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1. Introduction 
 

The persistent vibration of the wind blades is one of the 

causes of the material damage and the reducing of the wind 

turbine efficiency. Thereby, the realistic mechanical 

behavior of the wind blades subjected to the non-stationary 

loads should be predicted. In the last decade, a numerous 

theoretical models dealing with the wind blades vibration 

are proposed. These models are formulated using various 

methods like the beam finite element method by 

assimilating the blade to a cantilever beam. The theoretical 

concepts of the beam finite element method are based on 

the beams theory and the finite element method in order to 

reduce the order of the computing model. The numerical 

analysis of the nonlinear systems is more stable and reliable 

when the finite element model of structure is reduced. 

Indeed, the beam finite element model is commonly used in 

the nonlinear dynamic analysis of wind blades. 

The Timoshenko beams theory taking into account the 

transverse shear has applied by Stoykov and Ribeiro (2013) 

to analyze the nonlinear vibration of rotating beams in 

linear elastic material. The geometric nonlinearity is due to 

the large elastic deformation of the beams. Generally, this 

theory is applied to the thick beams such as the wind blades. 

Using the same theory Rao and Gupta (2001) have studied 

the vibration modes of the tapered and twisted beams. The  
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effects of twist angle and the rotation speed on the vibration 

modes of a rotating cantilever beam are revealed. However 

the gyroscopic effect due to the simultaneous beam rotation 

and vibration is not considered. Rezaei et al. (2015) have 

developed a reduced order model to predict the dynamic 

response of wind blades in large elastic deformation under 

the aerodynamic and gravitational loads. Their modeling is 

based on the Euler-Bernoulli beams theory neglecting the 

transverse shear. They have approved that the torsional 

beating of wind blade is strongly influenced by the 

geometric stiffness of the large elastic deformation of blade. 

The theoretical models are established to analyze and 

solve the technological problems. In this context; Ponta et 

al. (2016) showed the negative effect of the blade cyclic 

deformation on the wind turbine efficiency. Ghasemi et al. 

(2014) have studied the aeroelastic stability of an original 

wind blade. They have approved that the coupling of 

bending and torsional vibration of wind blades is a major 

cause of their instability and damaging. Ashrafi et al. 

(2015) have studied the pitch control system integrated in 

the modern wind rotors to optimize her power output. To 

evaluate the wind loads, the blade element momentum 

theory is used. In other side, Wang et al. (2014) implement 

a detection process of the structural damages of wind blades 

based on the dynamics analysis using the finite element 

method. Dotti et al. (2016) have simulated the dynamic 

response of a thin-walled beam with a breathing crack and 

subjected to a sinusoidal excitation. The topological 

changes of the dynamic response allow identifying the 

breathing crack location. To reduce the fatigue of wind 

blades, Lee et al. (2013) have studied the implement of the 

active aerodynamic load control devices based on a 

proportional derivative controller. Also, Staino and Basu 
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(2013) proposed an analytical modeling and control of wind 

blade vibration due to change in the rotational speed.  

In this paper, a beam finite element model is formulated 

considering the large elastic deformation of the sheared 

beams. Then, the proposed model is applied to simulate the 

dynamic response of a rotating wind blade at a constant 

angular speed and subjected to the sinusoidal excitation of 

gravity. The gyroscopic loads due to the simultaneous blade 

rotation and vibration are taken into account. The 

aerodynamic and centrifugal loads are considered and 

supposed stationary at the time of simulation. Finally, the 

influence of the large elastic deformation stiffness on the 

amplitudes and frequencies of the blade vibration are 

analyzed. 

 

 

2. The proposed model 
 

The wind blade is assimilated to a cantilever beam with 

a variable cross-section. The blade material is assumed 

homogeneous and isotropic. Also, a linear elastic behavior 

of the blade material is considered. The three-dimensional 

vibration motion of an infinitesimal blade element (see Fig. 

1) is described by their all degrees of freedom: u, v, w,  , 

  and  . Then, we applied the beam finite element 

method to develop the algebraic equations system 

governing the vibration blade motion in large elastic 

deformation as follows 

( ) 
e e e e e e ge e e

...
M q C q K q + K q = F t

 
(1) 

The elementary stiffness Ke, mass Me, gyroscopic Ce 

matrices and the applied loads vector Fe are given by 

Hamdi et al. (2014). 

