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Abstract. A novel probabilistic approach is presented for estimating the equivalent static wind loads that
produce a static response of the structure, which is ”equivalent” in a probabilistic sense, to the extreme
dynamic responses due to the unsteady pressure random field induced by the wind. This approach has
especially been developed for complex structures (such as stadium roofs) for which the unsteady pressure
field is measured in a boundary layer wind tunnel with a turbulent incident flow. The proposed method
deals with the non-Gaussian nature of the unsteady pressure random field and presents a model that yields
a good representation of both the quasi-static part and the dynamical part of the structural responses. The
proposed approach is experimentally validated with a relatively simple application and is then applied to a
stadium roof structure for which experimental measurements of unsteady pressures have been performed
in boundary layer wind tunnel.

Keywords: equivalent static wind loads; non-Gaussian unsteady pressure field; polynomial chaos ex-
pansion; quasi-static responses; stochastic dynamics; extreme value statistics

1. Introduction

This paper deals with a novel approach for estimating the equivalent static wind loads (ESWL)
on structures with complex aerodynamic flows such as stadium roofs, for which the pressure fields
are measured in wind tunnels and are non-Gaussian, and for which the structural dynamic responses
cannot simply be described by using only the first elastic modes (but require to introduce a good
representation of the quasi-static responses).

Concerning the random responses of structures submitted to wind loads, once the first stochastic
models of wind were developed, they were used to calculate the linear stochastic dynamical responses
of tall buildings, introducing reduced modal models of the structure, and computing estimates of ex-
treme value statistics related to the random dynamical responses. These estimates are based on using
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sample paths statistics of Gaussian processes that have allowed the ”gust loading factor” concept to
be introduced. Davenport (Davenport 1961) was the pioneer. Numerous studies have then been made
by using the same assumptions but by improving models and conducting many experimental vali-
dations in full scale and in turbulent-boundary-layer wind tunnels, such as (Davenport 1961, 1967,
Vickery and Danveport 1967, Vaicaitis et al. 1973, Solari 1985, Krée and Soize 1986, Kasperski and
Niemann 1988, Holmes 1992, Kareem 1992, Davenport 1995, Bienkiewicz et al. 1995, Bietry et al.
1995, Solliec and Mary 1995, Simiu and Scanlan 1996, Uematsu et al. 1997, Ellingwood and Tekie
1999, Tamura et al. 1999) and more recently, (Kumar and Stathopoulos 2000, Vinet and De Oliveira
2011, Flamand et al. 2014, Vinet et al. 2015). Relatively early, several works were carried out to take
into account the non-Gaussianity of the forces induced by the wind for the calculation of the extreme
value statistics in stochastic dynamics by using formulations based on the use of gust loading factors
(see for instance (Vaicaitis and Simiu 1977, Soize 1978, Krée and Soize 1986, Simiu and Scanlan
1996)). More recently, a lot of works have been performed for exceptional structures such as, for
instance, the wind effects on super-tall buildings (Irwin 2009, Yi et al. 2013, Lu et al. 2016, Zhi et al.
2016), on super long-span cable bridges (Zhang and Yao et al. 2015), and on silo groups (Hillewaere
et al. 2013, 2015).

Concerning the equivalent static wind loads, relatively early, late 60’s and early 70’s, research
has been performed to develop methods for calculating the ESWL producing the same extreme dy-
namical responses of structures subjected to wind effects. The first proposed approaches were then
widely developed with many applications in civil engineering structures, such as (Simiu 2015, Cook
and Mayne 1979, Kasperski and Niemann 1992, Kasperski 1992, Zhou et al. 1999a, b, Holmes 2002,
Chen and Kareem 2004, Repetto and Solari 2004) and more recently, (Chen and Zhou 2007, Huang
and Chen 2007, Katsumara et al. 2007, Uematsu et al. 2008, Fu et al. 2010, Zhou and Gu 2010,
Blaise and Denoël 2013, Yang et al. 2013, Liang et al. 2014, Gu and Huang 2015, Sun et al. 2015,
Patruno et al. 2017). In order to improve the estimation of the ESWL, some correction terms have
been proposed to take into account the non-Gaussianity of the unsteady pressure field in order to
calculate the extreme value statistics (Blaise and Denoël 2015, Lou et al. 2015, Blaise et al. 2016)
using an orthogonal polynomial expansion of probability density functions (method that was already
used in the 70’s).

This paper deals with the design of structures subjected to wind effects for which the unsteady
aerodynamic flow is complex, such as the one on a stadium roof. For such a case, it is still difficult to
predict the aerodynamic flow with a sufficient accuracy by using computational fluid dynamics. This
is the reason why measurements of the unsteady pressures on such structures are often necessary and
must be carried out in wind tunnels. Most often, the number of unsteady pressure sensors, which
are used for performing experimental measurements, is relatively high (about 1,000). The number
of the time trajectories (realizations) that are measured by the set of the pressure sensors and that are
performed on long duration T (about 10 minutes in scale 1), remains limited (for instance between
25 and 100). Under these experimental conditions, the measurements do not allow for construct-
ing a statistically converged estimation of the extreme values statistics of the dynamical responses,
which are necessary for the estimation of the ESWL in order to reproduce the wind action on the
structure taking into account the non-Gaussianity of the random pressure field. To circumvent such a
difficulty, a general stochastic representation model of the non-Gaussian pressure field is constructed
and is experimentally identified with the measurements. This stochastic representation model is then
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used for generating a large number of independent realizations (Monte-Carlo simulation method) in
order to obtain a reasonable convergence of the extreme values statistics of the responses.

