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1. Introduction 
 

Extreme wind pressure values on large-span roofs are 

important for the wind-load resisting design of the building 

envelope, and they may be determined on the basis of its 

probability distribution function (PDF). It is observed that 

the wind pressure acting on the windward claddings follows 

a Gaussian distribution, but the wind pressure acting on the 

roof, especially along the edges and ridges, has been 

observed to be sometimes non-Gaussian by Tieleman and 

Ge (2003). Thus, accurate extreme values of the wind 

pressure on large-span roofs may not be obtained using the 

Gaussian peak factor. As there were some differences 

between the extreme values and standard deviations of the 

wind pressures obtained from models in a wind tunnel and 

full-scale structures by Apperley (1986), the extreme values 

and non-Gaussianity of the wind pressure on a large-span 

roof should be studied with field measurements. 

Liu (2017) presents a study on the performance of the 

moment-based model approach as applied to various non-

Gaussian wind pressures on a large-span saddle-type roof. A 

new strategy is introduced to improve the accuracy of the 

moment-based model approach, and its effectiveness is 

examined for various non-Gaussian wind pressures.  
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Synchronous multi-pressure measurements were carried 

out for a double-layer reticulated shell roof model in the 

atmospheric boundary layer wind tunnel by Huang (2016), 

the existing translated-peak-process (TPP) method had been 

revised and improved in the estimation of non-Gaussian 

peak factors, and finally calculated them by employing 

some various state-of-the-art methods. 

The fluctuations of the wind pressure on large-span 

roofs are discussed little in the literatures. A field study of 

wind-induced internal pressures in a flexible and porous 

industrial warehouse with a single dominant opening, of 

various sizes for a range of moderate wind speeds and 

directions, was reported by Guha (2013). Pressure 

measurements were made on erected cantilever roof 

structures to test the reliability of the wind tunnel tests for 

predicting pressure distributions on this type of structure by 

Apperley (1986). Pitsis (1991) compared full-scale and 

wind tunnel measurements of pressures on built-up Belmore 

stadium in Sydney, concluding that there were significant 

differences in the mean and squared deviations of the wind 

pressure between measurements in wind tunnels and field 

measurements on the front regions of the roof. 

Levitan (1992) and Yeatts (1995) investigated the wind 

load on low-rise buildings with field measurements on the 

Texas Tech University experimental low-rise building. Flow 

visualization of conical vortices on large-span flat roofs was 

performed in a wind tunnel by Sun et al. (2016). The 

streamline and vorticity field of visual planes on large-span 

roofs were given by PIV, and they confirmed the influence 
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Abstract.  Full-scale measurements of wind action on the open roof structure of the WuXi grand theater, which is composed of eight 

large-span free-form leaf-shaped space trusses with the largest span of 76.79 m, were conducted during the passage of Typhoons HaiKui 

and SuLi. The wind pressure field data were continuously and simultaneously monitored using a wind pressure monitoring system installed 

on the roof structure during the typhoons. A detailed analysis of the field data was performed to investigate the characteristics of the 

fluctuating wind pressure on the open roof, such as the wind pressure spectrum, spatial correlation coefficients, peak wind pressures and 

non-Gaussian wind pressure characteristics, under typhoon conditions. Three classical methods were used to calculate the peak factors of 

the wind pressure on the open roof, and the suggested design method and peak factors were given. The non-Gaussianity of the wind 

pressure was discussed in terms of the third and fourth statistical moments of the measured wind pressure, and the corresponding indication 

of the non-Gaussianity on the open roof was proposed. The result shows that there were large pulses in the time-histories of the measured 

wind pressure on Roof A2 in the field. The spatial correlation of the wind pressures on roof A2 between the upper surface and lower surface 

is very weak.When the skewness is larger than 0.3 and the kurtosis is larger than 3.7, the wind pressure time series on roof A2 can be taken 

as a non-Gaussian distribution, and the other series can be taken as a Gaussian distribution. 
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of wind direction and roof curvature on the appearance of 

conical vortices. Yoshida (1992) calculated the mean wind 

pressure coefficient distribution on a membrane roof using a 

synchronous multi-point scanning system technique. Full-

scale measurements were made to investigate wind-induced 

internal pressures in a high-rise building by Kato (1997), 

and the suggested internal pressure coefficients in high-rise 

buildings were provided. The modeling of equivalent static 

wind loads on low-rise buildings based on full-scale 

pressure measurements was addressed by Chen (2007). 