This study aims to formulate the geometrical stiffness 

matrix Kge due to the large elastic deformation of the 

rectilinear beams. In the following, the matrices and vectors 

are expressed in the (x,y,z) referential related to the blade. 

 

2.1 Geometric stiffness 
 

The beams geometrical stiffness in the large elastic 

deformation is formulated using the strain energy method. 

By considering x-axis long beam, the components: σyy, σyz 

and σzz of the stress tensor are negligible in comparison with 

the other components: σxx, σxy and σxz. Consequently, the 

function of the strain energy due to the nonlinear part of the 

total elastic deformation of a beam finite element is 

expressed as follows 

 1

2
(nl) 2 (nl) 2 (nl)

e

e xx xx xy xy xz xz

V

U dV         
(2) 

The strain tensor components of the deformable solids 

in large elastic deformation are expressed by 

   1 1
, , , ,2 2ab a b b a c a c bu u u u   

 
(3) 

The indices a, b and c take the letters x, y or z. 

The displacement vector u of an arbitrary point P(x,y,z) 

located on the beam cross-section is obtained as follows 

 

Fig. 1 Vibration motion parameters of an infinitesimal 

blade element and the applied loads 

 

 

 
T

( - ),  ( ),  ( )u z y v z w y      u
 

(4) 

From the Eqs. (3) and (4), we obtain the linear and 

nonlinear parts of the strain tensor components at the point 

P 

, , ,(l)xx x x xu y z    
 

(5) 

 

, ,2 (l)xy x xv z    
 

(6) 

 

, ,2 (l)xz x xw y    
 

(7) 
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(9) 
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(10) 

To apply the finite element method, the blade is 

discretized in several beam finite elements (see Fig. 2) 

connected by consecutive nodes. Then, we can evaluate any 

function φ in terms of these nodal values (φi and φj=i+1) by 

simplex isoparametric interpolation as follows 

1 2( ) ( ) ( )i jN N      
 

(11) 

The function φ is: u, v, w, α, β, γ or x. 

The used interpolation functions are linear 

   1 2( ) 1 /2   and   ( ) 1 /2 N N      
 

(12) 

Where, ξ is the interpolation parameter variable between 

-1 and 1. 

The gradient of the function φ with respect x is written 
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, ( ) / 2x j i   
 

(13) 

By interpolation, the nonlinear strain tensor components 

can be expressed again from the Eqs. (8)-(10) by the 

following relations 

T T T(nl) ;   2 (nl) ;   2 (nl)xx e e xy e e xz e e    q Xq q Yq q Zq  (14) 

The X, Y and Z matrices are given by Hamdi et al. 

(2012). 

The nodal displacement vector qe of any beam finite 

element is 

( , , , , , , , , , , , )i i i i i i j j j j j ju v w u v w     
e

q
T

           
 

(15) 

The function of strain energy Eq. (2) due to the 

nonlinear part of the total elastic deformation is expressed 

again using the Hooke low as follows 

 1 T

2
2 2[ ]

e

ge

e xx xy xz

V

U E G G dSdx    e e

K

q X Y Z q  

(16) 

From the Eq. (16) we identify the geometrical stiffness 

matrix Kge of the beam. After interpolation and negligence 

of the product terms of nodal displacements components, 

the geometrical stiffness matrix can be simplified as 

1 2 3

1 2 3

[ [( ) ( ) ( )]

[( ) ( )] ( )

          [( ) ( )] ( )]

j i j i j i

S

j i j i i j
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E u u z y

G v v z G

G w w y G dS
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   

   

    

    

    

geK = X +

          A A A +

B B B

 (17) 

The constant matrices A and B depend only on the y, z 

and the length l of beam finite element 

1 1 1
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(18) 

The geometrical stiffness matrix is function of the nodal 

displacements components. Consequently the governing 

equations system Eq. (1) is geometrically nonlinear. 

 

2.2 Applied loads 
 

During its operation, the wind blade is subjected to the 

aerodynamic, centrifugal, gyroscopic and gravity loads. The 

aerodynamic and the centrifugal loads are supposed 

stationary at the time of simulation. To calculate the 

aerodynamic loads in each node of blade, we use an 

iterative calculation algorithm developed by Dai et al. 