In this paper, a novel probabilistic approach is proposed to estimate the ESWL. Firstly, a genera-
tor of realizations of the non-Gaussian pressure random field is constructed by using the experiments.
This generator allows to generate additional realizations to those measured in the wind tunnel. Sec-
ondly, the reduced-order dynamical model (ROM) of the structure includes a quasi-static correction
term that allows the convergence of the stochastic dynamical responses to be obtained by using only
a small number of elastic modes. Finally, the ESWL are estimated by a maximum probability prin-
ciple related to the random displacements of the structure, conditioned by the random observations
that have to belong to a domain representing the extreme values of the observations (internal forces,
displacement, etc.) in the structure. The proposed method is validated on a simple example. At the
end of this paper, an application to a roof stadium structure, for which pressure measurements in
wind tunnel are available, is presented in order to illustrate the proposed method.

2. Stochastic modeling, model reduction, and stationary stochastic response

In this section, we first present the stochastic modeling of the pressure and then, we introduce
the ROM in the time domain that will be used for constructing the realizations of the time responses.
For such a calculation, two algorithms can be used: time integration scheme applied to the time
differential equation or the fast Fourier transform (FFT) for each realization, which can be used
because we are interested in the stationary response of the stochastic dynamical system. The second
algorithm is more numerically efficient and will be retained.

In this paper, for the stochastic modeling, any stochastic process {V(t), t ∈ R} (simply called
process) is defined on a probability space (Θ,T ,P) 1 and is stationary. Its restriction to the time
window [0 , T ] of duration T (defined hereinafter) will be denoted by {V(t), t ∈ [0 , T ]}. A real-
ization θ` in Θ of process {V(t), t ∈ [0 , T ]} is the deterministic function {V(t; θ`), t ∈ [0 , T ]}.
Similarly, for the centered experimental measurements, process {P exp(t), t ∈ [0 , T ]} is defined on
another probability space (Θ′,T ′,P ′), for which any realization θ′` in Θ′ is the deterministic func-
tion {P exp(t; θ′`), t ∈ [0, T ]}.

Let F(t) = (F1(t), . . . , Fm(t)) be the vector of external wind forces (forces and/or bending
moments) applied to the structure, which is written as F(t) = [Ac]PPP exp(t) in which [Ac] is the
(m × mexp) controllability matrix and where PPP exp(t) = (P exp

1 (t), . . . ,P exp
mexp(t)) is the vector that

corresponds to the wind tunnel unsteady pressure measurements or to differential unsteady pressures
at some points of the structure (Vinet and De Oliveira 2011, Vinet et al. 2015).

Concerning the signal processing parameters, the total duration of the time acquisition of mea-
surements is Ttot and the experimental unsteady pressure vector is a deterministic function denoted

1In the probability space (Θ,T ,P), Θ is set of all the elementary events, T is the σ-algebra of Θ whose elements are
called events, and P is a probability measure on measurable space (Θ,T ). For t fixed, the Rn-valued random variable
V(t) is a measurable mapping θ 7→ V(t; θ) from (Θ,T ) into (Rn,Bn) in which Bn is the Borel σ-algebra of Rn. For
θ fixed in Θ, V(t; θ) is a realization of random vector V(t) and {V(t; θ), t ∈ [0 , T ]} is a trajectory (or a sample path) of
stochastic process V.
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by t 7→ ppp exp(t) from [0, Ttot] into Rmexp . The cutoff frequency is νc with ωc = 2πνc in which the
frequency band of analysis is B = [0, ωc] (in rad/s). The sampling time step is ∆t = 1/2νc and
the number of time steps for the time sampling of [0 , T ] is np such that T = np ∆t. The time
sampling points are t1, . . . , tnp with t1 = 0 and tk = (k − 1) ∆ of [0, T ] for k = 2, . . . , np. The
frequency sampling points are ωq = −ωc + (q − 1

2)∆ω with q = 1, . . . , np in which ∆ω = 2π/T .
These parameters allow for defining nr time-sampled realizations PPP exp(tk; θ

′
`) with k = 1, . . . , np

and ` = 1, . . . , nr of process {PPP exp(t), t ∈ [0, T ]} such that PPP exp(tk; θ
′
`) = ppp exp(tk + (` − 1)T ) in

which the number of realizations is defined by Ttot = nr × T .
The vector-valued process PPP exp of the pressure measurements is modeled by a stationary non-

Gaussian process PPP = {PPP(t), t ∈ R} with PPP(t) = (P1(t), . . . ,Pmexp(t)). The non-Gaussian centered
process P = {P(t), t ∈ R} such that P(t) = (P1(t), . . . , Pmexp(t)) is then defined by