Based on field data from full-scale measurements of a low-

rise building during Typhoon Hagupit, the characteristics of 

the mean, fluctuating and peak pressure coefficients on the 

leading edges of the roof and the roof-corner regions were 

investigated by Li (2010). Full-scale measurements of wind 

actions and wind-induced structural responses of the roof 

were conducted during the passage of Typhoon Nuri by 

Chen (2011). The probability density functions of the 

fluctuating wind pressure on the cantilevered roof were 

clearly negatively skewed and distinctly deviated from the 

normal distribution, particularly for the tails. Aly Mousaad 

(2012) presented an experimental study to assess the wind-

induced pressure on full-scale loose concrete roof pavers 

using the Wall of Wind, a large-scale hurricane testing 

facility at Florida International University. His study shows 

that roof pavers could be subjected to significant uplifting 

wind forces due to negative pressures. Huang (2013) 

developed a new translated-peak-process method for the 

estimation of the peak distribution of wind pressure based 

on the Weibull distribution and point-to-point mapping 

procedure and verified it in the wind tunnel test of high-rise 

building. Asmerom (2014) gave a brief review of 

comparisons between full-scale and University of Western 

Ontario (UWO) and Tokyo Polytechnic University (TPU) 

wind tunnel measurements of pressures on the Texas Tech 

University experimental low-rise building. He suggested 

that the TPU and UWO pressure simulations are reasonably 

equivalent and may be used in practice for the design of 

main wind force resisting systems. Based on field 

measurements, Shi (2014) investigated some important 

characteristics and distribution regularities of measured 

instantaneous wind pressures on a super-tall building during 

the passage of Typhoon Fanapi. 

This paper presents the field measurement results of 

fluctuating wind load characteristics and extreme pressures 

on the open roof of WuXi Grand Theater (as shown in Figs. 

1 and 2) during Typhoons HaiKui (2012) and SuLi (2013). 

 

 

2. Field measurement program 
 

2.1 Open roof and monitoring system 
 

WuXi Grand Theater is located in the southern part of 

the WuLi River. The design wind speed with a return period 

of 50 years for WuXi is approximately 34.1 m/s at a height 

of 45 m. WuXi Grand Theater consists of two parts, the 

covering steel roofs and the covered concrete building, 

which work separately. Part A of the steel roofs is composed 

of five leaf-shaped space trusses, named A1, A2, A3, A4  

 

 

Fig. 1 Photograph of WuXi grand theater 

 

 

 

Fig. 2 Steel roofs of WuXi grand theater 
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(a) Front elevation of Roof A2 

 
(b) Top view of Roof A2 

Fig. 3 Model of Roof A2 
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Field measurements of wind pressure on an open roof during Typhoons HaiKui and SuLi 

 

 

 

and A5, and Part B is composed of three leaf-shaped space 

trusses, named B1, B2 and B3. The surface of every leaf-

shaped space truss is free-form. The wind pressures on the 

leaf-shaped roof A2 during the typhoons were measured.  

The parameters of roof A2 are shown in Fig. 3 and Table 

1. 

The wind pressure transducer and pressure tap locations 

are shown in Figs. 4 and 5. The numbers of the taps on 

upper and lower surface of space truss A2 are 1-12 and 13-

24 respectively. The time histories of the wind pressures 

exerted on the roof were simultaneously acquired at a rate 

of 40 Hz through an electronically scanned pressure system.  

 

 

3. Characteristics of fluctuating wind pressures on 
open roof A2 
 

3.1 Power spectral density of measured wind 
pressure 

 

The time-histories and power spectral density of the 

measured wind pressure on Roof A2 during Typhoon HaiKui 

(8.30 P.M., August 8th, 2012) and Typhoon SuLi (0.30 P.M., 

July14th, 2013) are shown in Fig. 6-10, with a sampling time is 

25.6×20= 512s (with sampling frequency at 40 Hz). There are 

large pulses in the time-histories of the measured wind 

pressure. The first wave crest appears near 2 Hz in the power 

spectral density of the measured wind pressure, and there are 

many components of medium-high frequencies. 

 

3.2 Spatial correlation coefficients of measured wind 
pressures 
 

The spatial correlation of the wind pressure affects the gust 

response of structures. Especially for a structure that is long 

and has a very low natural frequency, the spatial correlation of 

wind pressures in the low-frequency range is very important. 

 

 

 

Fig. 4 wind-pressure transducer 

 

 

 

 

 
(a) on the upper surface 

 
(b) on the lower surface 

Fig. 5 Locations of pressure taps and definition of wind 

direction 
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Fig. 6 Time histories of measured wind pressures of taps 

3, 4 and 9 by Typhoon HaiKui at 8.30 P.M., August 8th, 

2012 

Table 1 Parameters of open roof A2 

Span Width Sections of chord member pipe Sections of web member pipe Yielding stress of pipes 

76.79 m 52.28 m 350 10   (or) 400 12   245 8   (or) 328 8   345 MPa 
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Fig. 7 Power spectral densities of measured wind 

pressures of taps 1-12 by Typhoon HaiKui at 8.30 P.M., 

August 8th, 2012 
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Fig. 8 Power spectral densities of measured wind 

pressures of taps 13-24 by Typhoon HaiKui at 8.30 P.M., 

August 8th, 2012 
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Fig. 9 Power spectral densities of measured wind 

pressures of taps 1-12 by Typhoon SuLi at 0.30 P.M., 

July 14th, 2013 
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Fig. 10 Power spectral densities of measured wind 

pressures of taps 13-24 by Typhoon SuLi at 0.30 P.M., 

July 14th, 2013 
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Field measurements of wind pressure on an open roof during Typhoons HaiKui and SuLi 

 

 

 

 

 

 

