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1. Introduction 
 

Because of its economy, beauty and low deadweight, 

membrane structure is widely applied to long-span 

structures such as stadiums, exhibition centers and works of 

decoration. But for its low deadweight, low local stiffness 

and low natural frequency, this kind of structure is very 

sensitive to wind load. We can’t ignore the interaction 

between membrane structures and wind environment, and it 

can be evaluated by two parameters, added mass and 

radiation /aerodynamic damping through experimentally 

investigating (Minami 1998, Yang et al. 2010, Liu et al. 

2016). In order to investigate the general trend of the 

aerodynamic behavior, Rizzo (2015, 2016) adopt static 

loads to simulate dynamic effects of wind on hyperbolic 

paraboloid roofs with square plan, through wind tunnel tests 

and CFD analyses, and explore the possibility of defining 

equivalent static pressure fields able to reproduce the 

envelope of dynamic displacements of the cables net. 

As the wind velocity reaches a certain value, 

aerodynamic instability phenomena may occur. In wind-

tunnel tests for suspended cable roof models, Miyake et al.  

 (1992) and Kawakita et al. (1992) observed this kind of  
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aerodynamic instability phenomenon. In actual engineering, 

the membrane roofs of the Cheju World Cup stadium in 

Korea and Wenzhou University stadium in China have 

experienced local destruction under the wind loads of less 

than design value. It has caused scholars to pay attention to 

the aerodynamic stability of membrane structure under 

wind loads. At present, there has been an agreement of 

qualitative analysis about the mechanism of aerodynamic 

instability in tensioned membrane structure (Minami et al. 

1993, Sun et al. 2003, Yang et al. 2005). These studies 

found that at a lower wind velocity, the structure vibrates 

primarily in single-mode for divergence instability. With the 

velocity increasing, it presents a vibrating trend of 

multimode coupling for flutter instability. However, studies 

on quantitative analysis are poor. Sygulski (1994, 1997) 

applied FEM (finite element modeling) and BEM 

(boundary element method) to deduce the critical velocity 

of instability with a membrane model supported on a rigid 

board in the uniform potential flow. Attar et al. (2005), 

Munteanu et al. (2015) used a reduced-order system-

identifying approach to analyze the structural nonlinear 

behavior of aeroelastic configurations, and the results 

matched well with those from a high-fidelity aeroelastic 

model, in a similar way Vassilopoulou et al. (2012) studied 

the nonlinear dynamic phenomena in a SDOF model of 

cable net, and the numerical analyses approaches well the 

behavior of analytical solutions of the simplified model. 
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Abstract.  This paper studies the aerodynamic stability of a tensioned, geometrically nonlinear orthotropic membrane structure with 

hyperbolic paraboloid in sag direction. Considering flow separation, the wind field around membrane structure is simulated as the 

superposition of a uniform flow and a continuous vortex layer. By the potential flow theory in fluid mechanics and the thin airfoil theory in 

aerodynamics, aerodynamic pressure acting on membrane surface can be determined. And based on the large amplitude theory of 

membrane and D'Alembert's principle, interaction governing equations of wind-structure are established. Then, under the circumstance of 

single-mode response, the Bubnov-Galerkin approximate method is applied to transform the complicated interaction governing equations 

into a system of second-order nonlinear differential equation with constant coefficients. Through judging the frequency characteristic of the 

system characteristic equation, the critical velocity of divergence instability is determined. Different parameter analysis shows that the 

orthotropy, geometrical nonlinearity and scantling of structure is significant for preventing destructive aerodynamic instability in membrane 

structures. Compared to the model without considering flow separation, it's basically consistent about the divergence instability regularities 

in the flow separation model. 
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With the small deformation theory, Banichuk et al.
 
(2010a, 

b) analyzed the stability of membranes and plates 

interacting with axially moving ideal fluid, and obtained the 

critical velocity of divergence instability by numerical 

method. Stanford et al. (2007, 2008) invented a novel 

experimental facility that integrated wind tunnel with a 

visual image-correlation system for simultaneous 

measurement of wing displacements, strains and 

aerodynamic loads, and the numerical and experimental 

data have suitable correspondence for moderate angles of 

attack. Combined with a finite-difference membrane model 

with third-order piston theories, Scott et al. (2007) used 

Nastran normal modes in the structured compressible flow 

solver to simulate the dynamic aeroelastic stability of 

membrane structures for aerocapture, and the results 

obtained are consistent with a static aeroelastic analysis. 

