbaş, Ş.D. and Kocatürk, T. (2012), “Post-buckling analysis of 

Timoshenko beams with temperature-dependent physical 

properties under uniform thermal loading”, Struct. Eng. 

Mech., 44(1), 109-125. 

Akbaş, Ş.D. and Kocatürk, T. (2013), “Post-buckling analysis of 

functionally graded three- dimensional beams under the 

influence of temperature”, J. Therm. Stresses, 36(12), 1235-

1254. 

Akbaş, Ş.D. (2013a), “Geometrically nonlinear static analysis of 

edge cracked Timoshenko beams composed of functionally 

graded material”, Math. Probl. Eng., 2013, 14. 

Akbaş, Ş.D. (2013b), “Free vibration characteristics of edge 

cracked functionally graded beams by using finite element 

method”, Int. J. Eng. Trends Technol., 4(10), 4590-4597. 

Akbaş, Ş.D. (2014a), “Large post-buckling behavior of 

Timoshenko beams under axial compression loads”, Struct. Eng. 

Mech., 51(6), 955-971. 

Akbaş, Ş.D. (2014b), “Free vibration of axially functionally 

graded beams in thermal environment”, Int. J. Eng. Appl. 

Sci., 6(3), 37-51. 

Akbaş, Ş.D. (2015a), “On post-buckling behavior of edge cracked 

67



 

Şeref D. Akbaş 

functionally graded beams under axial loads”, Int. J. Struct. 

Stab. Dynam., 15(4), 1450065. 

Akbaş, Ş.D. (2015b), “Post-buckling analysis of axially 

functionally graded three dimensional beams”, Int. J. Appl. 

Mech., 7(3), 1550047. 

Akbaş, Ş.D. (2015a), “Free vibration and bending of functionally 

graded beams resting on elastic foundation”, Res. Eng. Struct. 

Mater., 1(1). 

Akbaş, Ş.D.  (2015b), “Large deflection analysis of edge cracked 

simple supported beams”, Struct. Eng. Mech., 54(3), 433-451. 

Akbaş, Ş.D. (2015c), “Wave propagation of a functionally graded 

beam in thermal environments”, Steel Compos. Struct., 19(6), 

1421-1447. 

Akbaş, Ş.D. (2015d), “Free vibration and bending of functionally 

graded beams resting on elastic foundation”, Res. Eng. Struct. 

Mater., 1(1). 

Akbaş, Ş.D. (2017a), “Free vibration of edge cracked functionally 

graded microscale beams based on the modified couple stress 

theory”, Int. J. Struct. Stab. Dynam., 17(3), 1750033. 

Akbaş, Ş.D. (2017b), “Forced vibration analysis of functionally 

graded nanobeams”, Int. J. Appl. Mech., 9(7), 1750100. 

Akbas, S.D. (2017c), “Post-buckling responses of functionally 

graded beams with porosities”, Steel Compos. Struct., 24(5), 

579-589. 

Akbaş, Ş.D. (2017d), “Vibration and static analysis of functionally 

graded porous plates”, J. Appl. Comput. Mech., 3(3), 199-207. 

Akbaş, Ş.D. (2017e), “Nonlinear static analysis of functionally 

graded porous beams under thermal effect”, Coupled Syst. 

Mech., 6(4), 399-415. 

Akbaş, Ş.D. (2017f), “Stability of a non-homogenous porous plate 

by using generalized differantial quadrature method”, Int. J. 

Eng. Appl. Sci., 9(2), 147-155. 

Akbaş, Ş.D. (2017g), “Thermal effects on the vibration of 

functionally graded deep beams with porosity”, Int. J. Appl. 

Mech., 9(5), 1750076. 

Akbaş, Ş.D. (2018a), “Forced vibration analysis of functionally 

graded porous deep beams”, Compos. Struct., 186, 293-302. 

Akbaş, Ş.D. (2018b), “Geometrically nonlinear analysis of a 

laminated composite beam”, Struct. Eng. Mech., 66(1), 27-36. 

Akbaş, Ş.D. (2018c), “Post-buckling responses of a laminated 

composite beam”, Steel Compos. Struct., 26(6), 733-743. 