PPP(t) = p + P(t) , p ' 1

nr

nr∑
`=1

1

np

np∑
k=1

PPP exp(tk; θ
′
`) , (1)

where p is the static part of PPP. The structure is fixed (no rigid body displacement) and its computa-
tional linear dynamical model has m degrees of freedom (DOF). Let Y(t) = (Y1(t), . . . , Ym(t)) be
the displacement vector (translations and/or rotations). The components of an observation UUU(t) =
(U1(t), . . . ,Umu(t)) in the structure can be displacements, internal forces, stresses or strains and is
written as UUU(t) = [Ao] Y(t) in which [Ao] is the (mu × m) observability matrix. The non usual
modal analysis including a quasi-static term (Ohayon and Soize 1998) is used for constructing the
ROM with N first elastic modes whose eigenfrequencies lye in B. The response Y(t) is written as
Y(t) = y + X(t), where the static response y is such that [K] y = f with f = [Ac] p, and where
[K] is the (m × m) stiffness matrix. The displacement vector X(t) = (X1(t), . . . , Xm(t)) is the
non-Gaussian stationary centered process that, for all t, verifies

X(t) = [S c
N ] P(t) + [ϕN ] Q(t) , (2)

Q̈(t) + [DN ] Q̇(t) + [λN ] Q(t) = PPPc
N (t) , (3)

in which Q(t) = (Q1(t), . . . , QN (t)) is a non-Gaussian stationary centered process of the general-
ized coordinates, where [ϕN ] is the (m×N) matrix of the elastic modes normalized with respect to
the mass matrix, where [λN ] is the (N × N) diagonal matrix of the square of the eigenfrequencies
Ω1, . . . ,ΩN , where [DN ]αβ = 2ξαΩαδαβ is the (N ×N) diagonal matrix of the generalized damp-
ing depending on the damping rates ξ1, . . . , ξN , where PPPc

N (t) = [φcN ] P(t) with [φcN ] = [ϕN ]T [Ac],
and where the (m×mexp) matrix [S c

N ] = [K]−1 [Ac]− [ϕN ] [λN ]−1 [φcN ] represents the quasi-static
terms (note that the sparse stiffness matrix [K] will never be inverted). Observation UUU(t) is written
as

UUU(t) = u + U(t) , U(t) = [U oc
N ] P(t) + [φoN ] Q(t) , (4)

in which [U oc
N ] = [Ao][S c

N ], [φoN ] = [Ao] [ϕN ], and where u = (u1, . . . , umu) is the static
part of UUU such that u = [Ao] y. At time t, the instantaneous ESWL that is denoted by FFFe(t) =
(Fe1(t), . . . ,Fem(t)) and defined by FFFe(t) = [K] Y(t), is written as

FFFe(t) = f + Fe(t) , Fe(t) = [K] X(t) , (5)
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where f is the static part of FFFe given by [K] y = f. From Eqs. (2), (3), and (5), it can be deduced that

Fe(t) = [F c
N ] P(t) + [FQ

N ]Q(t) , (6)

in which [FQ
N ] = [K] [ϕN ] and where [F c

N ] = [K] [S c
N ]. For given θ` in Θ, the realization

{Q(t; θ`), t ∈ [0 , T ]} is computed at the time sampling points t1, . . . , tnp by using its discrete FFT

Q̂(ωq; θ`) = [ĥN (ωq)]P̂PP
c

N (ωq; θ`) with q = 1, . . . , np, where P̂PP
c

N (ωq; θ`) is computed by using
the FFT at the time sampling points t1, . . . , tnp of {PPPc

N (t; θ`), t ∈ [0, T ]}, and where [ĥN (ω)]αβ
= δαβ(−ω2 +2iωξαΩα+Ω2

α)−1 with δαβ the Kronecker symbol. For k = 1, . . . , np, the discretized
realization Q(tk; θ`) of {Q(t; θ`), t ∈ [0 , T ]} is deduced by the inverse FFT.

3. Generator of additional realizations of non-Gaussian process P

As explained in Section 1, the nr experimental time sampled realizations {PPP exp(tk; θ
′
`), ` =

1, . . . , nr} are generally not sufficient for estimating the extreme values statistics of the responses,
which are required for computing the ESWL. It is then necessary to generate ν � nr time sampled
realizations {P(tk; θ`), ` = 1, . . . , ν} of the centered process P with a non-Gaussian generator. Using
the nr experiments PPP exp(tk; θ

′
`), the methodology consists in performing a Karhunen-Loève (KL)

statistical reduction of non-Gaussian process P and then in identifying a representation of the random
vector of the KL coordinates by a finite polynomial chaos expansion (PCE) (Ghanem and Spanos
1991). The coefficients of the PCE are estimated with the maximum likelihood principle (Desceliers
et al. 2006, Perrin et al. 2012, Soize 2017). The maximum likelihood optimization problem can
be solved either by using a random search algorithm or by using a deterministic optimization such
as the ”interior points” method (Byrd et al. 1999). The KL statistical reduction of order NKL of
{P(t), t ∈ [0, T ]} is written as,

P(t) '
NKL∑
j=1

√
µj Γjbj(t) , t ∈ [0, T ] , (7)

in which {µj ,bj} are the solutions of the functional eigenvalue problem

1

T

∫ T

0
[CP(t− t′)] bj(t′) dt′ = µj bj(t) , ∀t ∈ [0, T ] , (8)

with [CP(t − t′)] = E{P(t) P(t′)T } in which E is the mathematical expectation, and where the
corrdinates Γ = (Γ1, . . . ,ΓNKL) of this KL reduction is a non-Gaussian random vector with values
in RNKL such that E{Γ} = 0 and E{ΓΓT } = [INKL ] with [INKL ] the identity matrix. The eigenvalue
problem defined by Eq. (8) is indirectly solved by using an algorithm (Andrews and Patterson 1976)
based on the thin SVD (Golub and Van Loan 2013), which is directly applied to the time sampled
realizations P exp(tk; θ