Yang et al. (2006) used an analytic method to derive the 

critical instability wind velocity of a tensioned membrane 

model by judging the stability of the wind-roof interaction 

equation. Li et al. (2006) did this by judging the frequency 

characteristic of the system characteristic equation. By large 

amplitude theory and the D'Alembert's principle and taking 

structure’s geometric nonlinearity and orthotropy in 

consideration, Zheng et al. (2010) and Xu et al. (2011) 

summarized Yang and Li’s research thinking, and obtained 

the critical velocities of divergence instability of membrane 

model with planar and hyperbolic paraboloid in arch 

direction under the ideal potential flow. 

This paper presents a theoretical study of the 

aerodynamic stability of a tensioned membrane model with 

hyperbolic paraboloid in sag direction, including the tow 

characteristics of orthotropy and geometric nonlinearity in 

actual engineering. On the basis of large amplitude theory 

and D’Alembert’s principle, the governing equation is 

addressed in the subsequent section. Applying the Bubnov-

Galerkin approximate method, the next section is devoted to 

deducing the critical velocity of divergence instability. 

Referring to the analysis with the model in arch direction 

(Xu et al. 2011), computational examples are given to 

analyze the aerodynamic instability rules affected by each 

parameter. Some conclusions are also presented. 

 

 

2. Governing equation 
 

2.1 Structure model and boundary conditions 
 

The hyperbolic paraboloid membrane model studied is 

orthotropic, with differential Young’s moduli in its two 

principal fiber directions. Assume that the two principal 

fiber directions are just along with the two orthogonal 

directions x and y in a three-dimensional (3D) Cartesian 

coordinate system; see Fig. 1. The four edges of the model 

are completely clamped immovably. The spans in x and y 

are denoted by a and b, respectively; the initial stress in x 

and y are denoted by N0x and N0y, respectively. The 

membrane’s center point O' is in the plane xoy. The wind 

direction is along the structure’s sag direction, namely y 

direction. 

 

Fig. 1 Tensioned orthotropic hyperbolic paraboloid 

membrane model with four edges clamped (wind along y 

direction) 

 

 

The initial surface function is 
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where f1 denotes the midspan sag in y, and f2 denotes the 

midspan arch in x.  

The initial principal curvatures in x and y are 
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Under the action of 0xN  and 0 yN , the equilibrium 

equation is obtained 

0 0 0 0 0x x y yN k N k   (3) 
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0 0/y xN N  , /a b  , 1 /f b   

The displacement boundary conditions can be expressed 

as follows 
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where w=denotes deflection: w (x, y, t). 

 

2.2 Dynamic governing equations 
 

According to the large amplitude theory and 

D’Alembert’s principle, the dynamic equilibrium equation 

and the compatible equation of orthotropic membrane are 

(Liu et al. 2013, Awrejcewicz 2013) 
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(5) 

where h = membrane’s thickness; ρ0= membrane’s area 

density; ξ0= structure’s self-damping coefficient; p1 and p2 = 

atmospheric pressure of lower and upper surface, 

respectively (p1 = static atmospheric pressure p ); E1 and 

E2 = Young’s moduli in x and y, respectively; φ = stress 

function: φ (x, y, t). 

 

 

3 Critical velocity of divergence instability 
 

3.1 Aerodynamics 
 

Dowell (1970) and Tang (2015) pointed out the air 

viscosity should be considered if the vibration wavelength 

is close to the air boundary layer thickness. But in civil 

engineering structures, the low-order mode often plays a 

dominant role when vibrating, so the wavelength is far 

greater than the boundary layer thickness. The experimental 

studies of Uematsu et al. (2009) showed that the boundary-

layer turbulence has little effect on the structural response 

under wind loads. In this paper, the potential flow is 

considered to be inviscid, uniform and incompressible. 