(2011) based on the blade element momentum theory. The 

gravity excitation of the rotating blade is sinusoidal and 

causes a harmonic vibration of blade. Indeed the 

simultaneous vibration and rotation of the blade generate 

gyroscopic torsion and bending moments. The elementary 

applied loads (see Fig. 1) are expressed as follows 

 Aerodynamic loads of wind: 

1 2

r2

1 2

r2

2 2

r
1
2

;  

;  

a y

a z

a m

dFy C cV dx

dFz C cV dx

dM C c V dx













 (19) 

 Excitation force of gravity 

 
T

cos sin( ),  cos cos( ),  sind gS t t dx      P  (20) 

 Centrifugal force of rotation 

2   dFx x Sdx   (21) 

 Gyroscopic torsion moment 

2

t yzdC ρI Ω dx  (22) 

 

 

3. Results and discussion 
 

3.1 Study case 
 

The proposed modeling is applied to study the static and 

dynamic response of a small scale wind blade (see Fig. 2) in 

large elastic deformation. This wind blade is designed and 

manufactured by Habali and Saleh (2000a, b) for a 15 kW 

wind turbine. Due to its aerodynamic performance, the 

NACA-63-621 airfoil type of the blade working region is 

chosen by the designers. The practice test have approved 

that her optimal operation is reached when the wind speed 

is 10 m/s and the rotation speed is 9.17 rad/s. The model 

inputs are summarized in the Tables 1-3. 

 

3.2 Static response 
 

The iterative Newton method is used to evaluate the 

static displacements components of the blade axis (see Figs. 

3(a)-3(d)) under the stationary loads. We note the static 

displacement components of the blade are weak reduced by 

the geometric stiffness of the large elastic deformation. 

Particularly, the angular of the blade torsion is more 

influenced by this stiffness. During rotation, the blade starts 

to vibrate around this static position under the gravity 

excitation. 

In order to validate the proposed beam finite element 

model, we simulate the static deformation of the studied 

blade using the SolidWorks software with the large 

deformation option. The stationary loads are distrubed 

along the blade axis (see Fig. 4(b)) in accordance with 

Table 3. In the same way, Domnica et al. (2016) have 

applied the wind loads to study a wind blade. Subsequently 

a volumetric meshing of the blade (see Fig. 4(a)) is 

automatically created when the static study is carried out. 
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The solid finite elements of the software model are 

tetrahedron type of four nodes with three degrees of 

freedom per node. In contrast, our finite element model uses 

beam elements of two nodes with six degrees of freedom 

per node decreasing the total number of the structure 

freedom degrees compared to the software modeling. 

The simulation results are the displacement and the 

deformation fields (see Figs. 5(a) and 5(b)) of the blade 

structure. The maximum value of the resultant displacement 

obtained by the SolidWorks software is 25 mm; on the other  

 

 

 

 

 

 

hand the value evaluated by the proposed model is about 21 

mm for the wind speed 10 m/s. A similarly static study of 

the adopted wind blade was carried out by Habali and Saleh 

(2000a) using solid finite element model. According to their 

results, the maximum displacement of the blade is in order 

100 mm for the extreme wind speed 42 m/s. Assuming that 

the static deformation variation of blade is quasi-linearly as 

wind speed increases, it should be noted that the obtained 

numerical values are valid. 

 

 

Fig. 2 Small scale wind blade discretized in twelve beam finite elements 

Table 1 Mechanical properties of the used wind blade 

Parameters Descriptions Values 

ρ Mass density of the blade 1400 kg/m3 

E Elasticity modulus of material 6000 MPa 

G Shear modulus of material 2542 MPa 

R Rotor radius 5.45 m 

δ Rotor tilt angle 12 deg 

g Gravity modulus 9.81 N/Kg 

ρa Density of air 1.25 kg/m3 

V Wind speed 10 m/s 

Ω Rotor angular speed 9.17 rad/s 

Table 2 Geometrical properties of the beam finite elements 

Element l(mm) c(mm) S(mm2) Ixx(cm4) Iyy(cm4) Izz(cm4) Iyz(cm4) 