Al Jahwari, F. and Naguib, H.E. (2016), “Analysis and 

homogenization of functionally graded viscoelastic porous 

structures with a higher order plate theory and statistical based 

model of cellular distribution”, Appl. Math. Model., 40(3), 

2190-2205. 

Almeida, C.A., Albino, J.C.R., Menezes, I.F.M. and Paulino, G.H. 

(2011), “Geometric nonlinear analyses of functionally graded 

beams using a tailored Lagrangian formulation”, Mech. Res. 

Commun., 38(8), 553-559. 

Amara, K., Bouazza, M. and Fouad, B. (2016), “Postbuckling 

analysis of functionally graded beams using nonlinear model”, 

Periodica Polytechnica. Eng., Mech. Eng., 60(2), 121-128. 

Anandrao, K.S., Gupta, R.K., Ramchandran, P. and Rao, V. (2010), 

“Thermal post-buckling analysis of uniform slender 

functionally graded material beams”, Struct. Eng. Mech., 36(5), 

545-560. 

Atmane, H.A., Tounsi, A., Bernard, F. and Mahmoud, S.R. (2015a), 

“A computational shear displacement model for vibrational 

analysis of functionally graded beams with porosities”, Steel 

Compos. Struct., 19(2), 369-384. 

Atmane, H.A., Tounsi, A. and Bernard, F. (2015b), “Effect of 

thickness stretching and porosity on mechanical response of a 

functionally graded beams resting on elastic foundations”, Int. J. 

Mech. Mater. Des., 13(1), 71-84. 

Babilio, E. (2014), “Dynamics of functionally graded beams on 

viscoelastic foundation”, Int. J. Struct. Stab. Dynam., 14(8), 

1440014, Doi: 10.1142/S0219455414400148.  

Bellifa, H., Benrahou, K.H., Hadji, L., Houari, M.S.A. and Tounsi, 

A. (2016), “Bending and free vibration analysis of functionally 

graded plates using a simple shear deformation theory and the 

concept the neutral surface position”, J. Braz. Soc. Mech. Sci. 

Eng., 38, 265-275.  

Benferhat, R., Daouadji, T.H., Mansour, M.S. and Hadji, L. 

(2016a), “Effect of porosity on the bending and free vibration 

response of functionally graded plates resting on Winkler-

Pasternak foundations”, Earthq. Struct., 10(6), 1429-1449. 

Benferhat, R., Hassaine, D., Hadji, L. and Said, M. (2016b), 

“Static analysis of the FGM plate with porosities”, Steel 

Compos. Struct., 21(1), 123-136. 

Ebrahimi, F., Salari, E. and Hosseini, S.A.H. (2015), 

“Thermomechanical vibration behavior of FG nanobeams 

subjected to linear and non-linear temperature distributions”, J. 

Therm. Stresses, 38(12), 1360-1386.  

Ebrahimi, F. and Salari, E. (2015a), “Effect of various thermal 

loadings on buckling and vibrational characteristics of nonlocal 

temperature-dependent FG nanobeams”, Mech. Adv. Mater. 

Struct., 1-58.  

Ebrahimi, F. and Salari, E. (2015b), “Size-dependent thermo-

electrical buckling analysis of functionally graded piezoelectric 

nanobeams”, Smart Mater. Struct., 24(12), 125007.  

Ebrahimi, F. and Salari, E. (2015), “A semi-analytical method for 

vibrational and buckling analysis of functionally graded 

nanobeams considering the physical neutral axis position”, 

CMES Comput Model Eng Sci, 105(2), 151-181  

Ebrahimi, F. and Jafari, A. (2016a), “A higher-order 

thermomechanical vibration analysis of temperature-dependent 

FGM beams with porosities”,  J. Eng., 2016, 20. 

Ebrahimi, F. and Jafari, A. (2016b), “Thermo-mechanical vibration 

analysis of temperature-dependent porous FG beams based on 

Timoshenko beam theory”, Struct. Eng. Mech., 59(2), 343-371. 

Ebrahimi, F. Ghasemi, F. and Salari, E. (2016), “Investigating 

thermal effects on vibration behavior of temperature-dependent 

compositionally graded Euler beams with porosities”, 

Meccanica, 51(1), 223-249. 

Ebrahimi, F. and Habibi, S. (2016), “Deflection and vibration 

analysis of higher-order shear deformable compositionally 

graded porous plate”, Steel Compos. Struct., 20(1), 205-225. 