Assume the flow is over the upper surface of the structure 

only, flow velocity V and direction along y, namely the sag 

direction of the structure; see Fig. 1. Due to the sharp corner 

of the structure’s leading edge, it would present a flow 

separation phenomenon and a vortex disturbance layer 

when flow encounters the structure. In this case, the 

disturbance layer can be simulated in a razor-thin & 

continuous vortex layer approximately. So the wind field 

above the structure can be simulated in superposition of a 

uniform flow and a continuous vortex layer. 

According to the fluid Bernoulli’s equation, the outdoor 

pressure p2 is (Forsching 1980) 

2p V p
y t

 
 
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    
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 (6) 

where ρ = air density; = velocity perturbation potential:

( , , , )x y z t ; p = static atmospheric pressure; V =flow 

velocity. 

According to the potential theory, ( , , , )x y z t in Eq. 

(6) needs to satisfy Laplace’s equation [Eq. (7)] and 

boundary condition [Eq. (8)] 
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where zv = flow velocity component in z. 

According to the thin airfoil theory in aerodynamics, 

( , , , )x y z t satisfying Eqs. (7) and (8) can be supposed as 

follows (Ivovich et al. 1991, Yang et al. 2006) 
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where  = the vortex density: ( , , )x y t . 

Substituting Eq. (9) into Eq. (6) yields 
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3.2 Critical velocity of divergence instability 
 

Substituting Eq. (10) into Eq. (5) yields 
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(11) 

According to the Bubnov-Galerkin method, functions 

that satisfy the boundary conditions Eq. (4) are as follows 

1
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where ( , )iW x y = mode shape function; ( , )i x y = 

coordinate stress function; ( )iT t  and )t(T
~

i  = time 

functions. 

These studies (Minami et al. 1993, Sun et al. 2003, 

Yang et al. 2005) found that at a lower wind velocity, the 

structure vibrates primarily in single-mode for divergence 

instability, with the velocity increasing, it presents a 

vibrating trend of multimode coupling for flutter instability. 

As the flutter instability is a multimode coupling instability, 

and it is difficult to solve this kind of nonlinear equation. 

This paper studies the divergence instability on the basis of 

single-mode structural vibration.  

Assume the single-mode shape function that satisfies the 

boundary conditions Eq. (4) is 

( , ) sin sin
m x n y

W x y
a b

 
  (13) 

where m and n = orders of vibration mode in x and y, 

respectively. 

So the displacement function is 

( , , ) ( )sin sin
m x n y

w x y t T t
a b

 
  (14) 

Substituting Eq. (14) into Eq. (5) yields 
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Assume that the stress function which satisfied Eq. (15) 

is 
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Substituting Eq. (16) into Eq. (15) yields 
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(17) 

Substituting Eqs. (14) and (16) into Eq. (11) yields 
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According to the Bubnov-Galerkin method (Shin et al. 

2004), Eq. (18) can be transformed as follows 
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where  0 ,0S x a y b     . 

Eq. (19) can be simplified as 
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It is indispensable to determine ( , , )x y t  before 

solving Eq. (20). According to Biot-Savart law and lifting 

surface theory (Bisplinghoff et al. 1955), the vortex’s 

induced velocity vertical to the membrane surface is 
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Combining the boundary condition Eq. (8), an integral 

equation about ( , , )x y t can be determined as follows 
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Assume the curved surface function of the membrane 

structure is 
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Substituting Eq. (23) into Eq. (22) yields 
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Substituting Eqs. (1) and (14) into Eq. (24) yields 
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1

4 ( ) ( ) ( )

( ) ( in)

b a t y
d d

x x y

V

b
f y

n m x n y m x n y
V

b b a b a
T t

b
t T

 

   
 

  

 






 
 

      

  



   

(25) 

According to vortex lattice method (Finnemore et al. 