1 400 210 8193 7510 4153 3357 -363 

2 400 504 8552 22630 18070 4566 -5240 

3 400 600 11368 32920 27960 4965 -8450 

4 400 562 10514 26520 22820 3698 -6797 

5 400 524 9741 21190 17990 3204 -5626 

6 400 486 8897 16610 13940 2678 -4565 

7 400 448 8137 12750 10600 2146 -3607 

8 400 410 7293 9576 7845 1731 -2807 

9 400 371 6510 6944 5578 1365 -2124 

10 400 333 5713 4845 3798 1047 -1555 

11 400 295 4968 3250 2465 786 -1096 

12 600 257 3885 1872 1344 528 -673 

5 m

1
2

3
4

5
6

7

8
9

10
11

12
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Table 3 Stationary loads values at each node of the blade 

Node x(m) Fx(N) Fy(N) Fz(N) Pz(N) M(Nm) Ct(Nm) 

1 0.85 376.9 13.36 -11.18 -10.58 -3.26 -2.5 

2 1.25 644.7 19.84 -11.08 -12.41 -4.54 -3.2 

3 1.65 873.4 27.54 -10.93 -12.86 -3.87 -3.6 

4 2.05 1015.3 35.97 -10.48 -12.04 -3.19 -2.9 

5 2.45 1120.3 44.66 -9.72 -11.11 -2.87 -2.4 

6 2.85 1195.5 53.10 -8.66 -10.19 -2.65 -1.9 

7 3.25 1240.8 60.66 -7.35 -9.27 -2.43 -1.5 

8 3.65 1254.8 67.19 -5.91 -8.35 -1.71 -1.2 

9 4.05 1239.6 72.14 -4.37 -7.43 -1.56 -0.9 

10 4.45 1198.6 75.22 -2.83 -6.54 -1.33 -0.6 

11 4.85 1183.9 77.51 -1.23 -6.99 -1.05 -0.5 

12 5.45 821.5 38.75 -0.61 -3.95 -1.02 -0.2 

 
 

(a) Lengthening of the blade (b) Flapwise deflection of the blade 

  
(c) Edgewise deflection of the blade (d) Blade angle torsion 

Fig. 3 Static displacement components of the blade axis in cases: small elastic deformation (curves in blue) and large elastic 

deformation (curves in red) 

  
(a) Volumetric meshing of the blade (b) Distribution of the applied loads on the blade 

Fig. 4 Volumetric meshing of the used blade and loads distribution 
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(a) Displacement field (b) Deformation field 

Fig. 5 Simulation results of the blade structure by SolidWorks software 

 

Fig. 6 Lengthening of the blade 

 

Fig. 7 Flapwise deflection of the blade in small elastic deformation case 

 

Fig. 8 Flapwise deflection of wind blade in large elastic deformation case 
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Fig. 9 Edgewise deflection of wind blade in small elastic deformation case 

 

Fig. 10 Edgewise deflection of wind blade in large elastic deformation 

 

Fig. 11 Torsion angle of the wind blade in small elastic deformation 

 

Fig. 12 Torsion angle of the wind blade in large elastic deformation 
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3.3 Dynamic response 
 

To simulate the nonlinear dynamic response of the wind 

blade under the excitation of gravity, a MATLAB code 

using predictor-corrector Newmark scheme is established. 

In the nonlinear dynamic case (large elastic deformation), 

the stability of the simulation process with a constant time 

step (10-5 s) is approved during a large time (20 s) of blade 

functioning. The dynamic response components at the end 

node of the blade are showed in Figs. 6-12. We note the 

amplitude of flapwise vibration is higher than the edgewise 

vibration component. Indeed, the flapwise component of 

wind blade vibration may be causes the damage of the 

structure. Moreover the flapwise component is not heavily 

influenced by the geometrical stiffness of large deformation 

like the other components of blade vibration. The torsion 

vibration component (see Figs. 11 and 12) is due to the 

simultaneous blade rotation and vibration. The torsional 

vibration amplitude is clearly amplified by the geometric 

stiffness of the large elastic deformation. However the 

lengthening of the blade is not influenced by this stiffness. 