When the spatial correlation is larger than 0.5, it is 

considered strongly correlated, and when the spatial 

correlation is less than 0.2, it is weakly correlated. The 

spatial correlation coefficients between the measured wind 

pressures of the taps on the upper surface and the 

corresponding taps on the lower surface of Roof A2 are 

shown in Table 3, and the sampling times during Typhoon 

HaiKui and SuLi are shown in Table 2. As shown in Table 

3, the spatial correlation of the wind pressures between the 

upper surface and lower surface is very weak because Roof 

A2, which is covered by aluminum plates, is windtight. The  

 

 

 

 

 

 

spatial correlation coefficients of the wind pressures on the 

upper and lower surface are shown in Tables 4 and 5 

respectively. It is indicated that all the absolute values of the 

spatial correlation coefficients are less than 0.2, and most of 

the spatial correlation coefficients are less than 0.1 and 

negative. This is because the taps on Roof A2 are in the 

middle of the roof and far from the eaves, where the wind 

pressure varies intensely. The distance between taps on the 

roof is generally 6.5 m–9 m, so the spatial correlation 

coefficients of the measured wind pressures on the large-

span roof are small. 

Table 2 Sampling times of Typhoons HaiKui and SuLi 

Typhoon "HaiKui" Time 1 Time 2 Time 3 Time 4 Time 5 

Time 2012-8-8-20:30 2012-8-8-21:00 2012-8-8-21:30 2012-8-8-22:00 2012-8-8-22:30 

Typhoon "SuLi" Time 6 Time 7 Time 8 Time 9 Time 10 

Time 2013-7-14-00:00 2013-7-14-00:30 2013-7-14-01:00 2013-7-14-01:30 2013-7-14-02:30 

Table 3 Wind pressure correlation coefficients between corresponding taps on the upper surface and lower surface by 

Typhoons HaiKui and SuLi 

Taps on upper surface(on lower 

surface) 

Time

1 

Time

2 

Time

3 

Time

4 

Time

5 

Time

6 

Time

7 

Time

8 

Time

9 

Time 

10 

Taps 1(13) -0.02 -0.06 -0.12 -0.01 -0.10 -0.09 -0.08 -0.04 -0.10 -0.01 

Taps 2(14) 0.04 -0.04 -0.02 -0.04 -0.06 0.02 -0.06 -0.03 -0.05 -0.02 

Taps 3(15) -0.05 -0.05 -0.02 -0.01 -0.05 -0.04 -0.01 -0.03 -0.04 -0.03 

Taps 4(16) -0.03 -0.02 -0.05 -0.02 -0.06 -0.01 -0.07 -0.07 -0.05 -0.10 

Taps 5(17) -0.12 -0.09 -0.07 -0.12 -0.02 -0.10 -0.06 -0.07 -0.07 -0.10 

Taps 6(18) -0.04 -0.03 -0.05 -0.11 -0.03 -0.06 -0.09 -0.04 -0.10 -0.06 

Taps 7(19) -0.05 0.00 -0.05 -0.08 -0.05 -0.06 -0.06 -0.07 -0.11 -0.07 

Taps 8(20) 0.06 0.03 0.04 0.00 0.02 0.04 0.06 0.08 -0.02 0.04 

Taps 9(21) -0.03 -0.04 -0.05 -0.05 -0.07 -0.07 -0.01 -0.09 -0.01 -0.03 

Taps 11(23) -0.04 -0.02 -0.07 -0.04 -0.10 -0.06 -0.04 0.00 0.00 -0.04 

Taps 12(24) -0.08 -0.10 -0.13 -0.05 -0.15 -0.09 -0.05 -0.10 -0.05 -0.06 

Table 4 Wind pressure spatial correlation coefficients of taps on upper surface during Typhoon HaiKui at 8.30 P.M. 

Aug. 8th, 2012 

Tap No. Tap1 Tap2 Tap3 Tap4 Tap5 Tap6 Tap7 Tap8 Tap9 Tap11 Tap12 

Tap1 1.00 -0.02 0.06 -0.09 -0.18 -0.06 -0.10 -0.01 0.06 0.10 0.10 

Tap2 -0.02 1.00 -0.17 0.04 -0.08 -0.13 -0.15 -0.14 0.01 0.16 0.13 

Tap3 0.06 -0.17 1.00 -0.12 0.00 -0.04 -0.08 -0.07 -0.10 0.09 0.10 

Tap4 -0.09 0.04 -0.12 1.00 -0.09 0.08 -0.14 -0.09 -0.08 -0.03 0.05 

Tap5 -0.18 -0.08 0.00 -0.09 1.00 0.06 0.09 -0.15 -0.14 -0.06 0.04 

Tap6 -0.06 -0.13 -0.04 0.08 0.06 1.00 -0.05 0.15 -0.03 -0.06 -0.05 

Tap7 -0.10 -0.15 -0.08 -0.14 0.09 -0.05 1.00 0.00 0.00 -0.13 -0.19 

Tap8 -0.01 -0.14 -0.07 -0.09 -0.15 0.15 0.00 1.00 -0.01 -0.08 -0.14 

Tap9 0.06 0.01 -0.10 -0.08 -0.14 -0.03 0.00 -0.01 1.00 0.14 -0.14 

Tap11 0.10 0.16 0.09 -0.03 -0.06 -0.06 -0.13 -0.08 0.14 1.00 0.04 

Tap12 0.10 0.13 0.10 0.05 0.04 -0.05 -0.19 -0.14 -0.14 0.04 1.00 
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The spatial correlation coefficients of the taps along the 

vertical roof direction are shown in Figs. 11 and12. The 

distribution of the spatial correlation coefficients is the 

same, and their values fluctuate near zero. 
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Fig. 11 Spatial correlation coefficients of taps in cross-

roof direction 
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Fig. 12 Field measurements of typical Gaussian and non-

