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1. Introduction 
 

Most of countries in the typhoon zones tend to suffer 

from huge economic losses in recent years. An eye-catching 

wind-disaster event, which was named the typhoon 

"Hagupit", occurred at China in 2008 that attacked the 

coastal areas of Guangdong Province and caused a serious 

economic loss over 13.4 billion RMB. Amongst these wind-

induced economic losses, a large proportion were resulted 

from the damage of urban trees. It might be expected to 

increase due to the development of urbanization as well as 

due to climate change and extreme weather patterns 

predicted for the future. In August 1988, typhoon "8807" 

launched at Hangzhou, China, where thousands of urban 

trees were attacked, and 10.23% of urban trees was 

damaged resulting in that almost 80% of power 

transmission lines was broken in that area. In October 1999, 

typhoon "9914" launched at Xiamen, China, where 23 

thousand trees were damaged coming 75% of urban trees. It 

is reported that over 20,000 trees were blown down in 

Shanghai, China in the period of 1951 to 2000, whereby 

more than 2,000 wire poles were broken causing the deaths 

of dozens of people. As a result, it is necessary to 

understand the dynamic behaviors and damage mechanism 

of urban trees induced by winds in order to provide a deep 

insight into mitigating wind disaster happened in urban  
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areas.  

Over the past half century, a series of attempts have  

been made to study wind-induced failure of trees in the 

worldwide. Simplified models received great appeal in the 

early stage which relied upon static and dynamic equations 

involving a collection of critical parameters such as top 

displacement and stem bending moment of trunk (Baker 

1995). These models can be classified into the experimental 

data-driven empirical model (Gardiner 1995, Gardiner et al. 

2000), the theoretical model (Baker 1995, Saunderson 

1999), and the mass-spring model (James 2006). Due to the 

limitations of prior hypothesis, however, the simplified 

model cannot meet the requirements of accuracy required to 

predict the tree damage. In recent years, the finite element 

method (FEM) has been proved to be valuable in wind-

damage analysis of trees due to its versatility and 

compatibility (Sellier et al. 2008). Previous models for 

modal characteristics of Douglas fir (Moore and Maguire 

2008), for mechanical response of maritime pine (Sellier 

and Fourcaud, 2009), for dynamic behaviors of maple 

(Ciftci et al. 2014), and for damage mechanism of Ginkgo 

(Ai et al. 2016) were implemented. 

While the structural configuration of trees arises to be 

complicated, which significantly separates from the 

specimens though most of them consist of trunk, primary 

branches and secondary branches. Even for the same 

species, the sample configuration has a remarkable 

difference from others due to the growing conditions and 

man-made influences (Mattheck 1990). This brings about 

an extreme difficulty for the accurate modeling of wooded 

trees. Apart from the spatial configuration of trees, besides, 

the material parameters of wood act as the critical aspect as 
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well that influences the dynamic behaviors of tree samples 

(Cheng 1992). It is thus necessary to integrate the stochastic 

parameters representing the variation, respectively, from the 

spatial configuration and from the material characteristics 

into the finite element models. This treatment would 

provide a logical manner for the wind-induced fragility 

assessment of urban trees in the typhoon-prone areas. 

However, the previous efforts have not been paid on this 

issue. 

In this study, the parametric modeling and stochastic 

dynamics analysis of urban trees are carried out. For 

illustrative purposes, the Plane tree, a family of tree species 

widely-planted in Southeast China, is investigated. 

Randomness inherent in the tree configuration and material 

characteristics is included in the modeling and dynamics 

analysis of urban trees. The sections arranged in this paper 

are distributed as follows. Section 2 is dedicated to 

illustrating the parametric model of Plane tree, including 

parameter definition, fractal theory based configuration and 

finite element model. The probabilistic analysis of dynamic 

behaviors of Plane tree is presented in Section 3. Section 4 

details the stochastic dynamic response of Plane tree 

subjected to wind excitations. The concluding remarks are 

included in the final section. 

 

 

2. Parametric model of Plane tree 
 

The dynamic behaviors of urban trees seriously rely 

upon the species. Plane tree is the most used species in 

Shanghai, China. Fig. 1 shows the former ten species 

widely-planted in this area. 

The Plane tree belongs to the Platanus orientalis Linn. It 

height could reach up to 30 meters. The benchmark 

configuration of the Plane tree submits to the Rauh’s model 

(Halle et al. 1978, Tomlinson 1983, Prusinkiewicz and 

Remphrey 2000). The basic configuration consists of the 

straight trunk, primary and secondary branches. The 

geometric shape arises to be of high symmetry. Although 

the parametric model of Plane tree could be proceeded as 

the benchmark, the accurate model is difficult since the 

Plane tree in reality arises to different poses due to the 

hybridization and trimming in the period of its growing. It 

is thus necessary to carry out a statistical analysis as to the 

specimens in order to implement the logical model of Plane 

trees. 