′
`) = PPP exp(tk; θ

′
`) − p (see (Kassir 2017)). Let Ξ = (Ξ1, . . . ,ΞNg) be the

normalized Gaussian random germ of length Ng defined on (Θ,T ,P), used for constructing the
PCE of Γ. Let Ψβ(Ξ) = ψβ1(Ξ1)×. . .×ψβNg (ΞNg) be the Hermite orthonormal polynomials where
β = (β1, . . . , βNg) is the multi-index of lengthNg such that, for j = 1, . . . , Ng, βj ∈ {0, 1, . . . , Nd}
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with Nd ≥ 1 a fixed integer corresponding to the maximum degree of the polynomials. This choice
is dictated by the fact that the Gaussian approximation can directly be obtained by taking only the
polynomials of degree zero and one, which would not be the case if non-Gaussian germ were taken.
The approximation of Γ , using the PCE, is written as

Γ '
K(Nd,Ng)∑

κ=1

zκ Ψβ(κ)(Ξ) , (9)

in whichK(Nd, Ng) = (Ng +Nd)!/Ng!Nd!−1 and where, as previously explained, the coefficients
z1, . . . , zK(Nd,Ng) are deterministic vectors in RNKL estimated from the experimental measurements
using the maximum likelihood principle (Kassir 2017). We then have constructed the non-Gaussian
generator that is used as follows. Let Ξ(θ1), . . . ,Ξ(θν) be ν independent realizations of Ξ. For k =
1, . . . , np, the ν independent realizations of non-Gaussian random vectors {P(tk), k = 1, . . . , np}
are computed by

P(tk; θ`) '
NKL∑
j=1

√
µj Γj(θ`) bj(tk) , ` = 1, . . . , ν , (10)

in which Γ(θ`) = (Γ1(θ`), . . . ,ΓNKL(θ`)) is the `-th realization of Γ that is computed by

Γ(θ`) '
K(Nd,Ng)∑

κ=1

zκ Ψβ(κ)(Ξ(θ`)) . (11)

4. Estimation of the equivalent static wind loads

Taking into account Eq. (5), the equivalent static wind load fffe,s = (fe,s1 , . . . , fe,sm ) associated with
observationUUU, is written as fffe,s = f+fe,s. The instantaneous centered ESWL at time t = T is written
as Fe(T ) = [F c

N ] P(T ) + [FQ
N ]Q(T ). As the dimension mexp of the random vector P(T ) is much

larger (for instance 700 to 1,000) than the dimension of Q(T ) and U(T ), a principal component
analysis (PCA) of random vector P(T ) is introduced in order to reduce the statistical dimension and
to normalize the random quantities,

P(T ) ' p
T

+

NPCA∑
j=1

√
Λj Hj aj , (12)

in which NPCA is the reduction order such that NPCA ≤ mexp, p
T

is the empirical mean of P(T ),
(a1, . . . , aNPCA) are the eigenvectors associated with the NPCA largest eigenvalues Λ1 ≥ Λ2 ≥ . . . ≥
ΛNPCA of the estimate of the covariance matrix [CP(T )] of P(T ), and H = (H1, . . . ,HNPCA) is the
random coordinates of the PCA. As explained in Section 1, the equivalent static wind load fe,s is
estimated by using the following maximum probability principle,

fe,s = [F c
N ] pMV + [FQ

N ] qMV with pMV ' p
T

+

NPCA∑
j=1

√
Λj η

MV
j aj , (13)
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in which the vectors ηMV = (ηMV
1 , . . . , ηMV

NPCA
) and qMV = (qMV

1 , . . . , qMV
N ) are such that

(ηMV,qMV) = arg{max
(η,q)

∫
Dc

pH,Q(T ),U(T )(η,q,u) du} , (14)

where pH,Q(T ),U(T )(η,q,u) is the joint probability density function of random vectors H, Q(T ),
U(T ), and where Dc is the centered domain associated with U, which is assumed to be written as a
Cartesian product: Dc = Πmu

j=1D
c
j with Dc

j = (Dc
inf,j ,D

c
sup,j) where Dc

inf,j and Dc
sup,j are the lower

and the upper bounds of Dc
j . For j = 1, . . . ,mu, the bounds Dc

inf,j and Dc
sup,j are defined with

respect to the sign of the mean observation uj as follows

if uj ≥ 0 , then Dc
inf,j = Umax,j , Dc

sup,j = αUmax,j ,

if uj < 0 , then Dc
inf,j = αUmin,j , Dc

sup,j = Umin,j ,
(15)

where Umax,j (resp. Umin,j) is the mean value of the maximum (resp. the minimum) of Uj(t)
on [0, T ], and where α is a positive constant (for instance α = 1,000). In order to accelerate the
convergence of the optimizer used for solving the problem defined by Eq. (14), we superimpose a
constraint on vector U(T ) by introducing the following admissible set for the values of (H,Q(T )),

Cηq = {(η,q) ∈ RNPCA × RN ; u ∈ Dc} . (16)

Therefore, in Eq. (14), the maximization on (η,q) ∈ RNPCA × RN is replaced by the maximiza-
tion on (η,q) ∈ Cηq and the non-Gaussian joint probability density function is estimated using the
Gaussian kernel method of the non-parametric statistics (Givens and Hoeting 2013) and the integra-
tion over set Dc is explicitly (algebraically) calculated (Kassir 2017). The optimization problem is
solved using the ”active set” algorithm without constraints (Gill et al. 1981). The ESWL are esti-
mated for mf observations {UUUi(T ),Di} with i = 1, . . . ,mf and the associated principal static wind
loads are classically computed by SVD.