Ebrahimi, F. and Farzamandnia, N. (2016), “Thermo-mechanical 

vibration analysis of sandwich beams with functionally graded 

carbon nanotube-reinforced composite face sheets based on a 

higher-order shear deformation beam theory”, Mech. Adv. Mater. 

Struct., 1-37  

Ebrahimi, F. and Barati, M.R. (2016a), “Dynamic modeling of a 

thermo–piezo-electrically actuated nanosize beam subjected to 

a magnetic field”, Appl. Phys. A, 122(4), 1-18.  

Ebrahimi, F. and Barati, M.R. (2016b), “Vibration analysis of 

smart piezoelectrically actuated nanobeams subjected to 

magneto-electrical field in thermal environment”, J. Vib. 

Control, 1077546316646239.  

Ebrahimi, F. and Barati, M.R. (2016c), “Small scale effects on 

hygro-thermo-mechanical vibration of temperature dependent 

nonhomogeneous nanoscale beams”, Mech. Adv. Mater. Struct., 

24(11), 924-936. 

Ebrahimi, F. and Hosseini, S.H.S. (2016), “Thermal effects on 

nonlinear vibration behavior of viscoelastic nanosize plates”, J. 

Therm. Stresses, 39(5), 606-625. 

Elmaguiri, M., Haterbouch, M., Bouayad, A. and Oussouaddi, O. 

(2015), “Geometrically nonlinear free vibration of functionally 

graded beams”, J. Mater. Environ. Sci., 6(12), 3620-3633. 

Fallah, A. and Aghdam, M.M. (2011), “Nonlinear free vibration 

and post-buckling analysis of functionally graded beams on 

nonlinear elastic foundation”, Eur. J. Mech.-A/Solids, 30(4), 

571-583. 

68

http://www.techno-press.org/content/?page=article&journal=scs&volume=26&num=6&ordernum=6
http://www.techno-press.org/content/?page=article&journal=scs&volume=26&num=6&ordernum=6


 

Geometrically nonlinear analysis of functionally graded porous beams 

Felippa, C.A. (2017), “Notes on nonlinear finite element 

methods”,url:http://www.colorado.edu/engineering/cas/courses.

d/NFEM.d/NFEM.Ch11.d/NFEM.Ch11.pdf. 

Galeban, M.R., Mojahedin, A., Taghavi, Y. and Jabbari, M. (2016), 

“Free vibration of functionally graded thin beams made of 

saturated porous materials”, Steel Compos. Struct., 21(5), 999-

1016. 

Hadji, L. and Bedia, E.A.A. (2015), “Influence of the porosities on 

the free vibration of FGM beams”, Wind Struct., 21(3) 273-287. 

Hadji, L., Daouadji, T.H. and Bedia, E.A. (2015), “A refined 

exponential shear deformation theory for free vibration of FGM 

beam with porosities”,  Geomech. Eng., 9(3), 361-372. 

Hadji, L., Khelifa, Z. and Adda Bedia, E.A. (2016), “A new higher 

order shear deformation model for functionally graded beams”, 

KSCE J. Civil Eng., 20(5), 1835-1841.  

Hadji, L. (2017), “Analysis of functionally graded plates using a 

sinusoidal shear deformation theory”, Smart Struct. Syst., 19(4), 

441-448.  

Hadji, L., Zouatnia, N. and Kassoul, A. (2017), “Wave propagation 

in functionally graded beams using various higher-order shear 

deformation beams theories”, Struct. Eng. Mech., 62(2), 143-

149.  

Hosseini, M. and Fazelzadeh, S.A. (2011), “Thermomechanical 

stability analysis of functionally graded thin-walled cantilever 

pipe with flowing fluid subjected to axial load”, Int. J. Struct. 

Stab. Dynam., 11(3), 513–534. 

Hui-Shen, S. and Wang, Z.X. (2014), “Nonlinear analysis of shear 

deformable FGM beams resting on elastic foundations in 

thermal environments”, Int. J. Mech. Sci., 81, 195-206. 

Jahwari, F. and Naguib, H.E. (2016), “Analysis and 

homogenization of functionally graded viscoelastic porous 

structures with a higher order plate theory and statistical based 

model of cellular distribution”, Appl. Math. Model., 40(3), 

2190-2205. 