 

 

Fig. 1 The former ten species widely planted in 

Shanghai, China 

2.1 Parameter definition 
 

According to the survey of Plane trees planted along 

with Shanghai roads, the basic configuration with straight 

trunk like the benchmark is seldom. The trunk becomes to 

bifurcate usually at the elevation 2-3 m lift from the ground. 

The modes of bifurcation involve 2-primary branches, 3-

primary branches and 4-primary branches. Among these 

modes, the 3-primary branches is at the most which 

occupies 60% of the Plane trees. In this paper, the 3-

primary branches Plane tree is addressed.  

Shown in Figs. 2 and 3 are the elevation view, 

projection view and geometric parameter label of a 

measured specimen of Plane trees, respectively. One might 

recognize that the basic geometric configuration of a Plane 

tree involves 14 parameters, i.e., the tree height H , trunk 

height h , stem perimeter of trunk bd , top perimeter of 

trunk td , the measured separation 0h between measured 

heights bd  and td , stem perimeter of primary branches 

3

1{ }i id 
, projection angles between primary branches 

3

1{ }i i 
( 

1 2 3 360     ), projection angles between 

primary branches and trunk 3

1{ }i i 
. It is noted that using 

these geometric parameters, the basic configuration of Plane 

trees could be defined. While these parameters have an 

essential relationship so that the dimension of model 

parameters controlling the basic configuration could be 

reduced. Herein, the functional relationship between the 

stem perimeter of trunk and the tree height, the shrinkage 

rate of perimeter of trunk are addressed. 

 

 

Fig. 2 Elevation view and geometric parameter label of a 

measured specimen of Plane trees 

 

 

   

Fig. 3 Projection view and geometric parameter label of 

a measured specimen of Plane trees 
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Fig. 4 Data points and fitting curve of trunk height 

against stem perimeter of trunk 

 

 

 

Fig. 5 Data points and fitting curve of variation of trunk 

perimeters against measured separations 

 

 

More than 20 specimens of Plane trees are measured, 

and a collection of data is gained. Although the 

configuration of trees significantly relies upon the growing 

condition, there has a pertinent relevance of stem radius of 

trunk to the tree height for a certain species. It is usually 

recognized that owing to the natural law, the larger of radius 

of trunk, the taller of the tree arises to be. Fig. 4 shows the 

data points of the tree height against the stem perimeter of 

trunk. The functional curve fitting these data points is 

included as well. It is seen that the there is a format of linear 

functional relationship between the tree height and the stem 

perimeter of the trunk. 

The shrinkage rate of perimeter of trunk is formulated as 

well by fitting the data of relationship between variation of 

trunk perimeters and the length of measured heights 

(measured separation). It is shown in Fig. 5 that there is a 

linear functional relationship, and the slope denotes the 

shrinkage rate of perimeter of trunk. 

The cross section of a trunk or a branch is identified by 

observing the tree samples, and is ideally assumed to be a 

solid circle. The cross-sectional area of the trunk is given by 

2

0( ) [ ( )]tA z R h  (1) 

where R  is the radius of the trunk at height z , which is 

related to the step perimeter by the equation as follows 

 0 0

1
( )

2
bR h d h


   (2) 

where   is the shrinkage rate of perimeter of trunk. The 

radius of trunk R  is the stem radius bR  at the measured 

separation 0 0h  . 

Assuming the branch has a same shrinkage rate of 

perimeter with that of the trunk, the radius of the branch is 

then given by 

 0 0

1
( )

2
ir h d h


   (3) 

The ratio of the radius of the primary branches and the 

secondary branches is 0.5. It is indicated that the cross-

section of both trunk and branches varies along the tree 

height. 

  

2.2 Fractal theory based configuration 
 

In view of the parameters defined in the previous 

section, one could implement the auto-generation of 

topology of trees. Two steps are usually involved: (i) define 

the basic configuration of trees that consists of trunk and 

primary branches; (ii) bifurcate the secondary branches at 

certain points on the primary branches. All the primary and 

secondary branches both submit to parabolic curves where 

the power exponents relevant to the primary branches and 

to the secondary branches are different but they have a 

pertinence. Treating the primary branches to the trunk and 

the secondary branches to the primary branches, the auto-

generation of topology of trees can be implemented until 

the objective configuration is obtained through repeating 

the step (ii) in conjunction with the fractal theory. 

The fractal theory reveals the ressemblance between 

locality and totality of geometric object. This ressemblance 

is the so-called self-similarity, which widely inhabits in the 

nature, such as the configuration of trees. If the self-

similarity and scale invariance remain, the geometric object 

is a fractal structure. The locality could be viewed as a 

reduced-scale replication of totality. The mapping from the 

locality to the totality is referred to the affine transform. 

The affine transform is essentially a linear transform. 