The frequency spectrums shown in Fig. 13 are obtained 

by the Fast Fourier Transform (FFT) of the blade dynamic 

response components. The first frequency of the blade 

vibration corresponds to the rotor rotation speed because the 

structural damping is neglected in the modeling. It is clear 

that the amplitudes of the blade vibration components are 

increased and her first frequencies are reduced by the 

geometrical stiffness of large elastic deformation. 

 

 

 

 
 
4. Conclusions 

 

In this study a beam finite element model is developed 

based on a simplex interpolation method. Then, it is applied 

to analyze the nonlinear dynamic response of wind blade in 

large elastic deformation. The proposed approach allows 

assessing the lengthening, deflection and torsion of the 

blade structure. The aerodynamic and centrifugal loadings 

are applied to the blade. Also, the gyroscopic loads induced 

by the simultaneous blade rotation and vibration are 

considered. In the first part, the simulation of the static 

deformation of a small scale wind blade under the 

stationary loads was carried out by standard software using 

solid finite element model in order to check the obtained 

results. In the second part, the dynamic response 

components of the wind blade subjected to the excitation of 

gravity is simulated and the stability of the numerical 

process is approved during a large time of blade 

functioning. 

Based on the obtained results, we conclude that the 

value of the static deformation of the wind blade is weakly 

reduced by the geometric stiffness of large elastic 

deformation, but its dynamic response is clearly influenced. 

Furthermore, the geometric stiffness of the large elastic 

deformation increases the amplitude of the wind blade 

vibration and reduces her frequencies. Finally, the torsional 

vibration amplitude of the wind blade generated by the 

gyroscopic effect is clearly amplified by the geometric 

stiffness of the large elastic deformation. Therefore, the risk 

of damaging of the blade structure is increases. 

 

  
(a) FFT of u(t) (b) FFT of v(t) 

  
(c) FFT of w(t) (d) FFT of α(t) 

Fig. 13 FFT of the dynamic response components in cases: small elastic deformation (curves in blue) and large elastic 

deformation (curves in red) 
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Nomenclature 

 

(..),x 

Ue 

Kge 

Ke 

Me 

Ce 

Fe 

qe 

u 

σxx 

σxy 

σxz 

εxx 

εxy 

εxz 

εxx(nl) 

εxy(nl) 

εxz(nl) 

εxx(l) 

εxy(l) 

εxz(l) 

u, v, w, ,  
Ixx, Iyy, Izz, Iyz 

N1, N2 

x, y, z 

i, j 

ξ 

E 

G 

ρ 

ρa 

Ω 

Vr 

Fx 

Fy 

Fz 

M 

Ct  

P 

Cy 

Cz 

Cm 

g 

S 

 
c 

l 

t 

 

 

 

 

Partial derivative of the function (..) with respect x 

Strain energy function of the nonlinear elastic deformation 

Geometrical stiffness matrix 

Mechanical stiffness matrix 

Mass matrix 

Gyroscopic matrix 

Loads vector 

Nodal displacements vector 

Displacements vector of an arbitrary point of blade 

Normal stress to the cross section 

Shear stress to the cross section in y direction 

Shear stress to the cross section in z direction 

Total longitudinal strain in x direction 

Total shear strain in y direction 

Total shear strain in z direction 

Nonlinear part of longitudinal strain in x direction  

Nonlinear part of transverse strain in y direction 

Nonlinear part of transverse strain in z direction 

Linear part of longitudinal strain in x direction 

Linear part of shear strain in y direction 

Linear part of shear strain in z direction 

Degrees of freedom of the blade element 

Quadratic inertia moments of the cross section 

Two interpolation functions 

Coordinates of an arbitrary point of the blade 

Indices of two consecutives nodes 

Interpolation parameter 

Elasticity modulus of material 

Shear modulus of material 

Density of material 

Density of air 

Angular speed of blade 

Relative speed of wind 

Centrifugal force 

Aerodynamic force in y direction 

Aerodynamic force in z direction 

Aerodynamic moment of torsion 

Gyroscopic moment of torsion 

Gravity force vector 

Aerodynamic coefficient in y direction 

Aerodynamic coefficient in z direction 

Aerodynamic moment coefficient 

Gravity modulus 

Cross section area 

Rotor tilt angle 

Chord of cross section 

Beam element length 

Time 
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