Gaussian wind pressures during Typhoon HaiKui 

 

 

3.3 Non-Gaussian wind pressure characteristics 
 

It is evident that there are some deviations from the 

Gaussian distribution for the wind pressures measured on 

Roof A2, with a large amplitude of impulse and asymmetry, 

as shown in Fig. 12, and the Gaussian distribution has 

constant values of skewness (0.0) and kurtosis (3.0), which 

is consistent with the observations previously made by 

several researchers (e.g., Li et al. 1999, Kumar and 

Stathopoulos 1999, Gioffre et al. 2001) that the pressure 

fluctuations in separated flow regions possess non-Gaussian 

probability contents. 

A process can be classified as having a Gaussian or non-

Gaussian history by its skewness and kurtosis, i.e., the third 

and fourth moments of the normalized history, which are 

zero and three for a Gaussian history, respectively, as shown 

in Fig. 13. 

The probability plot correlation coefficient (PPCC) 

method is used to identify the optimum value of the shape 

parameter that provides the best estimate of the chosen 

distribution for the time history. To evaluate the suitability 

of a set of competing distributions for a given set of data, 

the distribution that generates the maximum PPCC provides 

the best fit. 
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Fig. 13 Non-Gaussian characteristics 

Table 5 Wind pressure spatial correlation coefficients of taps on lower surface during Typhoon HaiKui at 8.30 P.M. 

Aug. 8th, 2012 

Tap No. Tap13 Tap14 Tap15 Tap16 Tap17 Tap18 Tap19 Tap21 Tap22 Tap23 Tap24 

Tap13 1.00 -0.04 0.11 -0.12 -0.13 -0.12 -0.08 0.03 0.13 0.14 0.06 

Tap14 -0.04 1.00 -0.06 -0.02 -0.09 -0.10 -0.10 0.03 0.03 0.19 0.12 

Tap15 0.11 -0.06 1.00 0.05 0.03 -0.11 -0.15 -0.08 0.03 0.08 0.24 

Tap16 -0.12 -0.02 0.05 1.00 0.15 0.13 -0.22 -0.11 -0.10 0.04 0.13 

Tap17 -0.13 -0.09 0.03 0.15 1.00 -0.09 0.10 -0.11 -0.18 -0.11 0.03 

Tap18 -0.12 -0.10 -0.11 0.13 -0.09 1.00 -0.14 0.01 -0.13 -0.09 -0.15 

Tap19 -0.08 -0.10 -0.15 -0.22 0.10 -0.14 1.00 0.01 0.06 -0.20 -0.15 

Tap21 0.03 0.03 -0.08 -0.11 -0.11 0.01 0.01 1.00 -0.16 -0.18 0.10 

Tap22 0.13 0.03 0.03 -0.10 -0.18 -0.13 0.06 -0.16 1.00 0.20 -0.25 

Tap23 0.14 0.19 0.08 0.04 -0.11 -0.09 -0.20 -0.18 0.20 1.00 0.00 

Tap24 0.06 0.12 0.24 0.13 0.03 -0.15 -0.15 0.10 -0.25 0.00 1.00 
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The time-histories of the measured wind pressures on 

space truss A2, shown in Table 2, were used to identify the 

appropriate probability density function (PDF) of the 

fluctuating pressure with the probability plot correlation 

coefficient (PPCC) method, as shown in Fig. 14. The 

standard normal distribution was also plotted in Fig. 14.  

The standardization of the wind pressure 

( ) /mean stdp p p  was used as the x-coordinate. 
meanp  

and 
stdp  are the mean value and squared deviation of the 

wind pressure p , respectively. 

Compared with the standard normal distribution, the 

global symmetry of the probability density curves of the 

measured wind pressure were adequate, except for taps 3, 4 

and 6, whose global asymmetries were large. The skewness 

of the probability density curves of the measured wind 

pressure is small, while the difference between the 

probability density curves of the measured wind pressure  

 

 

and the standard normal distribution at the end of the 

probability density curves was slightly larger. The 

probability density curve of the measured wind pressure 

was higher than the standard normal distribution, and its 

kurtosis was larger than 3.0. The relationship between the 

skewness and kurtosis of all taps is shown in Fig. 15. The 

range of the kurtosis is between 3 and 8, so the measured 

wind pressures are the non-Gaussian softening histories.  

The skewness in the range between -0.6 and 0.8 was 

smaller, and most of it was positive. 