The angle between vectors, the distance from point to point 

and the area of graph might be changed. While the 

parallelity, intersection, collineation and symmetry would 

not be changed. The graph thus can be zoomed, stretched, 

trimmed and twisted. The formulation of affine transform is 

written by (Zhu and Ji 2011) 

cos sin

sin cos

x x e

y y f

 


 

        
               

 (4) 

where x and y both denote the coordinates of graph before 

the transform; x  and y are the projection of the original 
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coordinates x and y to the graph midpoint as a rule of 

affine transform;  denotes the length coefficient of 

element; e  and f denote the translational components of 

graph along x and y ;  denotes the angle between the 

transformed figure and the original coordinate. 

In this paper, the basic configuration of Plane tree 

consists of one trunk and three primary branches at the 

same elevation. The structural topology of Plane tree is 

formulated through the transform of the basic configuration 

at different heights of primary and secondary branches 

according to the auto-generation rules above mentioned. For 

simplified illustration, the second step of the auto-

generation procedure is operated once. Nevertheless, two 

groups of secondary branches at different elevations are 

included. Three sets of secondary branches (9 secondary 

branches) at the same elevation are viewed as one group. It 

is seen from Fig. 6 that the secondary lower branches are 

labelled as Group 1; while secondary upper branches are 

labelled as Group 2. The control parameters of structural 

configuration involve the stem radius of trunk bR , 

projection angles between primary branches 
1 2{ , }  ( 

3 1 2360     ), projection angles between primary 

branches and trunk 
1 2 3{ , , }   . shrinkage rate of radius   , 

angle between the transformed figure and the original 

coordinate θ. Fig. 6 shows the structural configuration of 

Plane tree with control parameters: 0.25mbR  , 

1 112  ,
2 163  ,

1 24  ,
2 32  ,

3 46  , 

0.02  , 5  . 

 

2.3 Finite element model 
 

A mechanical model for finite element analysis is 

needed in order to assess the dynamic behaviors of Plane 

trees. While this is a challenging task due to the complex 

morphology of trees having a large number of branches and 

leaves. The dimensions and the shapes, moreover, of 

branches or leaves are significantly different from each 

other. It is neither feasible nor meaningful to measure the 

geometry of each branch accurately.  

Owing to the introduction of configuration based on fractal 

theory, the geometric topology of model is readily defined. 

Furthermore, material of a real tree exposes to be 

composited, anisotropic, non-homogeneous, and elasto-

plastic. The component properties of trees not only vary 

along the dimensions, but also change across the sections. 

In this case, the material of the tree is assumed to be 

isotropic (the material properties are not dependent on the 

direction) and homogeneous (the material properties are the 

same at each point). The effects of the anisotropic and non-

homogeneous are not taken into consideration. Thus, the 

wood density and Young's Modulus are considered to be a 

constant. 

A three-dimensional beam element with circular cross 

section is used for modeling the tree, of which the beam 

axis is defined according to the tangent at the same location 

of the geometric model. Shear deformation effects are not 

included and behavior is described with the cross-sectional  

 

Fig. 6 Structural configuration of Plane tree with 

specified control parameters 

 

 

 

Fig. 7 Finite element model of Plane tree built up in 

ABAQUS 

 

 

area and the isotropic, elastic-plastic material model. 

A common MATLAB language program is produced to 

artificially mesh the geometric model of urban trees, and 

generate the ABAQUS input file. The trunk is divided into 

10 elements. Each primary branch is divided into 10 

elements and each secondary branch is divided into 10 

elements. The total element numbers of the trunk, primary 

branches, and secondary branches, are thus to be 10, 30, and 

180, respectively.  

Boundary conditions for the model are treated as 

follows: the tree is clamped at its base, and rotation is fixed 

at each branching point (this is necessary for the branching 

points to support moments). The complete finite element 

model of tree is shown in Fig. 7. It is seen that the model is 

asymmetrical, close to the real configuration of Plane tree, 

and can be readily used to reveal the realistic dynamic 

behaviors of tree. 

 

 

3. Probabilistic analysis of dynamic behaviors of 
Plane tree 

 
3.1 Statistics and sampling of stochastic parameters 
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It is mentioned in the previous section that the control 

parameters of structural configuration involve the stem 

radius of trunk bR , projection angles between primary 

branches 
1 2{ , }  , projection angles between primary 

branches and trunk 
1 2 3{ , , }   . The shrinkage rate of radius

  relies upon the tree species, and is valued by the 

statistical mean 0.02 referring to Fig. 5. The angle between 

the transformed figure and the original coordinate   in the 

process of fractal-based structural configuration is defined 

by 5 . Fig. 8 shows the statistical histograms of the control 

parameters of structural configuration. It is seen that these 

parameters all arise to significant fluctuations. For a ready-

modelling purpose, the priori distributions are assumed 

upon the control parameters in view of their histograms. 

The stem radius of trunk bR , for instance, is assumed to 

submit to the log-normal distribution; the remaining 5 

control parameters of structural configuration are assumed 

to submit to uniform distributions. 