2001), the membrane surface is divided into finitely small 

vortex lattice. In Eq. (25), assume that the vortex density of 

the jth vortex lattice is 

 0 1 2

( )
( ) ,           1,2,j j j j

T t
a a T t a j M N

V



      (26) 

 

4 4 2 2 4 2 2 2 2
2

0 04 4 2 2 2 2

1 2

1 1 2 2
( ) cos cos ( )sin sin  

2
x y

m n m x n y n m m x n y
T t k k T t

E y E x a b a b b a a b

            
      

     

 (15) 
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 

 

 

0

2

1

2

1

1

1

1

8 ( / 2) / ,       

sin cos ,       

1, 2,

1,2,

sin sin ,             1, 2,

M N

ij j

j

M N

ij j

j

M N

ij j

j

i

i i

i i

f y b b

m x n yn

b a b

m

C a i M N

C a i M N

C a i M N
x n y

a b

 

 














   




   



 



 








 

(27) 

where 
0 ja , 

1 ja and 
2 ja = constant coefficients obtained 

from solving linear algebraic equations in vortex lattice 

method;  M, N= the numbers of vortex lattice equally 

divided in direction x and y , respectively; 
ijC is a 

dimensionless geometric sense, and can be obtained by 

Biot-Savart law. 

The vortex density is 

 0 1 2

( )
( ) ,        1,2,j j j j

T t
aV aV a a T t a j M N

V
 

 
      

 

 
(28) 

Substituting Eq. (28) into Eq. (20) yields 

2 3

1 1 1 1( ) ( ) ( ) ( ) ( ) 0AT t BT t C T t DT t ET t F        (29) 

where 

 

 

1 2
0

1 1 2
0

2

1 1

2

1 0

( , )

( , ) ( , )

( , )

( , )

y

j

S

y

j j

S S

j

S

j

S

A A a a d W x y dxdy

B B aV a d W x y dxdy aV a W x y dxdy

C C aV a W x y dxdy

F aV a W x y dxdy

 

  





 

  

 



 

  





Obviously, Eq. (29) is a nonlinear differential equation with 

respect to ( )T t . Assume that the periodic solution which 

satisfies the initial condition 0( ) | 0tT t    is 

( ) sin sinT t f t f    (30) 

where f denotes the amplitude. 

Substituting Eq. (30) into Eq. (29) and applying the 

Bubnov-Galerkin method again yields 

 

0

0

0 0 0

0

0

2 2 2 3 3

0

2 2 2 2 3

2 3

1 1

1 1 1

0 0 0

1 1

1

3

1

1

0

1 1

sin

sin cos sin sin sin sin

3
( )sin cos sin sin

4

( ) ( ) ( ) ( )

1
si

4

(

s

)

n 3 in

T

T

T T T

T

dt

f f f Df Ef dt

f A C Ef dt B f dt

AT t B T t C T t DT t ET t F

Df dt

Ef dt

A B

F

C F



       

     

 

  

      

 



   



 



   



  


0

0
sin

0

T

dt





 

(31) 

where 0T is a cycle, 0 2 /T   . 

Integrating and simplifying Eq. (31) yields 

0

2 2 2

1 1

0

3
( )sin 0

4

T

f A C Ef dt      (32) 

For 0f  , and there will be 

2 2

1 1

3
0

4
A C Ef     (33) 

When the wind velocity is approaching the critical 

value, the increasing aerodynamic force will equal or even 

exceed the sum of dead weight and inertia force of the 

structure. At that moment, the frequency of the system 

characteristic equation becomes zero and the divergence 

instability phenomenon occurs (Kornecki et al. 1976). 

The critical condition for divergence instability is

0  . Substituting A1, C1, E and 0  into Eq. (33) 

yields the critical velocity of divergence instability 

   2 22 2 2 2

0 0 0 0

3

/ 4 / 4 ( ) / 83y x x y

cr

m b hk N a n a hk N b hm n ab
V

a

f    


 

    


 

(34) 

where 

3 1

1

1

1

1

( , )

sin sin

sin sin

j

S

j j

j

M

j

j j

N

M

j

j

N

a W x y dxdy

m x n y a b
a

a b M N

m x n yab

aMN
a

b



 

 











  









 (35) 

From Eq. (33) it can be concluded that in large 

amplitude theory, the vibration frequency ω is connected to 

the amplitude f, which is just one of the characteristics of 

geometrically nonlinear structures. 