A quadratic polynomial was used by Dong (2012) to fit 

the relationship between the skewness and the kurtosis, and 

the corresponding equations are given in Fig. 15. The range 

of the skewness of the wind pressures on the flat roofs in 

the wind tunnel test is between -2 and 1, as determined by 

Sun (2007). Most of the skewness is negative, and it is 

larger than that of the measured wind pressure. Moreover, 

the range of the kurtosis of the wind pressures in the tunnel  

   
(a) Probability density of tap 1 (b) Probability density of tap 2 (c) Probability density of tap 3 

   
(d) Probability density of tap 4 (e) Probability density of tap 5 (f) Probability density of tap 6 

   
(g) Probability density of tap 7 (h) Probability density of tap 8 (i) Probability density of tap 9 

  

 

(j) Probability density of tap 11 (k) Probability density of tap 12  

Fig. 14 Probability density curves of measured wind pressures 
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(b) Kurtosis and skewness of taps on the lower surface 

Fig. 15 Fitted curves of kurtosis and skewness 

 

 

is between 3 and 20 by Dong (2012), which is larger than 

that of the measured wind pressures in the field. Hence, 

there is a large difference in the skewness and the kurtosis 

between wind pressures in the wind tunnel and the 

measured wind pressures in the field. The reasons are as 

follows. 1) The model scales are different. As the structural 

model in the field is a prototype, a small-scale model was 

used in the wind tunnel. 2) The wind pressure tap locations 

on roof A2 are in the middle of the roof, at a given distance 

from the eaves. The taps on the roof models in the wind 

tunnel test are located in all the positions of the roof, 

including the separated flow regions and the reattachment 

regions. Therefore, the skewness and kurtosis of the 

measured wind pressures in the field are less than those of 

the wind pressures in the wind tunnel. 

 

3.4 Indication of non-Gaussianity 
 

As an indication, Kumar and Stathopoulos (1999) 

suggested that a particular region can be considered non-

Gaussian if the absolute values of the skewness and kurtosis 

of the pressure fluctuations on low-rise buildings at various 

taps are greater than 0.5 and 3.5, respectively. However, the 

above indication failed at classifying the fluctuating wind 

pressures on high-rise buildings as Gaussian or non-

Gaussian histories, as shown by Gioffre (2001). Instead, 

maps of the higher-order statistical moments (skewness and 

kurtosis coefficients) at the four faces of the model of high-

rise buildings were proposed by Gioffre (2001) as an easy 

tool to localize regions with non-Gaussian features and give 

a measurement of the non-Gaussianity. For large-span 

spatial roofs, the above measure of the non-Gaussianity is 

not applicable. Sun (2007) proposed the indication of the 

non-Gaussianity of fluctuating wind pressures according to 

the absolute values of the skewness and kurtosis: 1) the 

absolutevalues of the skewness and kurtosis as an indication 

should satisfy the fitted curves in Fig. 15; 2) the cumulative 

probability of the chosen skewness should be close to that 

of the chosen kurtosis. 
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Fig. 16 Cumulative probability curves of skewness and 

kurtosis 
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(a) Wind pressure time series of tap 1 
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(b) Wind pressure time series of tap 3 
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(c) Wind pressure time series of tap 7 at time 1 
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(d) Wind pressure time series of tap 7 at time 2 

Fig. 17 Typical time series of wind pressure of taps by 

Typhoon HaiKui 
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Field measurements of wind pressure on an open roof during Typhoons HaiKui and SuLi 

 

 

According to this indication, the non-Gaussianity of the 

wind pressures on the flat roofs in the wind tunnel test was 

shown as 0.2, 3.7Skewness Kurtosis  . 

As there is a large difference in the skewness and the 

kurtosis between the wind pressures in the wind tunnel and 

the measured wind pressures in the field, the indication of 

Sun (2007) and the accumulative probability of the 

skewness and kurtosis for the measured wind pressures on 

open Roof A2 in Fig. 16 have been used to established the 

new index of the non-Gaussianity of open Roof A2. 

Therefore, the proper absolute values of the skewness 

and the kurtosis for Roof A2 should be confirmed according 

to the measured fluctuating wind pressures in the field. 

When 0.3, 4.3Skewness Kurtosis  , the accumulative 

probability of the skewness is close to that of the kurtosis, 

approximately 70%. 

When 0.3, 3.7Skewness Kurtosis  , the wind 

pressure time series can be taken as a non-Gaussian 

distribution, and the other can be taken as a Gaussian 

distribution.  

The first four statistical moments of the measured wind 

pressures of the taps on open roof A2 are shown in Table 6 

and Fig. 17. It is indicated that 1) the non-Gaussianity has 

nothing to do with the value of the standard deviation of the 

fluctuating wind pressure. For examples, the probability  

 

 

distribution of tap 3, with a large standard deviation, is 

Gaussian, while the probability distribution of tap 1, with a 

small standard deviation, is non-Gaussian. 2) The 

probability distribution of the same tap may change at 

different times, as in the case of tap 7, which has a 

probability distribution that is Gaussian at Time 1 but non-

Gaussian in at Time 2. 