 

 

 
(a) bR                    (b) 1  

 
  (c) 2                  (d) 1   

 
(e) 2                    (f) 3  

Fig. 8 Statistical histograms of the control parameters of 

structural configuration: (a) bR , (b) 1 , (c) 2 , (d) 1 ,  

(e) 2  and (f) 3  

 

 

Table 1 Statistics and probability density function (PDF) of 

control parameters 

 

 

Besides, another two random parameters associated with 

the material behaviors of tree wood, i.e., wood air-dry 

density and Young’s elastic modulus, are considered. They 

both are assumed to submit to the log-normal distribution. 

Therefore, there are formally 8 random variables underlying 

the parameters and configurations of Plane trees. The means 

and standard deviations of these variables are shown in 

Table 1, where the parameters of structural configuration 

are derived from the 20 sets of statistical data of on-site 

measurement of Plane trees; the parameters of structural 

material behaviors are referred to Reference (Prusinkiewicz 

and Remphrey 2000). 
As to the sampling of high-dimensional systems with a 

collection of stochastic parameters, random simulation 

techniques are usually utilized. While a point set-

optimization technique hinging upon the GF discrepancy is 

proved to be an efficient manner reducing computational 

costs and strengthening computational accuracy of 

nonlinear analysis and reliability assessment of stochastic 

structures (Chen and Zhang 2013). In this paper, the GF-

discrepancy based sampling method is used to determine 

the point sets of the 8 random variables. Total 300 point sets 

are defined and each point set involves a group of sample 

values of the 8 random variables. The mean, standard 

deviation and PDF of random variables underlie these 

sample values.  

 
3.2 Analysis of modal frequencies 
 

Having the 300 point sets with sample values associated 

with random variables, one could construct the relevant 300 

sample trees. In order to implement the finite element 

analysis by ABAQUS in loops, the values of control 

parameters of the sample trees are written into the 

individual inp. file. Utilizing the Python, one could code the 

inp. files into ABAQUS. Then the analysis of modal 

frequencies and stochastic dynamics of Plane trees can be 

readily proceeded.  

The analysis of the oscillatory frequencies does not take 

mechanical loads into account, allowing for the model 

validation of Plane trees. Since the attenuating effect of the 

aerodynamic admittance function (Davenport 1961), i.e., 

there is a very little (less than 5%) energy transference to 
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bR /m Log-Normal 0.2574 0.0538 
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plants by the modes above 5 Hz, the modal frequencies less 

than 5 Hz are extracted. Fig. 9 shows the distribution of the 

former 30-order modal frequencies of three sample trees, 

which covers a frequency range (0 Hz, 4.0 Hz]. In fact, over 

90% of the wind energy is distributed in this frequency 

range. It is seen that owing to the randomness inherent in 

the material properties and structural topology, the modal 

frequencies of Plane trees change differently from the 

samples with respect to the modal number. The frequency 

variations along with samples and along with modes at the 

high-order modes both arise to be more pronounced than 

those at the low-order modes. One might recognize that 

these modes feature a remarkable pattern with grouped 

dense-frequencies, as indicated by the step dash-lines in 

Fig. 9. Among the former 30-order modal frequencies, the 

1st and 2nd frequencies arise to bending modes of trunk 

(Trunk Bending); the 3rd to 6th frequencies correspond to 

bending modes of primary branches (Pri-Branch Bending); 

the 7th to 24th frequencies correspond to bending modes of 

secondary branches (Sec-Branch Bending); the remaining 

frequencies arise to torsional modes of trunk and branches 

(Torsional). Such a pattern with grouped dense-frequencies 

is consistent with the previous findings (James et al. 2006, 

Spatz et al. 2007). 

One could further derive the probability density 

functions of modal frequencies at different modes through 

the kernel density estimation of the modal frequencies of all 

the sample trees. Fig. 10 shows the probability density 

functions of modal frequencies at the former 30-order 

modes. It is seen that consistent with the findings in Fig. 9, 

the frequency distribution at the high-order modes arise to 

be wider than that at the low-order modes, indicating a 

significant fluctuation of modal frequency at high-order 

modes due to the randomness inherent in the structural 

system of Plane trees. Moreover, the curves of probability 

density functions of modal frequencies at the same group of 

dense-frequencies, especially in case of the low modes, 

have an almost identical shape. 

 

 

 

Fig. 9 Distribution of former 30-order modal frequencies 

of sample trees 

 

 

 

Fig. 10 Probability density functions of modal 

frequencies at former 30-order modes 

 

 

It is indicated that the modal frequencies are not so sensitive 

to the randomness of the structural system in a same group 

of dense-frequencies. This is revealed in Fig. 11 as well, 

where the coefficients of variation associated with the 

groups of dense-frequencies Trunk Bending, Pri-Branch 

Bending, Sec-Branch Bending and Torsional are 

approximately 0.16, 0.20, 0.42, 0.23, respectively. One 

might realize that since the frequency range of bending 

modes corresponds to the most turbulent energy, the Plane 

tree mainly swaying as bending modes would have sound 

amplitude and variation of wind-induced vibration. 