5. Construction of the initial point of the optimization problem

The numerical cost requires for solving Eq. (14) can considerably be reduced if the initial point
is well chosen for the optimizer. Below, we propose a very efficient algorithm for computing the
initial point. Let Z be the Rn-valued random variable defined by Z = (H,Q(T ),U(T )) with n =
NPCA + N + mu. The estimate of the covariance matrix [CZ] of Z is written as [CZ] = [σ] [rZ] [σ]

in which [σ]jk = δjk σj with σj = [CZ]
1/2
jj , and where [rZ] is the estimate of the correlation matrix

of Z such that [rZ]jk = [CZ]jk/(σjσk). Let {z` = (η`,q`,u`), ` = 1, . . . , ν} be the ν independent
realizations of Z. We need to introduce the PCA of the Rn-valued random variable Z based on the
estimate of [CZ]. Since, the numerical values of the realizations of H and Q(T ) can be very different
(several magnitude orders), a numerical scaling defined by [σ] is introduced and the PCA of Z is then
written as

Z = z +
n∑

α=1

ζα
√
aαΨ

α , (17)
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in which z is the mean value of Z, aα and Ψα are the eigenvalue and the eigenvector of [CZ] such
that ([σ]−2Ψα)TΨβ = δαβ , and where ζ1, . . . , ζn are the uncorrelated centered random variables
with unit variances, which are such that ζα = a

−1/2
α < [σ]−2(Z − z),Ψα >. Let Z(mu) be the

approximation defined by

Z(mu) = z +

mu∑
α=1

ζα
√
aαΨ

α . (18)

By introducing the decomposition Z(mu) = (H(mu),Q(mu)(T ),U(mu)(T )), the RNPCA-valued
random variable H(mu) and the RN -valued random variable Q(mu)(T ) can be written as,

H(mu) = mH +

mu∑
α=1

ζα
√
aαΨ

α
H , Q(mu)(T ) = mQ(T ) +

mu∑
α=1

ζα
√
aαΨ

α
Q(T ) , (19)

and the Rmu-valued random variable U(mu)(T ) can be written as,

U(mu)(T ) = mU(T ) +

mu∑
α=1

ζα
√
aαΨ

α
U(T ) , (20)

where z = (mH,mQ(T ),mU(T )) and Ψα = (Ψα
H,Ψ

α
Q(T ),Ψ

α
U(T )). Let [ΦH], [ΦQ(T )], and [ΦU(T )] be

the matrices such that

[ΦH] = [Ψ1
H . . .Ψ

mu
H ] , [ΦQ(T )] = [Ψ1

Q(T ) . . .Ψ
mu
Q(T )] , [ΦU(T )] = [Ψ1

U(T ) . . .Ψ
mu
U(T )] . (21)

In matrix form, Eq. (20) can then be rewritten as

U(mu)(T ) = mU(T ) + [ΦU(T )] [ a ]1/2 ζ , (22)

in which [ a ]αβ = aα δαβ and where ζ = (ζ1, . . . , ζmu) is the centered Rmu-valued random variable
such that E{ζ ζT } = [Imu ]. Let u0 = (u01, . . . , u

0
mu) be such that u0j = Umax,j if uj ≥ 0 and

u0j = Umin,j if uj < 0. Taking into account Eq. (22), we introduce the deterministic vector z0
in Rmu as the solution of the following optimization problem for minimizing the distance between
u0and U(mu)(T ),

z0 = min
z∈Rmu

‖u0 −mU(T ) − [ΦU(T )] [ a ]1/2 z‖2 . (23)

Since {Ψα}α is a basis of the space Rn, this implies that [ΦU(T )] is an invertible matrix. Then
the square matrix [ΦU(T )] [ a ]1/2 is invertible. The problem defined by Eq. (23) is then equivalent to
solve the linear equation in z, [ΦU(T )] [ a ]1/2 z = u0 − mU(T ), which has a unique solution z0. We
formally write z0 = ([ΦU(T )] [ a ]1/2)−1 (u0 −mU(T )), and Eq. (19) is rewritten as H(mu) = mH +

[ΦH] [ a ]1/2 ζ and Q(mu)(T ) = mQ(T ) + [ΦQ(T )] [ a ]1/2 ζ. The initial point (η0,q0) ∈ RNPCA ×RN
of the optimization problem defined by Eq. (14) is then calculated by

η0 = mH + [ΦH] [ a ]1/2 z0 , q0 = mQ(T ) + [ΦQ(T )] [ a ]1/2 z0 . (24)
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Fig. 1 Model of the roof of the Allianz Riviera stadium in the boundary layer wind tunnel at CSTB in Nantes
(Vinet and De Oliveira 2013)

6. Experimental validation of the proposed methodology

A first step of the validation of the proposed theory and of the developed associated software have
been carried out on a tall building, the Maine-Montparnasse Tower in Paris, for which experimental
measurements have been performed by CEBTP (1978). The two first eigenfrequencies have been
measured. For the measured value V R = 17 m/s of the reference mean wind velocity, the time
responses have been measured for several sequences of 800 s concerning the relative horizontal
displacement at the top of the Tower. The wind velocity model, the pressure modeling, and the
updated computational reduced-order model presented in (Krée and Soize 1986) have been reused.
The details of the modeling and of the experimental comparisons by using the proposed approach
can be found in (Kassir et al. 2017, Kassir 2017). The extreme value statistics match very well
the numerical predictions. This good experimental comparison participates to the validation of the
proposed approach.