Kolakowski, Z. and Teter, A. (2015), “Static interactive buckling 

of functionally graded columns with closed cross-sections 

subjected to axial compression”, Compos. Struct., 123(1), 257-

262. 

Kang, Y.A. and Li, X.F. (2009), “Bending of functionally graded 

cantilever beam with power-law non-linearity subjected to an 

end force”, Int. J. Nonlinear Mech., 44(6), 696-703. 

Kang, Y.A. and Li, X.F., (2010), “Large deflections of a non-linear 

cantilever functionally graded beam”, J. Reinf. Plast. Comp., 

29(12), 1761-1774. 

Ke, L.L., Yang, J. and Kitipornchai, S. (2009), “Postbuckling 

analysis of edge cracked functionally graded Timoshenko 

beams under end shortening”, Compos. Struct., 90(2), 152-160. 

Kocatürk, T. and Akbaş, Ş.D. (2010), “Geometrically non-linear 

static analysis of a simply supported beam made of hyperelastic 

material”, Struct. Eng. Mech., 35(6), 677-697. 

Kocatürk, T. and Akbaş, Ş.D. (2011), “Post-buckling analysis of 

Timoshenko beams with various boundary conditions under 

non-uniform thermal loading”, Struct. Eng. Mech., 40(3), 347-

371. 

Kocatürk, T., Şimşek, M. and Akbaş, Ş.D. (2011), “Large 

displacement static analysis of a cantilever Timoshenko beam 

composed of functionally graded material”, Sci. Eng. Compos. 

Mater., 18, 21-34. 

Kocatürk, T. and Akbaş, Ş.D. (2012), “Post-buckling analysis of 

Timoshenko beams made offunctionally graded material under 

thermal loading”. Struct. Eng. Mech., 41(6), 775-789. 

Kocatürk, T. and Akbaş, Ş.D. (2013), “Thermal post-buckling 

analysis of functionally graded beams with temperature-

dependent physical properties”, Steel Compos. Struct., 15(5), 

481-505. 

Li, S.R., Zhang, J.H. and Zhao, Y.G. (2006), “Thermal post-

buckling of functionally graded material Timoshenko beams”, 

Appl. Math. Mech., (English Edition), 26(6), 803-810. 

Li, Q. and Li, S. (2011), “Post-bucking configuration of a 

functionally graded material column under distributed 

load”,  Fuhe Cailiao Xuebao(Acta Materiae Compositae 

Sinica), 28(3), 192-196. 

Li, L.Q. and Shao, Q.H. (2014), “Non-linear analysis of a FGM 

cantilever beam supported on a winkler elastic 

foundation”, Appl. Mech. Mater., 602, 131-134. 

Mechab, I., Mechab, B., Benaissa, S., Serier, B. and Bouiadjra, 

B.B. (2016a), “Free vibration analysis of FGM nanoplate with 

porosities resting on Winkler Pasternak elastic foundations 

based on two-variable refined plate theories”, J. Braz. Soc. 

Mech. Sci. Eng., 38, 2193-2211. 

Mechab, B., Mechab, I., Benaissa, S., Ameri, M. and Serier, B. 

(2016b), “Probabilistic analysis of effect of the porosities in 

functionally graded material nanoplate resting on Winkler–

Pasternak elastic foundations”, Appl. Math. Model., 40(2), 738-

749. 

Mohanty, S.C., Dash, R.R. and Rout, T. (2012), “Static and 

dynamic stability analysis of a functionally graded Timoshenko 

beam”, Int. J. Struct. Stab. Dynam., 12(4) Article ID 1250025, 

33 pages. 

Mouaici, F., Benyoucef, S., Atmane, H.A. and Tounsi, A. (2016), 

“Effect of porosity on vibrational characteristics of non-

homogeneous plates using hyperbolic shear deformation 

theory”, Wind Struct., 22(4), 429-454. 

Nguyen, D.K., Gan, B.S. and Trinh, T.H. (2014), “Geometrically 

nonlinear analysis of planar beam and frame structures made of 

functionally graded material”, Struct. Eng. Mech., 49(6) 727-

743. 