It is also indicated in Fig. 11 that the mean and standard 

deviation of the fundamental natural frequency of Plane 

trees by model prediction are 0.321 Hz and 0.051 Hz, 

respectively. 

 

 

 

Fig. 11 Coefficients of variation associated with groups 

of dense-frequencies 
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A measurement of a small London Plane tree (Platanus 

acerifolia) from the power spectrum of tree displacement in 

winds shows that the natural frequency with summer in-leaf 

is at the range of 0.25-0.43 Hz (Roodbaraky et al. 1994). 

This result was later (after three years) proved to be in 

reasonably close agreement by measuring the power 

spectrum of velocity of the same tree using a tripod 

mounted Laser Doppler Interferometer (Baker 1997). This 

outcome provides a satisfactory check that the finite 

element model is logical and reasonable to examine the 

dynamic behavior of Plane trees. 

 

 

4. Wind-induced failure criterion of Plane tree 
 
It is noted in the previous sections that the Plane tree 

sways mainly as bending modes, indicating that the tree 

could be viewed to be damaged once the bending moment 

of an element in the model exceeds beyond its bending 

capacity. While this treatment would result in an issue of 

multiple failure modes due to the relevance among 

elements. Introducing the principle of equivalent extreme-

value event (Li et al. 2007), the system reliability problem 

of multiple failure modes can be transformed into that of 

single failure mode.  

Recognizing that the bending capacity and bending 

moment vary significantly with the elements, an indicative 

function of bending moment can be defined as 

e

i

i
i N i  

M̂

)t(M
)t(I ,1,2,,   (5) 

where )t(Ii  denotes the indicative function of bending 

moment; eN denotes the total number of elements;, ( )iM t  

denotes the bending moment of the element i ; ˆ
iM denotes 

the bending capacity of the element. 1iI indicates the 

tree structure being broken; while 1iI  indicates the tree 

structure being safe. 

The bending capacity of the element ˆ
iM is calculated as 

followed 

max
ˆ

i iM W   (6) 

where iW denotes the bending-resistant section modulus of 

the element i , 3 32i iW D , iD denotes the section 

diameter of the element i ; max denotes the stress of 

section, which is obtained from the constitutive material 

law of wood, (Ai et al. 2016). 

The component reliability upon level-crossing criterion 

involves the construction of extreme-value event of 

indicative function of bending moment at each element, 

which is typically defined as the maximum value over the 

duration of the indicative function of bending moment 

comp

[0, ]
max ( )i i
t T

I I t


     (7) 

For the system reliability of a structural segment such as 

trunk, primary branches or secondary branches (Groups 1 

and 2), the equivalent extreme-value event of indicative 

functions of bending moment is defined as follows 

 sys

[0, ]1

max max ( )
s
e

i
t Ti N

I I t
 

 
   (8) 

where s

eN  denotes the number of elements in one 

structural segment. 

One might recognize that the global reliability is a 

further integration of the system reliability with respect to 

structural levels.  

Since the wind-induced response of the tree structure 

involving randomness inherent in material properties and 

structural topology is essentially a stochastic time series, the 

indicative functions of bending moment defined in Eqs. (7) 

and (8) are random variables. Therefore, the failure 

probability of a structural element or a structural segment of 

Plane trees corresponds to the 1-crossing of the extreme-

value event or equivalent extreme-value event of indicative 

function of bending moment. The failure probability of a 

structural segment, for instance, associated with equivalent 

extreme-value event sysI is defined herein 

sys

s1 1 Pr{ ( ) }fP R I    Θ  (9) 

where Pr{}  denotes the probability of random event; Θ

is the random vector denoting the randomness inherent in 

material properties and structural topology; 
s denotes the 

safety domain [0, 1]; R denotes the system reliability as 

counterpart of failure probability. 

The solution of failure probability of a structural 

segment could refer to the random simulation method such 

as Monte Carlo simulation and the estimation method of 

probability density function. While as to the accurate 

solution of small-size samples involved in this paper, the 

probability density evolution method is a ready-implement 

manner for the stochastic response analysis of structural 

systems (Li and Chen 2009, Li et al. 2012, Peng et al. 

2014). It also underlies the structural reliability through 

constructing a random process 

sys( ) ( ( ), )Z I   Θ  (10) 

that satisfies the boundary conditions as follows 

c

sys

0( ) | 0,   ( ) | ( )Z Z I      Θ  (11) 

According to the principal of probability conservation, 

the extended physical stochastic system { , }Z Θ is governed 

by the generalized probability density evolution equation 

(Li and Chen 2008) 

sys( , , ) ( , , )
( ( ), ) 0Z Zp z p z
I

z

 
 



 
 

 

Θ Θθ θ
θ  (12) 

where sys( ( ), )I θ denotes the velocity of the constructed 

random process sys( ( ), )I Θ  at condition of  Θ  .  