7. Application to a stadium roof structure with wind tunnel pressure measurements

The structure is the roof of the Allianz Riviera stadium in Nice for which unsteady pressure
measurements have been performed in a boundary layer wind tunnel (Vinet and De Oliveira 2013)
(see figure Fig. 1). The ROM presented in Section 2 has been constructed by using the finite element
model provided by CSTB. The experimental cutoff frequency is 1.38 Hz and is chosen as a cutoff
frequency νc for the computational model. The eigenfrequencies of the first 12 modes, which lye
in the frequency band of analysis [0 , 1.38] Hz are taken into account in the ROM; we thus have
N = 12. These eigenfrequencies, in Hz, are 1.107, 1.118, 1.129, 1.133, 1.148, 1.186, 1.191, 1.240,
1.248, 1.264, 1.349, and 1.360. The 13-th eigenfrequency is 1.416 Hz that is outside the frequency
band of analysis. The quasi-static acceleration term is taken into account in the ROM.

7.1 Finite element model of the structure and set of observations

The FE model, given in an orthonormal reference frame oxyz, is made up of truss and beam
elements. There are 3,656 nodes with 6 degrees of freedom per node, which yields 21,936 DOFs.
Fig. 2 (left) shows the finite element model of the roof structure.The observed zone in the structure is
shown in light color in Fig. 2 (left) and the detailed FE model of this zone is shown in Fig. 2 (right).
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The calculation of the ESWL is performed by using mf = 181 selected observations that are internal
forces in truss and beam elements. In order to limit the number of figures, only four observations,
numbered 144 to 147 (see Fig. 2 (right)) , which correspond to normal forces in truss elements, are
presented. Consequently, each one is scalar (then mui = 1) and is written as Ui(t) = ui + U i(t) in
which ui is the mean value.

7.2 Wind tunnel measurements and values of the signal processing parameters

For incidence 76o of the wind direction (in Fig. 2-left, the zone in light color is a leeward zone),
the unsteady pressure field applied to the roof structure has been measured with 720 pressure taps,
from which mexp = 348 differential unsteady pressures P exp

1 (t), . . . ,P exp
mexp(t) between the interior

and exterior locations on the roof have been processed, as well as the associated controllability matrix
[Ac]. The total duration (brought down to scale 1) of the wind tunnel measurements is Ttot ' 8,900 s.
A brief analysis has been carried out to optimize the choice of the number np of time steps in the time
window for the following reasons. When np varies from 256 to 2,048, the number of experimental
realizations nr goes from 96 to 12. The compromise that has been found for choosing nr and np has
been based on the following criteria. The number of experimental realizations nr must be chosen
in order to correctly estimate the coefficients of the PCE of {P(t), t ∈ [0 , T ]}. The number of time
steps np in the time window must be chosen in order that the duration T be large enough for obtaining
a sufficiently stationary signal on T and also for obtaining a good frequency resolution. The value
np = 1,024 has therefore been retained, which gives nr = 24. From the point of view of signal
processing concerning stationarity and statistical estimates of extreme values, it would have been
better if the experimental data basis had allow for choosing np = 2,048 and nr = 100, what would
lead us to multiplying by 8 the time duration of wind tunnel tests. Finally, the retained values for the
signal processing parameters are: νc = 1.38 Hz, ∆t = 0.36 s, T = 371 s, nr = 24, and np = 1,024.
For j equal to 140, 141, 144, and 146, that correspond to pressure taps located in the observed zone,
the graphs of the estimate of the power spectral density (PSD) function f 7→ SP exp

j
(2πf) of the

experimental centered unsteady pressure P exp
j is shown in Fig. 3.

Fig. 2 Finite element model of the roof structure (left) and zoom (right) in the structural zone corresponding
to the light color part shown in the left figure (from CSTB)



Non-Gaussian approach for equivalent static wind loads from wind tunnel measurements 599

Fig. 3 Graph of the PSD function f 7→ SP exp
j

(2πf) of the experimental P exp
j (t) for j = 140, 141, 144, 146.

Horizontal axis in Hz and vertical axis in N2×m−4×s

In these figures, the small fluctuations that can be seen are due to the relatively small value of nr.
The discontinuities that occur in the vicinity of 0.55 Hz result from processing that has been done
on the experimental signals in order to eliminate the peaks corresponding to the harmonics that have
been generated by the fan noise.