 

 

4. Gaussian peak factors using the peak factor 
method 

 

The extreme values of the wind pressure on large-span 

roofs are important for the wind-load resisting design of the 

building envelope. It is observed that the wind pressure 

acting on the windward claddings follows a Gaussian 

distribution. Based on the first-crossing probability of 

Gaussian processes, the method to obtain the extreme value 

of the wind pressure developed by Davenport (1964) was 

named the peak factor method and applied in some wind 

codes and specifications. The equations of Gaussian peak 

factor are as follow 

 
 

1 2

1 2

0.5772
2ln

2ln
g T

T



   (1) 

Table 6 First four statistical moments of measured wind pressures in the field by Typhoon HaiKui 

Tap No. Time Mean 
Standard 

deviation 
Skewness Kurtosis Distribution 

1 Time 1 0 3.49 -0.43 4.74 NG 

2 Time 1 0 3.13 0.12 3.68 G 

3 Time 1 0 4.67 0.03 7.65 G 

4 Time 1 0 3.58 0.08 4.53 G 

5 Time 1 0 3.40 0.62 5.75 NG 

6 Time 1 0 3.07 0.69 6.21 NG 

7 Time 1 0 3.18 -0.04 3.42 G 

7 Time 2 0 3.29 0.51 4.74 NG 

8 Time 1 0 3.21 0.66 6.95 NG 

9 Time 1 0 3.88 -0.15 4.57 G 

11 Time 1 0 3.35 0.68 5.43 NG 

12 Time 1 0 2.52 -0.01 3.04 G 

13 Time 1 0 3.23 0.01 4.70 G 

14 Time 1 0 3.01 0.60 5.19 NG 

15 Time 1 0 3.28 0.44 6.30 NG 

16 Time 1 0 3.26 0.05 2.93 G 

17 Time 1 0 2.71 0.02 3.36 G 

18 Time 1 0 3.68 0.22 4.96 G 

19 Time 1 0 3.80 0.51 8.44 NG 

21 Time 1 0 3.39 0.25 5.05 G 

22 Time 1 0 3.94 0.15 6.06 G 

23 Time 1 0 2.90 0.05 4.07 G 

24 Time 1 0 2.91 0.11 4.60 G 

Notes: NG is non-Gaussian, G is Gaussian. Mean wind pressures have been subtracted. 
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where 
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0
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;   is the effective 

frequency; YS  is the power spectrum of the wind pressure; 

n  is the frequency; T  is the observation time (25.6×20= 

512 seconds is adopted here, according to the average 

observing time in field measurements); and 0.5772 is 

Euler's constant. 

Ten different time histories of the wind pressure of each 

tap were used to obtain the Gaussian peak factor g . The 

Gaussian peak factors of 22 taps are shown in Fig. 18. The 

magnitude of the peak factors is found to be approximately 

4.2–4.4, with small variation, so the mean Gaussian peak 

factor 4.3g   can be used as a representative value. 

 

 

5. Non-Gaussian peak factors using the Hermite 
moment method 
 

However, the wind pressures acting on the roof, 

especially along the edges and ridges, have been observed 

to be generally non-Gaussian (Tieleman 2003), so the 

accurate extreme values of the wind pressure on large-span 

roofs cannot be obtained by the Gaussian peak factor. 

Therefore, two other methods to obtain the extremes value 

of non-Gaussian wind pressures have been used. One is the 

Sadek-Simiu method by Sadek and Simiu (2002), and the 

other is the Hermite moment method presented by Kareem 

(1994, 1998) and Gurley (1998). 

For the Hermite moment method, an explicit translation 

model called the moment-based Hermite model, in which 

the shape parameters of the first three-degree Hermite 

polynomials are determined by the skewness and kurtosis, 

was adopted. After the non-Gaussian sample is expressed as 

a monotonic function of a standard Gaussian sample, the 

extreme value of non-Gaussian sample is mapped onto the 

Gaussian peak factor. 

To establish the probability distribution of the non-

Gaussian wind pressure coefficients, the Hermite moment 

models are adopted to translate the non-Gaussian wind 

pressure histories into Gaussian histories. 
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Fig. 18 Gaussian peak factors 

The following Hermite polynomial model was 

established to relate the non-Gaussian process ( )X t  to a 

standard Gaussian process ( )U t  based on its first four 

moments by Winterstein (1985, 1988). 

2 3

0 3 4

( )
( ) { ( 1) ( 2 )}x

X

X t m
X t U h U h U U




       (2) 

where 
xm  and 

X  denote, respectively, the mean and 

standard deviation of the wind pressure ( )X t ; 

2 2 1/2

3 4(1 2 6 )h h    , 3

3

44 2 1 1.5
h






 
, 

4

4

1 1.5 1

18
h

 
 , 

3h  and 
4h  control the shape of the 

distribution; 
3 3  , 

4 4 3   , 
3  is skewness, and 

4  is kurtosis. 

The Hermite moment model approach is particularly 

useful when the probability distribution is unknown but the 

statistical moments are available. Therefore, following the 

transformation of random variables, the probability density 

function can be derived as 
21 ( ) ( )

( ) exp
22

H

U X dU X
p X

dX

 
  

 

 

where the standardized Gaussian variable ( )U X  is 

defined in the following equations 
2 1/3 2 1/3( ) [ ( ) ( )] [ ( ) ( )]U X X c X X c X a           

, 3( ) 1.5
X

X m
X b a a



 
   

 
, 3

43

h
a

h
 , 

4

1

3
b

h
 , 

2 3( 1 )c b a   . 