The initial condition associated with the generalized 

probability density evolution equation is given by 
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0 0( , , ) | ( ) ( )Zp z z z p   
Θ Θ

θ θ  (13) 

The joint probability density function of ( , )Z  Θ  is 

then derived as ( , , )Zp z 
Θ

θ  by solving the generalized 

probability density evolution equation. The marginal 

probability density function ( , )Zp z  is then obtained 

through integration method 

( , ) ( , , )dZ Zp z p z 


 
Θ

Θ
θ θ  (14) 

where 
denotes the distribution domain of  . 

In view of Eq. (11), the failure probability is thus 

obtained as the integration of the marginal probability 

density function ( , )Zp z  at the terminal instant 

s
c1 1 ( , )df ZP R p z z 


      (15) 

One might recognize that a critical step solving Eq. (15) 

is the definition of functional relationship ( )  between 

constructed random process ( )Z  and the indicative function 

sys ( )I Θ . The functional relationship ( )   has really variant 

formulations satisfying the boundary conditions; say Eq. 

(11). A ready formulation is built in the harmonic function 

as follows 

sys sys( ) ( ( ), ) ( )sin( )Z I I    Θ Θ  (16) 

where 
c2.5 ,   1ω π τ  . It is really proved that Eq. (16) 

satisfies the requirements of Eq. (11).  

 
 

5. Wind-induced fragility assessment of Plane tree 
 
The equation of swaying motion of tree structure 

subjected to wind loading reads 

( ) ( ) ( ) ( ) [ ( , )] ( )t t t t  M Θ X C Θ X f X Θ F  (17) 

where M and C denote the mass and damping matrices of 

the, respectively; ( )tX , ( )tX , ( )tX denote vectors of the 

acceleration, velocity, and displacement of the tree with 

respect to ground, respectively; [ ( , )]tf X Θ  denotes a 

vector of internal restoring forces, serving as a function of 

the elemental deflections; The swaying motion of trees 

subjected to wind actions involves geometric nonlinearity 

and material nonlinearity, of which the nonlinear effect is 

included in the term of restoring forces [ ( , )]tf X Θ  that 

might result in the challenge of computational efforts (Li et 

al. 2011); Rayleigh damping is used to approximate the 

damping matrix 
1 2k k C M K , where 1k  and 

2k  are 

Rayleigh damping factors relying upon the modal 

frequencies and damping ratios; ( )tF  denotes the vector of 

the time-dependent wind loading.  

The logical definition of wind loading upon a tree is a 

challenging issue due to the complexity inherent in the flow 

and turbulence structures around the tree (Aung et al. 2012, 

Aly et al. 2013, Lee et al. 2014). In this paper, the 

interaction between the wind and the tree is treated as a 

wind drag force (Ciftci et al. 2014), which is modelled as a 

distributed line loads acting on the finite element model in x 

direction (all loadings are applied in a horizontal direction).  

The drag force acting on the element i is expressed as 

2( ) 0.5 ( ) ( )i a i D iF t A t C U t  (18) 

where ( )iU t denotes the wind speed distributing on the 

element; ( )iA t denotes the project area of the element, which 

is time-dependent quantity due to a significant influence of 

elemental deflections upon the project area ; a denotes the 

density of air; DC denotes the drag coefficient. The density 

of air and the drag coefficient are assumed to be 1.2 kg/m
3
 

and 0.47, respectively (Rudnicki et al. 2004). 

The wind speed process ( )iU t at a height includes two 

components: the time-averaged component 
iU and the 

fluctuating component ( )iu t (Dyrbye and Hansen 1997). 

The time-averaged component ( )iU z could be represented 

by an exponential-type function relevant to the height 

(Ciftci et al. 2014). While the fluctuating component ( )iu t

is typically reviewed as a zero-mean Gaussian process 

(Kareem 2008, Li et al. 2013), so that all of the properties 

can be completely reflected by a pertinent power spectral 

density function. For the structure of Plane tree, it is 

necessary to reflect mutual relations among fluctuating 

wind speeds in different positions of space because of its 

large volume. At this point, the spatial fluctuating wind 

speed is a time-varying stochastic field. Thus, the 

fluctuating component ( )iu t depends on the spatial 

coordinates of elements as well as on the time t .  

The relationship between fluctuating wind speeds at two 

points of space can be determined by complex cross-power 

spectral density function ( )
i ju uS   

( ) ( , , ) ( ) ( )
i j i i j ju u ij u u u uS y z S S        (19) 

where ( , , )ij y z   is the so-called coherence function 

with respect to lateral and vertical separations, in the form 

of Eq. (20) 

 ( , , ) exp ( )ij ijy z f       (20a) 

 

2 2 2 2( ) ( )
( )

( ) ( )

y j i z j i

ij

j i

C y y C z z
f

U z U z






  


  

 (20b) 

where 
yC  and 

zC denote decay coefficients of the lateral 

and vertical coherences, respectively (Yan et al. 2013, Peng 

et al. 2018);   denotes the circular frequency. 