Rastgo, A., Shafie, H. and Allahverdizadeh, A. (2005), “Instability 

of curved beams made of functionally graded material under 

thermal loading”, Int. J. Mech. Mater. Des., 2, 117-128. 

Song, X. and Li, S. (2008), “Nonlinear stability of fixed-fixed 

FGM arches subjected to mechanical and thermal loads”, Adv. 

Mater. Res., 33-37, 699-706. 

Sun, Y., Li, S.R. and Batra, R.C. (2016), “Thermal buckling and 

post-buckling of FGM mTimoshenko beams on nonlinear 

elastic foundation”, J. Therm. Stresses, 39(1), 11-26. 

Şimşek, M. and Aydın, M. (2017), “Size-dependent forced 

vibration of an imperfect functionally graded (FG) microplate 

with porosities subjected to a moving load using the modified 

couple stress Theory”, Compos. Struct., 160, 408-421. 

Trinh, T.H., Nguyen, D.K., Gan, B.S. and Alexandrov, S. (2016), 

“Post-buckling responses of elastoplastic FGM beams on 

nonlinear elastic foundation”, Struct. Eng. Mech., 58(3), 515-

532. 

Wattanasakulpong, N. and Ungbhakorn, V. (2014), “Linear and 

nonlinear vibration analysis of elastically restrained ends FGM 

beams with porosities”,  Aerosp. Sci. Technol., 32(1), 111-120. 

Yahia, S.A., Atmane, H.A., Houari, M.S.A. and Tounsi, A. (2015), 

“Wave propagation in functionally graded plates with porosities 

using various higher-order shear deformation plate 

theories”, Struct. Eng. Mech., 53(6), 1143-1165. 

Yan, T., Yang, J. and Kitipornchai, S. (2012), “Nonlinear dynamic 

response of an edge-cracked functionally graded Timoshenko 

beam under parametric excitation”, Nonlinear Dynam., 67(1), 

527-540. 

Zhang, D.G. and Zhou, H.M. (2014), “Nonlinear bending and 

thermal post-buckling analysis of FGM beams resting on 

nonlinear elastic foundations”, CMES Comput. Model. 

Eng., 100(3) 201-222. 

Zouatnia, N., Hadji, L. and Kassoul, A. (2017), “An analytical 

solution for bending and vibration responses of functionally 

graded beams with porosities”, Wind Struct., 25(4), 329-342.  

 

CC 



 

Şeref D. Akbaş 

Appendix 
 

In this Appendix, the entries of the following matrices 

are given: axial stiffness matrix 𝑲𝑴
𝒂 , coupling stiffness 

matrix 𝑲𝑴
𝒄  arising for the FGM, bending stiffness matrix 

𝑲𝑴
𝒃 , and shearing stiffness matrix 𝑲𝑴

𝒔  Felippa (2017). 

𝑲𝑀
𝑎  =

AXX
𝐿0

[
 
 
 
 
 
 

𝑐𝑚
2 𝑐𝑚𝑠𝑚 −𝑐𝑚𝛾𝑚𝐿0/2

𝑐𝑚𝑠𝑚 𝑠𝑚
2 −𝑠𝑚𝛾𝑚𝐿0/2

−𝑐𝑚𝛾𝑚𝐿0/2 −𝑠𝑚𝛾𝑚𝐿0/2 𝛾𝑚
2 𝐿0
2/4

−𝑐𝑚
2 −𝑐𝑚𝑠𝑚 −𝑐𝑚𝛾𝑚𝐿0/2

−𝑐𝑚𝑠𝑚 −𝑠𝑚
2 −𝑠𝑚𝛾𝑚𝐿0/2

𝑐𝑚𝛾𝑚𝐿0/2 −𝑠𝑚𝛾𝑚𝐿0/2 𝛾𝑚
2 𝐿0
2/4

−𝑐𝑚
2 −𝑐𝑚𝑠𝑚 𝑐𝑚𝛾𝑚𝐿0/2

−𝑐𝑚𝑠𝑚 −𝑠𝑚
2 𝑠𝑚𝛾𝑚𝐿0/2

𝑐𝑚𝛾𝑚𝐿0/2 −𝑠𝑚𝛾𝑚𝐿0/2 𝛾𝑚
2 𝐿0
2/4

𝑐𝑚
2 𝑐𝑚𝑠𝑚 𝑐𝑚𝛾𝑚𝐿0/2

𝑐𝑚𝑠𝑚 𝑠𝑚
2 𝑠𝑚𝛾𝑚𝐿0/2

𝑐𝑚𝛾𝑚𝐿0/2 𝑠𝑚𝛾𝑚𝐿0/2 𝛾𝑚
2 𝐿0
2/4 ]