For a Poisson model, the extreme distribution during the 

time period T  is given as 

2

max 0

( )
( ) exp exp

2

U X
P x v T

   
    

   
 (3) 

The mean value of the positive extreme values over T  

can be obtained by 

max max
0

( ) ( )X X XdP X g


   (4) 

where g  is called the Gaussian peak factor and   is the 

standard deviation of X . 

 In the linear case of a Gaussian process, the Gaussian 

peak factor is shown in Eq. (1). For the non-Gaussian case, 

with the substitution of Eq. (3) into Eq. (4), the mean value 

of the maximum pressure is given by 

max
0

( ) exp( ) NLX X X d g  


    (5) 

where 
2

0

( )
exp

2

U X
v T

 
  

 

, and 
NLg  is the non-

Gaussian peak factor. Then, ( )U X  can be expressed by 
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2

0 3

ln ln
( ) 2ln 2ln ...

2
U X v T

 
 

 
       (6) 

Substituting Eqs. (2) and (6) into Eq. (5) and 

rearranging, one obtains the following expression for 
NLg  

 
2 2

2 3

3 4

3
2 1 3 ( 1)

12 2
nlg k h h

  
      

 

     
              

      

 (7) 

where 02lnv T  , 0.5772  . 

It is noted that 
NLg  reduces to g  when is X  is a 

Gaussian process, i.e., 
3 3 0h h   and 1k  . 

  The non-Gaussian peak factors with the Hermite moment 

method of the wind load pressures are shown in Fig. 19, and 

their magnitude is approximately 9-13, with high 

discreteness. The non-Gaussian peak factors with the 

Hermite moment method are 100% ~ 200% higher than the 

Gaussian peak factors. Thus, the non-Gaussian peak factors 

are very important for determining the extreme values of 

the wind pressures on the building envelope. Referring to 

Fig. 19, the Hermite moment method may exaggerate the 

extreme values of the non-Gaussian wind pressure on Roof 

A2. 

 

 

6. Non-Gaussian peak factors using the Sadek-Simiu 
method 

 

6.1 Sadek-Simiu method 
 

A procedure developed by Sadek and Simiu (2002) can 

be employed to obtain the distribution of the peak pressure 

and load coefficients from a single sample record. This new 

procedure is especially useful for external surface pressures 

and surface loads that are generally not normally 

distributed. The procedure permits the design of wind-load-

sensitive parts to be based on more accurate information 

and should therefore be more reliable than the methods 

currently available with the provisions of the building code. 
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Fig. 19 Non-Gaussian peak factors using the Hermite 

moment method 

 

The preliminary step for this new procedure is to 

identify the appropriate probability density function (PDF) 

of the parent time history that represents either the 

fluctuating pressure or the load coefficients. The probability 

plot correlation coefficient (PPCC) method is used to 

identify the optimum value of the shape parameter that 

provides the best estimate of the chosen distribution for the 

time history. To evaluate the suitability of a set of 

competing distributions for a given set of data, the 

distribution that generates the maximum PPCC provides the 

best fit. 

The general expression for the PDF of this three-

parameter gamma distribution is 
1

( )/

( )
( )

xx
e

f y x



 




 



  
 
  


 

where  ,   and    scale, shape, and location 

parameter, respectively, and ()   gamma function. 

Once the appropriate marginal probability distributions 

are obtained, the following procedure for estimating peak 

statistics, based on a translation processes approach, is 

followed. Consider a stationary non-Gaussian time series 

x(t) with marginal distribution ( )Xf x  and duration T . 

This process is mapped onto a time series ( )y t  with a 

standardized marginal normal distribution ( )YF y . For the 

process ( )y t , the cumulative distribution function (CDF) 

of the largest peak during time interval T is obtained using 

classical results (Rice 1954). 

,

2

, 0, ,( ) exp[ exp( / 2)]
pk TY pk T y pk TF y ν T y= - -  (8) 

where 0, y  is the zero upcrossing rate of the Gaussian 

process ( )y t , 

2

0

0,

0

( )

( )

y

y

y

n S n dn

S n dn









.
 

In practice, it is assumed that ( )yS n  may be replaced 

by the spectral density function of process ( )x t , ( )xS n . 

For the spectral density shapes of the general type 

considered in this paper, the errors inherent in this 

assumption have been verified to be negligible (Grigoriu 

1995). 

For a specified cumulative probability 
,pk TYF , the above 

equation yields the corresponding maximum and minimum 

peaks of 

,

0,max

, 2ln
ln

pk T

y

pk T

Y

T
y

F


  and 

,

0,min

, 2ln
ln

pk T

y

pk T

Y

T
y

F


   

Once the cumulative distribution function of the largest 

peaks is determined from Eq. (8), the distribution of the 

largest peaks of ( )x t  is estimated by mapping the peaks of 

the normally distributed time series on the non-Gaussian 

distribution space (Grigoriu 1995, Gioffre et al. 2001). 