A commonly-used downwind pulsation wind speed 

spectrum irrelevant to altitude is employed herein 

(Davenport 1961) 
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f

U




  (20b) 

where 
0U  denotes the average wind speed at height 10 m; 

*u denotes the shear wave speed. 

In view of spectral representation method for simulation 

of one-dimensional multivariable stationary random process 

(Shinozuka and Jan 1972, Deodatis 1996, Shinozuka and 

Deodatis 1997, Liu et al. 2016, Liu et al. 2018), the 

stochastic wind fields can be simulated at different wind 

levels represented by average wind speeds (average wind 

speeds at height of 10 m are 12, 16, 20, 24, 28 and 32 m/s, 

respectively). At each wind level, the time history of wind 

speed is obtained at the height of the element of Plane tree 

specimens. Total 220 time histories, for a Plane tree 

specimen, of wind loadings acting at 220 elements are 

involved.  

Utilizing the probability density evolution method, 

stochastic dynamic response analysis of Plane tree systems 

under six wind levels is performed. Time-history integration 

techniques for deterministic dynamic analysis of samples 

and finite difference methods for solving the generalized 

probability density evolution equation are involved. In this 

study, the time length of wind loading process is defined to 

be 600 sec, and the time step in simulation of wind field is 

0.25 sec. While the time step in numerical integration by 

ABAQUS varies with time process as a certain criterion. In 

conjunction with the sampling of high-dimensional systems 

and point set-optimization, the 300 samples of Plane tree 

with the assigned probabilities are integrated for 

probabilistic illustration. 

Fig. 12(a) shows the indicative function of bending 

moment at the 10th element of Plane tree (an element of 

trunk) with respect to the probability density curves at 

typical instants of time 100 sec, 250 sec, 520 sec. 

 

 

 
(a) probability density curves     (b) sample process 

at typical instants of time  

Fig. 12 Indicative function of bending moment of an 

element of Plane tree in case of average wind speed 24 m/s 

as to: (a) probability density curves at typical  instants of 

time and (b) sample process 

 

 

It is revealed that the probability density curve of 

indicative function of bending moment changes with the 

instants of time, which has an indistinctive fluctuation 

during the first 100 sec while its variation becomes 

significant in the remaining time interval. The domain, as 

shown between the double-threshold lines, indicates a safe 

state of Plane tree; while the domain beyond the threshold 

lines indicates a failure state of Plane tree. This provides a 

foundation for probability-based risk analysis of Plane trees 

subjected to wind hazard. For a straightforward illustration, 

a sample process of the indicative function of bending 

moment at the 10th element of Plane tree in case of average 

wind speed 24 m/s is shown in Fig. 12(b). It is seen that the 

population associated with the probability density function 

have similar properties to the sample. One might realize as 

well that the failure of Plane tree is a frequently-occurring 

event in case of the wind level with average wind speed 24 

m/s since there is a low component reliability (less than 0.8) 

occurring on the element of trunk. The addressed 10th 

element is just the branch-off position of trunk that is 

proved to be the most likely damaged element in the 

following text. 

Extending the above-mentioned to the system reliability 

and all the cases of wind levels, the fragility assessment of 

segments of Plane tree could be proceeded (Ellingwood and 

Rosowsky 2004). Fig. 13 shows the fragility curves of the 

segments of Plane tree subjected to variant wind levels with 

average wind speeds from 12 m/s to 32 m/s. It is seen that 

in case of average wind speed less than 18 m/s, if an 

interpolation of failure probability is accepted, the 

secondary lower branches (Group 1) has a larger failure 

risk, and the failure probability of segments rank as 

secondary lower branches> trunk> primary branches> 

secondary upper branches. While in case of average wind 

speeds between 18 m/s and 20 m/s, the trunk has a larger 

failure risk, and the failure probability of segments rank as 

trunk> secondary lower branches> primary branches> 

secondary upper branches. In case of average wind speeds 

between 20 m/s and 32 m/s, the trunk still has a larger 

failure risk, and the failure probability of segments rank as 

trunk> primary branches> secondary lower branches> 

secondary upper branches. The secondary upper branches 

(Group 2) always has a lower failure risk through the wind 

levels. One might recognize that the numerical results have 

the logical reason: failure probability of bending moment of 

structural segments relies both upon their bending 

capacities and moment response; the segment has a smaller 

section indicating a lower bending capacities but a lower 

moment response since the loading force on the segment is 

smaller.  

In general, the loading force on a small-size segment is 

pronounced due to a small deflection in case of a low wind 

level, whereby a larger failure risk than other big-size 

segments is recognized. When the wind level increases, 

small-size segments sway significantly and gain a slow 

enhancement of moment response owing to windward 

shrinks; while the wind effect upon the large-size segments 

increases dramatically owing to the square relationship 

between wind pressure and wind speed, and an almost 

invariant windward since an adequate stiffness of the large-
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size segments, which results in a quick enhancement of 

moment response.   