 
 
 
 
 
 

 (A1) 

 

𝑲𝑀
𝑐  

=
BXX
𝐿0

[
 
 
 
 
 
0 0 −𝑐𝑚
0 0 −𝑠𝑚
−𝑐𝑚 −𝑠𝑚 𝛾𝑚𝐿0

0 0 𝑐𝑚
0 0 𝑠𝑚
𝑐𝑚 𝑠𝑚 0

0 0 𝑐𝑚
0 0 𝑠𝑚
𝑐𝑚 𝑠𝑚 0

  0 0 −𝑐𝑚
0 0 −𝑠𝑚
−𝑐𝑚 −𝑠𝑚 −𝛾𝑚𝐿0]

 
 
 
 
 

 (A2) 

 

𝑲𝑀
𝑏  =

DXX
𝐿0

[
 
 
 
 
 
0 0 0
0 0 0
0 0 1

0 0 0
0 0 0
0 0 −1

0 0 0
0 0 0
0 0 −1

  0 0 0
0 0 0
0 0 1 ]

 
 
 
 
 

 (A3) 

 

𝑲𝑀
𝑎  =

AXZ
𝐿0

[
 
 
 
 
 
 
 
 
 
 
 
 𝑠𝑚

2 −𝑐𝑚𝑠𝑚
−𝑠𝑚𝛼1𝐿0
2

−𝑐𝑚𝑠𝑚 𝑐𝑚
2

𝑐𝑚𝛼1𝐿0
2

−𝑠𝑚𝛼1𝐿0
2

𝑐𝑚𝛼1𝐿0
2

𝛼1
2𝐿0
2

4

−𝑠𝑚
2 𝑐𝑚𝑠𝑚

−𝑠𝑚𝛼1𝐿0
2

𝑐𝑚𝑠𝑚 −𝑐𝑚
2

𝑐𝑚𝛼1𝐿0
2

𝑠𝑚𝛼1𝐿0
2

−𝑐𝑚𝛼𝑚𝐿0
2

𝛼1
2𝐿0
2

4

−𝑠𝑚
2 𝑐𝑚𝑠𝑚

𝑠𝑚𝛼1𝐿0
2

𝑐𝑚𝑠𝑚 −𝑐𝑚
2 −

𝑐𝑚𝛼1𝐿0
2

−𝑠𝑚𝛼1𝐿0
2

𝑐𝑚𝛼1𝐿0
2

𝛼1
2𝐿0
2

4

𝑠𝑚
2 −𝑐𝑚𝑠𝑚

𝑠𝑚𝛼1𝐿0
2

−𝑐𝑚𝑠𝑚 𝑐𝑚
2 −

𝑐𝑚𝛼1𝐿0
2

𝑠𝑚𝛼1𝐿0
2

−
𝑐𝑚𝛼1𝐿0
2

𝛼1
2𝐿0
2

4 ]
 
 
 
 
 
 
 
 
 
 
 
 

  (A4) 

 

where m denotes the midpoint of the beam, ξ=0, and  

𝜃𝑚 = (𝜃1 + 𝜃2)/2 ,  𝑚 = 𝜃𝑚 +  , 𝑐𝑚 = 𝑐𝑜𝑠 𝑚 ,  𝑠𝑚 =
𝑠𝑖𝑛 𝑚, 

𝑒𝑚 =
𝐿𝑐𝑜 (  − )

𝐿0
− 1 , 𝛼1 = 1 + 𝑒𝑚  and 𝛾𝑚 =

𝐿𝑐𝑜 ( −  )

𝐿0  
 

(See Fig. A1 for symbols). The initial axis of the beam 

considered is taken as horizontal, therefore φ=0. The matrix 

S is defined as follows 

  𝑺 = [

AXX 0 −BXX
0 AXZ 0
−BXX 0 DXX

]  (A5) 

 

The matrix Bm is given as follows 

 