The procedure is illustrated in Fig. 20, where for a given 
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cumulative probability of the peaks, ( )
pkY pkF y , the 

Gaussian peak effect, 
pky , and its cumulative probability 

in the Gaussian space, ( )YF y , are determined. The 

corresponding peak in the non-Gaussian space, 
pkx , is then 

estimated, corresponding to a cumulative probability of 

( ) ( )
pk pkx pk y pkF x F y= . 

a) select a value 
pkyF¢  between zero and one. 

b) find the corresponding value 
pky  and 

c) the corresponding value ( )yF y¢
 

d) with ( ) ( )x yF x F y⇔ = , determine the corresponding 

value of ( )x t . 

e) for the same value 
pkx x=  and the intersection with the 

line ( ) ( )
pk pkx pk y pkF x F y= , one point on the CDF of the 

peak distribution of ( )x t  is obtained. 

Repeat the above steps for different values of 

( )
pky pkF y¢  to generate the CDF of the peaks of ( )x t . 

According to the definition of the peak factor, the non-

Gaussian peak factor g  is 

maxx
g

σ
=  (9) 

 

6.2 Non-Gaussian peak factors 
 

Ten different time histories of the wind pressure of each 

tap (the same as the above two methods) are used to obtain 

the non-Gaussian peak factor g using the Sadek-Simiu 

method and guaranteed rates of 85%, 90%,  95% and 

99.5%, as shown in Fig. 21. The non-Gaussian peak factors 

of the same taps with different guaranteed rates are 

different, as are the non-Gaussian peak factors of different 

taps with the same guaranteed rate. Therefore, it is not 

accurate to address different taps using the same peak 

factor. 
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Fig. 20 Mapping procedure for a point from a non-

Gaussian process x(t) to a Gaussian process y(t) 
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(d) Guaranteed rate of 99.5% 

Fig. 21 Non-Gaussian peak factors with Sadek-Simiu 

method 

 

 

As shown in Fig. 21(d), the range of the non-Gaussian 

peak factors with the guaranteed rate of 99.5% is between 

4.0~7.0, and the average value of the non-Gaussian peak 

factors is 5.01. The range of the non-Gaussian peak factors 

of the same tap with different time histories is less than that 

of the peak factors of different taps with the same time 

history. The non-Gaussian peak factors with the Sadek-

Simiu method are larger than the Gaussian peak factors 

with the peak factor method, which are near the 

lower limiting value of the non-Gaussian peak factors. 

 

 

7. Peak factors of field measurements of wind 
pressure on open Roof A2 

 

The peak factors of the above three methods are shown 

in Fig. 22. It is indicated that 1) the Gaussian peak factors 

are evenly distributed, and the difference between different  
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Fig. 22 Comparison of peak factors obtained using the 

three methods 

 

 

times is small, so their value can be approximately 

established as 4.3g  ; 2) the peak factors with the Sadek-

Simiu method at a guaranteed rate of 99.5% are slightly 

larger than the Gaussian peak factors; 3) the range of the 

peak factors with the Hermite moment method is 9~13; the 

peak factors change greatly at different times and are 

100%~200% larger than those obtained using the other two 

methods. 

The peak factors with the Hermite moment method 

show a highly discrete distribution and are much larger than 

those with the other two methods. Hermite moment method 

may exaggerate the non-Gaussianity and may be not 

applicable in evaluating the measured peak wind pressure 

on the WuXi grand theater in the field. According to the 

analysis of the peak factors with the above three methods, 

the values of the non-Gaussian peak factors of Roof A2 of 

the Wuxi grand theater can be established as approximately 

4.65g  , which is far larger than the usual peak factor 

2.5ug   specified in the Load code for the design of 

building structures in China GB50009-2012. 

 

 

8. Conclusions 
 

 During Typhoon HaiKui (August 8th, 2012) and 

Typhoon SuLi (July14th, 2013), there were large pulses 

in the time-histories of the measured wind pressure on 

Roof A2 in the field. The first wave crest appears near 2 

Hz in the power spectral density of the measured wind 

pressure, and there are many components of medium-

high frequencies. 

 The spatial correlation of the wind pressures on roof 

A2 between the upper surface and lower surface is very 

weak because roof A2, covered by aluminum plates, is 

windtight. The wind pressure spatial correlation 

coefficients on roof A2 are less than 0.2, and most of the 

spatial correlation coefficients are less than 0.1 and 

negative. This is because the taps on Roof A2 are in the 

middle of the roof, far from the eaves, where the wind 

pressure varies intensely. The distance between taps on 

the roof is generally 6.5 m–9 m. 

 The probability density curve of the measured wind 

pressures on roof A2 is higher than the standard normal 

distribution, and its kurtosis is larger than 3.0. The range 

of the kurtosis is between 3 and 8, so the measured wind 

pressures have non-Gaussian softening histories. The 

skewness has a smaller range between -0.6 and 0.8, and 

most of it is positive. 

 The relationship between the skewness and the 

kurtosis can be approximately fitted with a quadratic 

polynomial. When 0.3, 3.7Skewness Kurtosis  , the 

wind pressure time series on roof A2 can be taken as a 

non-Gaussian distribution, and the other series can be 

taken as a Gaussian distribution. 
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