When f approaches zero, Eq. (34) can be transformed 

into the formula obtained just according to the small 

amplitude theory, as follows 

   2 2

0 0 0 0

3

/ 4 / 4y x x y

cr

m b hk N a n a hk N b
V

a

 


 

  
  (36) 

In Eq. (34), let 1 / 0f b   . The formula of the 

planar model can also be obtained in considering the flow 

separation, as follows 

2 2 2 2 2

3

2

0 0/ 4 / 4 ( ) /3 8x y

cr

m bN a n aN b hm n ab
V

a

f  


 

  


 (37) 

 

 

4. Computational examples and discussion 
   

As seen in Eq. (34) that the critical velocity of 

divergence instability crV  is connected to the membrane 

parameters, structure sizes, prestress, orders and amplitude. 

For study in this paper, we just take a membrane material 

commonly applied in projects as an example: E1=1400MPa; 

E2=900MPa;  =1.226 kg/m
3
 and h=0.001m. /a b  = 

ratio of span across-wind (x) to along-wind (y); 

0 0/y xN N   = ratio of prestress in y to x; 1 /f b  = 
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ratio of sag to span in y. The value of 3  can be obtained 

by the numerical integration method when all parameters 

are determine
1
. The following parametric analysis will be 

contrasted with the situation without considering flow 

separation (Xu et al. 2011). 

 

4.1 Span ratio   

 

The curve of span ratio and critical wind velocity is 

shown in Fig. 2 (b=20 m; m=n=1; f=1 m; N0y=2 kN/m; 

1  ; 0.1  ).With the increase of span ratio λ, and we 

compare the two cases: considering or without considering 

the flow separation.  

In Figs. 2(a) and 2(b), the two cases have same change 

trend with the increase of span ratio : when 1  , crV

decreases sharply; when 1  , crV increases gradually; 

when 3  , 

crV increases gently. It shows that the near-span size 

( a b ) should be avoided in hyperbolic paraboloid 

structures. When 0.7  , the crV in considering flow 

separation is greater than the situation without considering 

it, and the smaller the  , the greater the D-value. But it is 

just opposite when 0.7  , a greater crV we will get 

without considering flow separation, the greater the  , the 

greater the D-value, and when 3  , D-value remains 

basically invariable.  

For the orthotropy of membrane, Fig. 2(c) shows that 

without considering flow separation, a greater crV  can be 

obtained if the smaller modulus is arranged in the along-

wind direction when 1   (just as 
2 1E E  ), the more 

discrepant the two span sizes (b and a), the greater the D-

value. When =1 , the two crV  values are equal. 

 

 

(a) E2=1400MPa，E1=900MPa 

Continued- 

                                           
1 Please contact the author to get the computing program as 

necessary. 

 

(b) E2=900MPa，E1=1400MPa 

 
(c) Without considering flow separation 

 
(d) Considering flow separation 

Fig. 2 Curve of a-to-b ratio and critical wind velocity

crV  

 

 

In Fig. 2(d), when consider flow separation, it is 

consistent with the case without considering it when 1  , 

but when 1  , the larger modulus should be arranged in 

the along-wind direction (just as
1 2E E ) to get a greater

crV . 
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4.2 Along-wind span b 
 

The curve of along-wind span and critical wind velocity 

is shown in Fig. 3. (m=n=1; f=1 m，N0y=2 kN/m; 1  ; 

0.1  ) 

At different  , with the increase of span b, 

crV decreases gradually both in the two situations of 

considering flow separation or without it. When 30b  m, it 

decreases sharply; when 30b  m, it decreases gently. 

When b is small, crV in considering flow separation is 

greater than the situation without considering it.  

 

 

 
(a) 0.5   

 
(b) 1   

 
(c). 2   

Fig. 3 Curve of span b and critical wind velocity
crV  

 

But with b increasing, crV in considering flow separation 

becomes smaller than the situation without considering it. 

crV of the two situations are equal when b reaches a certain 

value, and the greater the , the smaller the certain span b. 

 

4.3 Prestress N0y 
 

The curve of prestress
0 yN and critical wind velocity is 

shown in Fig.  4. (m=n=1; f=1 m; b=20 m; 1  ; 

0.1  ) 

At different , with the increase of
0 yN , crV increases 

gradually, and it present approximate linearization in 

general. This is consistent with the situation without 

considering flow separation. The D-value of the two 

situations remains basically invariable with the increase of

0 yN . 