It is also indicated that the failure of Plane tree is a low-

probability event (failure probability is almost 0.9) since all 

the segments of tree have a small failure probability in case 

of the wind level with average wind speed less than 20 m/s; 

while the failure of Plane tree increases significantly in case 

of the wind level with average wind speed more than 20 

m/s. The wind speed 20 m/s is thus defined as the failure 

wind speed of Plane tree, which serves as one of critical 

wind speeds associated with the wind-resistant capacity of 

trees (Virot et al. 2016). 

It is seen that in case of high winds, the trunk of Plane 

tree is the segment most likely to be damaged than other 

segments. For the practical protection of wind-induced 

vibration, a detail on the trunk position, of which the 

element might be broken prior to other elements, is needed. 

Thus, the indicative function of bending moment of trunk 

elements (element No. 1 to 10) is analyzed, i.e. how is the 

distribution of these samples of extreme-value events on the 

trunk elements. Fig. 14 shows the extreme value of 

indicative function comp

iI distributed on the element 

numbers in different wind levels as the histogram of 

samples, i.e., the frequency number of comp

iI occurring on a 

certain element through all the samples at a wind level. 

Wind level in the figure labelled by 1, 2, 3, 4, 5, 6 refers to 

the average wind speed 12 m/s, 16 m/s, 20 m/s, 24 m/s, 28 

m/s and 32 m/s, respectively.  It is readily revealed that the 

10th element has the largest frequency number of comp

iI  

throughout all the samples in case of different wind levels, 

indicating that the 10th element is the main contributor to 

the failure of trunk system, and the position of most likely 

failure occurs at the connection between trunk and primary 

branches. The branch-off element and its adjacent elements 

of trunk is thus the critical position where the logical 

protection and reinforcement measure are implemented; see 

Fig. 15. 

 

 

 

Fig. 13 Fragility curves of the segments of Plane tree 

subjected to variant wind levels with average wind 

speeds from 12 m/s to 32 m/s 

 

 

Fig. 14 Extreme value of indicative function distributed 

on element numbers in different wind levels as histogram 

of samples 

 

 

 

Fig. 15 Protection and reinforcement measure 

implemented on trunk of Plane trees 

 

 

 

6. Conclusions 
 

This paper is devoted to the parametric modeling and 

wind-induced fragility assessment of Plane trees, a family 

of widely-planted tree species in the area of Shanghai 

China, involving the randomness inherent in material 

properties and structural topology. A new technique of 

topology modeling of tree structures integrating the fractal 

theory and the finite element method is proposed. Fragility 

probability analysis of Plane trees subjected to wind hazard 

then receives a significant breakthrough utilizing the 

probability density evolution method. This has a certain 

engineering application value and the practical significance 

in risk assessment of urban trees. The main conclusions are 

summarized as follows. 

•  Fractal theory based modeling of structural topology 

accommodates the complexities of Plane tree morphology. 

Kernel parameters involved in the model reveals the 

variation of structural morphology and material properties, 
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which are identified and statistically analyzed from the 

measurement data of Plane trees. This treatment overcomes 

the non-logics associated with traditional models through 

considering the uncertainty inherent in tree morphology and 

biomechanics due to growing conditions. The logical model 

underlies the investigation of structural dynamics of Plane 

trees and wind-induced risk assessment at an individual-tree 

or at a block-trees scales. 

•  The mean and standard deviation fundamental 

natural frequency of Plane trees by model prediction are 

0.321 Hz and 0.051 Hz, respectively, which shows a 

consistence with the previous measurements of London 

Plane trees. The modal frequencies of sample trees feature a 

remarkable pattern with grouped dense-frequencies. Among 

the former 30-order modal frequencies, the 1st and 2nd 

frequencies correspond to bending modes of trunk; the 3rd 

to 6th frequencies correspond to bending modes of primary 

branches; the 7th to 24th frequencies correspond to bending 

modes of secondary branches; the remaining frequencies 

correspond to torsional modes of trunk and branches. The 

statistical analysis of modal frequencies indicates that the 

bending mode is the main manner of structural failure of 

Plane trees. 

•  Failure probability of bending moment of structural 

segments relies both upon their bending capacities and 

moment response. In case of a low wind level, the loading 

force on a small-size segment such as the secondary 

branches is pronounced due to a small deflection, which 

results in a larger moment response and a higher failure risk 

than other big-size segments, i.e., the trunk. With the 

increasing of the wind level, small-size segments sway 

significantly and gain a slow enhancement of moment 

response owing to windward shrinks; while the wind effect 

upon the large-size segments increases dramatically since 

there is an almost invariant windward since an adequate 

stiffness of the large-size segments. 

•  In case of high winds, the trunk of Plane tree is the 

segment most likely to be damaged than other segments. 

The element closing to the branch-off point between the 

trunk and the primary branches is the main contributor to 

the failure of trunk system. The position of most likely 

failure thus occurs at the connection between trunk and 

primary branches, where the logical protections and 

reinforcement measures can be implemented for mitigating 

the damage caused by wind-induced vibration. 
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