7.3 Construction of the reduced-order model with the quasi-static acceleration term

Let ω 7→ [ĥc,acc
N (ω)] = [S c

N ] + [ϕN ] [ĥN (ω)] [φcN ] the frequency response function of the lin-
ear filter with input P and output X defined by Eqs. (2) and (3). A convergence analysis with re-
spect to N of the ROM has been performed by studying the graph of function N 7→ conv(N) =
(
∫
B ‖ĥ

c,acc
N (ω)‖2Mdω)1/2 with ‖ĥc,acc

N (ω)‖2M = tr{[ĥc,acc(ω)]∗ [M ] [ĥc,acc(ω)]} in which [M ] is the
mass matrix of the FE model. For N = 1 to 20, Fig. 5 (left) shows the graph of N 7→ conv(N). It
can be seen that the convergence of the ROM is effectively reached for N = 12 and thanks to the

Fig. 4 Graph of the simulated centered unsteady pressure Pj for j = 140 and j = 141 as a function of time t.
Horizontal axis in s and vertical axis in Pa
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presence of the quasi-static acceleration term, the structural modes of ranks larger than 12 are not
necessary. Fig. 5 (right) shows the graph of function f 7→ ‖ĥc,acc

N (2πf)‖2M for N = 12.

7.4 Generation of additional realizations for non-Gaussian process P

The KL statistical reduction of pressure field P = {P(t), t ∈ [0, T ]} is carried out by using the
nr = 24 experimental realizations. As nr = 24, the eigenvalues of the covariance operator of P, for
which the ranks are larger than 24 are zero. As 24 is a relatively small value, it is not necessary to
envisage a smaller value than 24 and consequently,NKL = 24 is retained. The PCE of random vector
Γ is constructed by using the methodology presented in Section 3. For the stochastic computation
and the construction of the equivalent static wind loads, ν = 1,000 independent realizations of non-
Gaussian process P have been generated by using the generator presented in Section 3. Fig. 4 shows
the simulated centered unsteady pressure Pj for j = 140 and j = 141 in a time window [0 , T ].

7.5 Probability density functions and power spectral density functions of observations

In order to illustrate the type of the numerical results obtained, we present below some probability
density functions (PDF) and some power spectral density (PSD) functions of observations. For ν =
1,000 and for i = 144, 145, 146, 147, Fig. 7 shows the PDF of U i(T ), of U imax = maxt∈[0 ,T ] U

i(t),
and ofU imin = mint∈[0 ,T ] U

i(t). The non perfect symmetry of these PDFs is due to the non-Gaussian
nature of the observations. It should be noted that these PDF are not perfectly regular due to the
chosen number of realizations ν = 1,000 (more regular PDF could be obtained in increasing ν using
the non-Gaussian generator). Fig. 6 shows the PSD function f 7→ SU i(2πf) of centered observation
U i. These figures show that there is an important quasi-static contribution in the frequency band
[0 , 0.30] Hz.

7.6 Equivalent static wind loads

7.6.1 Estimation of the equivalent static wind loads
By way of illustration, the presentation of the estimate of ESWL is limited to observation U144.

Fig. 8 displays the 2 graphs of 2 components (y−force and z−force components) of the ESWL.

Fig. 5 Graph of function N 7→ conv(N) (left) and graph of function f 7→ ‖ĥc,acc
N (2πf)‖2M for N = 12 (right)
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Fig. 6 For i = 144, 145, 146, 147, graph of the PSD function f 7→ SUi(2πf) of centered observation process
U i. Horizontal axis in Hz and vertical axis in N2×s

Fig. 7 For i = 144, 145, 146, 147, graphs of the PDF of U i(T ) (black line, central curve), U i
max (blue line,

right curve), and U i
min (red line, left curve). Horizontal axis in Newton (N)
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Table 1 Numerical values related to ui,e,s for i = 144, 145, 146, 147

Observation ui Uimax D i
inf ui,e,s

U144 (104× N) 0.1715 1.031 1.031 1.031

U145 (104× N) 0.8324 3.298 3.298 3.298

U146 (104× N) 0.1740 2.395 2.395 2.395

U147 (104× N) 0.2993 11.30 11.30 11.30

The dimension of the principal static wind load has been computed and has been found as 37 that
is smaller than mf = 181.

7.6.2 Validation of the approach used for estimating the ESWL
The approach proposed for computing the ESWL can be validated in recomputing the static

response of the structure submitted to the ESWL and in comparing the equivalent static observations
uuue,s computed with the extreme value statistics of the observation considered. The equivalent static
observation uuue,s is given by uuue,s = [Ao] ye,s in which ye,s is the equivalent static displacement such
that [K] ye,s = fffe,s. For i = 144, 145, 146, 147, the mean value ui is positive. Therefore, for
these observations, the worst case corresponds to a maximum. Let ui,e,s be the equivalent static
observation uuue,s associated with Ui, which is such that ui,e,s = ui + ui,e,s. Let Uimax = E{Uimax}
with Uimax = maxt∈[0 ,T ]Ui(t). Let D i

inf be the lower bound of the domain associated with Ui. The
numerical values obtained are given in Table 1. In Table 1, it can be seen that ui,e,s is effectively equal
to Uimin for i = 144, 145, 146, 147 and consequently, the computation of the ESWL is validated for
the domain D i that has been used. Note that the optimizer finds the mean Uimin as an optimal value
because the chosen lower bound is D i

inf = Uimax and the probability density function for which the
maximum likelihood is searched, presents its maximum for a value slightly higher than D i

inf , because
of the dissymmetry of the non-Gaussian probability density function.