 

4.4 Ratio of N0y-to-N0x   

 

The curve of the N0y-to-N0x ratio  and critical wind 

velocity is shown in Fig. 5. (m=n=1; f=1 m，b=20 m; 

N0y=2 kN/m; 0.1  ) 

 

 

 

Fig. 4 Curve of pretension
0 yN and critical wind velocity

crV  

 

 

 

Fig. 5 Curve of N0y-to-N0x ratio and critical wind velocity

crV  
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At different , with the increase of , 
crV  presents a 

descending branch (the smaller the  , the longer the branch) 

at first then increases gradually (the larger  is, the more 

sharply it increases). This is consistent with the situation 

without considering flow separation. The D-value of the 

two situations increases with the increase of too. 

 

4.5 Sag-to-span ratio  

 

The curve of the ratio of sag-to-span and critical wind 

velocity is shown in Fig. 6 (m=n=1; b=20 m; f=1 m; N0y=2 

kN/m). 

At different , crV increases gradually with the increase 

of  both in considering flow separation or without 

considering it. The D-value of the two situations increases 

with the increase of   too. But when 1f and 2f  are 

close to each other (e.g., 1 2f f  when 1, 1    or 

0.25,  2   ), the increasing   has little effect on the 

structural stability. 

 

 

 
(a)  

 
(b)  

Fig. 6 Curve of the ratio of sag-to-span ε and critical 

wind velocity
crV  

 

 

 

Fig. 7 Curve of amplitude f and critical wind velocity 

 
 
4.6 Amplitude f 
 

The curve of amplitude and critical wind velocity is 

shown in Fig. 6 (m=n=1; 1  ; b=20 m; N0y=2 kN/m;

0.1  ). 

At different  , crV increases gradually with the 

increase of amplitude f both in considering flow separation 

or without considering it. The D-value of the two situations 

increases with the increase of f too. 

 

4.7 Orders m, n 
 

The critical wind velocities with different orders are 

shown in Table 1 ( 1  ; f=1 m; b=20 m; N0y=2 kN/m; 

0.1  ; values in brackets are the results without 

considering flow separation). 

At different orders, the trend of divergence instability 

has a big difference in considering flow separation or 

without considering it. Without considering flow separation, 

the trend of divergence instability in sag direction is same 

as the situation in arch direction (Xu et al. 2011): when 

1  , the trend of divergence instability presents a high 

order along the wind direction (   1n m  ), the smaller λ is, 

the higher the order (n) will be; when 1  , it’s just the 

opposite: it presents a high order across the wind direction 

(    1m n  ), the larger λ is, the higher the order (m) will 

be; when 1  , it presents a low order instability 

( 1n m  ). In considering flow separation, the model 

presents low order instability (m=n=1) when 1   and 

high order instability along the wind direction (n=3, m=1) 

when 1  . 

 

 

5 Conclusions 
 

Considering the influence of flow separation and 

geometric nonlinearity, an analytical method was used to 

study the aerodynamic stability of hyperbolic paraboloid 

orthotropic membrane structure in the large amplitude 

theory, and the critical velocity of divergence instability 

formula was obtained. Comparing with the model without 

considering flow separation, the main analysis results are 

summarized as follows: 
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 Same with the model without considering flow 

separation, it is of positive significance to arrange the 

membrane’s warp and weft rationally according the 

local wind regime to prevent a destructive instability of 

the structure. Additionally, the stress increment, which is 

acquired under geometric nonlinearity, can improve the 

lateral rigidity and enhance the aerodynamic stability of 

structure. The two results tally more with the actual 

situation. And with an initial force (which can be 

obtained by the local basic wind pressure) acting on the 

membrane, a reference value of amplitude can be 

determined. 

 Same with the model without considering flow 

separation, the analysis and comparison of various 

preceding parameters in considering it shows that, the 

span ratio λ plays a more complex role than the others in 

the aerodynamic stability of membrane structures, so as 

the main control parameter in designing this kind of 

structure, it needs to be given sufficient attention. 

 There is a little inconsistency about the aerodynamic 

stability regularities between the two models (in 

considering or without considering the flow separation). 

And the critical wind velocities obtained from in the two 

situations have significant difference. Obviously, 

considering flow separation is more tally with the actual. 

So in studying aerodynamic stability of a membrane 

structure with sharp corner in leading edge (just like the 

hyperbolic paraboloid membrane structure in its sag 

direction), the influence of flow separation can’t be 

neglected. 