𝑩𝒎  = 𝑩𝒎|𝜉=0  

=
1

𝐿0

[
 
 
 
 −𝑐𝑚 −𝑠𝑚 −

1

2
𝐿0𝛾𝑚

𝑠𝑚 −𝑐𝑚
1

2
𝐿0(1 + 𝑒𝑚)

0 0 −1

𝑐𝑚 𝑠𝑚 −
1

2
𝐿0𝛾𝑚

𝑠𝑚 −𝑐𝑚
1

2
𝐿0(1 + 𝑒𝑚)

0 0 1 ]
 
 
 
 

 (A6) 

 

 

Fig. A1 Plane beam element with arbitrarily oriented 

reference configuration Felippa (2017) 

 
The geometric stiffness matrix KG is given as follows 

𝑲𝐺  =
  
2

[
 
 
 
 
 
 
 
0 0 𝑠𝑚
0 0 −𝑐𝑚

𝑠𝑚 −𝑐𝑚 −
1

2
𝐿0(1 + 𝑒𝑚)

0 0 𝑠𝑚
0 0 −𝑐𝑚

−𝑠𝑚 𝑐𝑚 −
1

2
𝐿0(1 + 𝑒𝑚)

0 0 −𝑠𝑚
0 0 𝑐𝑚

𝑠𝑚 −𝑐𝑚 −
1

2
𝐿0(1 + 𝑒𝑚)

0 0 −𝑠𝑚
0 0 𝑐𝑚

−𝑠𝑚 𝑐𝑚 −
1

2
𝐿0(1 + 𝑒𝑚)]

 
 
 
 
 
 
 

 

   +
Nm

2

[
 
 
 
 
 
 
0 0 𝑐𝑚
0 0 𝑠𝑚

𝑐𝑚 𝑠𝑚 −
1

2
𝐿0𝛾𝑚

0 0 𝑐𝑚
0 0 𝑠𝑚

−𝑐𝑚 −𝑠𝑚 −
1

2
𝐿0𝛾𝑚

0 0 −𝑐𝑚
0 0 −𝑠𝑚

𝑐𝑚 𝑠𝑚 −
1

2
𝐿0𝛾𝑚

0 0 −𝑐𝑚
0 0 −𝑠𝑚

−𝑐𝑚 −𝑠𝑚 −
1

2
𝐿0𝛾𝑚]

 
 
 
 
 
 

  

(A7) 

in which Nm and Vm are the axial and shear forces evaluated 

at the midpoint. The internal nodal force vector is Felippa 

(2017) 

𝒑 = 𝐿0𝑩𝒎
𝑻 𝒛 =

[
 
 
 
 −𝑐𝑚 −𝑠𝑚 −

1

2
𝐿0𝛾𝑚

𝑠𝑚 −𝑐𝑚 −
1

2
𝐿0(1 + 𝑒𝑚)

0 0 −1

𝑐𝑚 𝑠𝑚
1

2
𝐿0𝛾𝑚

𝑠𝑚 −𝑐𝑚 −
1

2
𝐿0(1 + 𝑒𝑚)

0 0 1 ]
 
 
 
 
𝑇

[
 
 
 
] (A8) 

where𝒛𝑻 = [   ]. The external nodal force vector is 

𝒇

= b∫ ∫

[
 
 
 
 
 
1 − 𝜉1 0 0
0 1 − 𝜉1 0
0 0 1 − 𝜉1

1 − 𝜉2 0 0
0 1 − 𝜉2 0
0 0 1 − 𝜉2]

 
 
 
 
 

𝐿0h

[
𝑓𝑋
𝑓𝑌
0

] 𝑑𝑋𝑑𝑌

+                                     𝑏∫ ∫ ∫

[
 
 
 
 
 
1 − 𝜉1 0 0
0 1 − 𝜉1 0
0 0 1 − 𝜉1

1 − 𝜉2 0 0
0 1 − 𝜉2 0
0 0 1 − 𝜉2]

 
 
 
 
 

𝐿0h

[

𝑡𝑋
𝑡𝑌
𝑚𝑡𝑌

] 𝑑𝑋
𝐿0

 

(A9) 

 
where fx, fy are the body forces, tx, ty, mz are the surface 

loads in the X, Y directions and about the Z axis. 
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