Fig. 8 Graph of each one of 2 components of the ESWL associated with observation U144 at each node of the
structure mesh. Vertical axis is in Newton (N)
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Table 2 Gust loading factors of Ui for i = 144, 145, 146, 147

Observation ggauss g+ g−

U144 3.629 2.669 2.674

U145 3.583 3.036 3.015

U146 3.621 2.829 2.831

U144 3.582 2.803 2.796

7.7 Gust loading factors

In this method, the gust loading factors are not used for estimating the extreme value statistics of
the responses and for the computation of the ESWL. Nevertheless, it is interesting to postprocess the
observation stochastic processes in order to compute their gust loading factors. Such a computation
allows for comparing the method proposed with the other methods that are based on the Gaussian gust
loading factors that are explicitly used for computing the extreme value statistics and for estimating
the ESWL. For observation Ui with i = 144, 145, 146, 147, Table 2 presents the gust loading factor
ggauss computed with the usual Gaussian hypothesis (see for instance (Davenport 1967)), and the
gust loading factors g+ and g− postprocessed with the extreme value statistics of each observation
estimated with the methodology presented in this paper. The analysis of the results given in this
table shows that the values of ggauss are different from the values of g+ and g−. This difference
comes from the fact that the probability distribution of the extreme values used for computing ggauss
is an asymptotic expression based on a Poissonian distribution hypothesis of the point process of
upcrossings by high levels (level goes to infinity), the mean value of the upcrossings being calculated
with the Rice formula for a Gaussian stochastic process (see Krée and Soize (1986) pp. 136). This
expression gives an overestimation of the gust loading factor with respect to the statistical estimation
of the extreme value statistics constructed from the non-Gaussian realizations. Note that the gust
loading factors are not the same for all the observations what was expected because the responses
depend, simultaneously, on the quasi-static response and on dynamical response related to the 12
modes used in the ROM.

8. Conclusions

In this paper, we have proposed a novel approach for estimating the equivalent static wind loads
for complex structures for which the unsteady pressures are measured in wind tunnel. This approach
makes it possible to get rid of restrictive hypotheses and approximations that are often used. This
approach also allows a direct assimilation of the experimental data. The method has been validated
on a tall building and on a stadium roof for which unsteady pressure measurements were performed.
The results obtained show that the prediction lead us to equivalent static forces that are less than
those estimated with the usual methods. This approach seems promising and, most certainly, requires
further evaluation by applying it to divers situations that fall within the scope of the configurations
concerned.

With respect to the existing methods, the novelties of the proposed approach are as follows. (1)
The non-Gaussianity of the unsteady pressure field has been taken into account for estimating the
extreme values statistics of the time responses. The non-Gaussian character of process P has not
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been described by a given prior probability model for which its hyperparameters would have been
identified with the experiments. Non-Gaussian process P has been constructed by using a general
stochastic model. Consequently, absolutely no hypotheses have been introduced a priori and, in
addition, not only the non-Gaussian marginal probability distribution of order 1 has been taken into
account, but also all the system of the non-Gaussian probability distributions of process P has been
constructed. (2) This non-Gaussian probability model of process P has been used for generating a
large number of additional realizations that are required for estimating extreme values statistics of the
non-Gaussian time responses. (3) For three-dimensional structures, for which numerous local elastic
modes that are outside the frequency band of analysis must be taken into account for ensuring a
good convergence of the observations computed with the reduced-order model (ROM), a quasi-static
acceleration term has been introduced in the construction of the reduced-order model, which allows
for limiting the number of elastic modes to those whose eigenfrequencies belong to the frequency
band of analysis while ensuring a perfect convergence of the ROM. (4) A set of observations has been
defined, which corresponds to a set of internal forces and/or displacements in given finite elements
of the computational model. For each given subset of the set of the observations, an ESWL has
been estimated. The principal static wind loads have therefore been classically deduced of the set
of the ESWL. (5) For each given subset of observations, the extreme value statistics of the time
responses have directly been estimated from the realizations of the responses for which the number
of realizations can arbitrarily be large due to the existence of the generator of the non-Gaussian
process P, which has been developed. The gust loading factors have thus been deduced from these
extreme value statistics, but their values have not been used for estimating the ESWL. (6) A novel
approach has been proposed for estimating the ESWL associated with a subset of observations and
has been based on the use of a maximum probability principle applied to an adapted random vector
of the formulation conditioned by the observation. This approach ensures to preserve the phases
of time responses for all the components of the observations subset and avoids the use of classical
methods based on the responses envelopes that generally yields an overestimate of the ESWL.

Finally, since no hypotheses have been made on the probability distribution of random pressures,
the proposed method can be applied without any conditions on the nature of the probability distribu-
tion of the input pressures (probability distribution can be Gaussian or non-Gaussian).
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CC

Notations

f External force mean value

fffe,s Total equivalent static force

fe,s Centered equivalent static force

p Vector of the unsteady pressure mean value

u Observation mean value

y Displacement mean value

[Ac] Controlability matrix

[Ao] Observability matrix

F External forces vector

FFFe Total equivalent force

Fe Centered equivalent force

H Coordinates of the PCA of P(T )

PPP Total pressure vector-valued stochastic process

P Centered pressure vector-valued stochastic process

PPPexp Total experimental pressure vector-valued stochastic process

Pexp Centered experimental pressure field

Q Centered generalized coordinates associated with P

T Time window duration in s

UUU Observation vector associated with PPP
U Centered observation vector associated with P

X Centered displacement vector associated with P

Y Displacement vector associated with PPP
Γ Coordinates of the KL expansion of P
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