The critical wind-velocity formula obtained in this paper 

has provided a reference for the aerodynamic stability of the 

membrane structure in flow separation. The discussions 

above show that the damping coefficient ξ0 has no effect on 

the aerodynamic stability of structures. Therefore, 

numerical analysis and experimental studies will be 

presented based on the results given in this paper in 

subsequent work. 
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Aerodynamic stability analysis of geometrically nonlinear orthotropic membrane structure… 

AppendixⅠ 

 

The critical velocity is 

 

   2 2 2 2 2

0 0 0 0

2

3

/ 4 / 4 ( )3 / 8y x x ym b hk N a n a hk N b hm n ab
V

a

f    


 

    


 

where 

   

   

2 2
2 2 2 2

0 02 1
  

4 42 2 2 2

1 2

/ /
,   ,

32 32 / / / /

x yk n b k m aE a n E b m

b m a n n b E m a E

 
  

 


  



 

3 1

1

1

1

1

( , )

   sin sin

   sin sin

j

S

j j

j

M N

M N

j

j j

j

j

a W x y dxdy

m x n y a b
a

a b M N

m x n yab
a

a bMN



 

 











  









 

/a b  ， 0 0/y xN N  ， 1 /f b  . 

 

For study, we just take a membrane material commonly 

applied in projects as an example: E1=1400MPa; 

E2=900MPa;  =1.226 kg/m
3
 ; h=0.001 m; b=20 m; 

m=n=1; f=1 m; N0y=2 kN/m; 1  and 0.1  . Take  

as a variable. 

By FORTRAN Program, the numerical calculation 

procedure is as follows 

PROGRAM MAIN  

IMPLICIT NONE 

REAL,PARAMETER::PP=1.226,PI=3.1415926,E2=1.

4E9,E1=0.9E9,H=0.001 

INTEGER,PARAMETER::M=33,N=33,Q=M*N  ! 

Divided into 33 equal parts. 

DIMENSION 

A(Q,Q),B(Q),X0(Q),X1(Q),X2(Q),Y0(Q),Y1(Q),Y2(Q),

X(Q),JS(Q) 

REAL 

A,B,X0,X1,X2,Y0,Y1,Y2,S,V,X,A3,AA,BB,VV1(35),R,E,

F0,A1,B1,N0X, 

&        N0Y,VCR,F1,F2,K0X,K0Y,TT 

INTEGER KK,LL,II,L1,L2,I,J,L,JS 

DATAVV1/0.1,0.11,0.12,0.13,0.14,0.16,0.18,0.2,0.25,0.

3,0.35,0.4,0.5,0.6,0.7, 

&           

0.8,0.9,1,1.1,1.2,1.3,1.4,1.5,1.6,1.8,2,2.5,3,4,5,6,7,8,9,10/ 

N0Y=2000.0 

E=0.1 

F0=1 

KK=1 

LL=1 

R=1 

BB=20 

DO II=1,35 

V=VV1(II) 

AA=BB*V 

N0X=N0Y/R 

F1=BB*E 

F2=F1*R*V**2 

K0X=8*F2/AA**2 

K0Y=-8*F1/BB**2 

A1=E2*LL**2/(32*V**2*KK**2) 

B1=E1*KK**2*V**2/(32*LL**2) 

TT=(K0X*(LL*PI/BB)**2+K0Y*(KK*PI/AA)**2)/(

(LL*PI/BB)**4/E1+(KK* 

&        PI/AA)**4/E2) 

DO L2=1,N 

DO L1=1,M 

I=(L1-1)*N+L2 

X0(I)=AA/M*(L1-0.5) 
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Y0(I)=BB/N*(L2-0.25) 

END DO 

END DO 

DO L2=1,N 

DO L1=1,M 

J=(L1-1)*N+L2 

X1(J)=AA/M*(L1-1.0) 

Y1(J)=BB/N*(L2-0.75) 

X2(J)=AA/M*L1 

Y2(J)=BB/N*(L2-0.75) 

END DO 

END DO 

DO I=1,Q 

DO J=1,Q 

A(I,J)=AA/(4*PI)*(1.0/((Y0(I)-Y1(J))*(X0(I)-

X2(J))-(Y0(I)-Y2(J))*(X0(I) 

&              -X1(J)))*(((Y2(J)-Y1(J))*(Y0(I)-

Y1(J))+(X2(J)-X1(J))*(X0(I) 

&              -X1(J)))/SQRT((Y0(I)-

Y1(J))**2+(X0(I)-X1(J))**2)-((Y2(J)-Y1(J)) 

&              *(Y0(I)-Y2(J))+(X2(J)-X1(J))*(X0(I)-

X2(J)))/SQRT((Y0(I)-Y2(J)) 

&              **2+(X0(I)-X2(J))**2))+1.0/(X1(J)-

X0(I))*(1.0+(Y0(I)-Y1(J))/ 

&              SQRT((Y0(I)-Y1(J))**2+(X0(I)-

X1(J))**2))-1.0/(X2(J)-X0(I))* 

&              (1.0+(Y0(I)-Y2(J))/SQRT((Y0(I)-

Y2(J))**2+(X0(I)-X2(J))**2))) 

END DO 

END DO 

DO I=1,Q 

B(I)=LL*PI/BB*SIN(KK*PI*X0(I)/AA)*COS(LL

*PI*Y0(I)/BB) 

END DO 

A3=0 

CALL AGAUS(A,B,Q,X,L,JS)  

IF(L.NE.0) THEN  

DO I=1,Q 

S=AA*BB/(M*N)*X(I)*SIN(KK*PI*X0(I)/AA)

*SIN(LL*PI*Y0(I)/BB) 

A3=A3+S 

END DO 

END IF 

VCR=PI*SQRT((KK**2*BB*(N0X+H*TT*K0Y)/(4

*AA)+LL**2*AA*(N0Y 

&          

+H*TT*K0X)/(4*BB)+3*H*(KK*LL*PI*F0)**2*(A1+B1)

/ 

&          (8*AA*BB))/(PP*AA*A3)) 

WRITE(*,*) "VCR=",VCR 

END DO 

END 

 

SUBROUTINE AGAUS(A,B,Q,X,L,JS) 

INTEGER K,Q,L,JS,IS 

DIMENSION A(Q,Q),X(Q),B(Q),JS(Q) 

REAL A,B,X,T,D  

L=1 

DO K=1,Q-1 

D=0.0 
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DO I=K,Q 

DO J=K,Q 

IF (ABS(A(I,J)).GT.D) THEN 

D=ABS(A(I,J)) 

JS(K)=J 

IS=I 

END IF 

END DO 

END DO 

IF (D+1.0.EQ.1.0) THEN 

L=0 

ELSE 

IF (JS(K).NE.K) THEN 

DO I=1,Q 

T=A(I,K) 

A(I,K)=A(I,JS(K)) 

A(I,JS(K))=T 

END DO  

END IF 

IF(IS.NE.K) THEN 

DO J=K,Q 

T=A(K,J) 

A(K,J)=A(IS,J) 

A(IS,J)=T 

END DO  

T=B(K) 

B(K)=B(IS) 

B(IS)=T 

END IF 

END IF 

IF (L.EQ.0) THEN 

WRITE(*,100) 

RETURN 

END IF 

DO J=K+1,Q 

A(K,J)=A(K,J)/A(K,K) 

END DO  

B(K)=B(K)/A(K,K) 

DO I=K+1,Q 

DO J=K+1,Q 

A(I,J)=A(I,J)-A(I,K)*A(K,J) 

END DO 

B(I)=B(I)-A(I,K)*B(K) 

END DO  

END DO 

IF (ABS(A(Q,Q))+1.0.EQ.1.0) THEN 

L=0 

WRITE(*,*) “FAIL” 

RETURN 

END IF 

X(Q)=B(Q)/A(Q,Q) 

DO I=Q-1,1,-1 

T=0.0 

DO J=I+1,Q 

T=T+A(I,J)*X(J) 

END DO  

X(I)=B(I)-T 

END DO  

JS(Q)=Q 

DO K=Q,1,-1 

IF (JS(K).NE.K) THEN 

T=X(K) 

X(K)=X(JS(K)) 

X(JS(K))=T 

END IF 

END DO  

RETURN 

END 
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