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Abstract.  In this study an analytical expression is derived for the natural frequency of the wind turbine 
towers supported on flexible foundation. The derivation is based on a Euler-Bernoulli beam model where the 
foundation is represented by a stiffness matrix. Previously the natural frequency of such a model is obtained 
from numerical or empirical method. The new expression is based on pure physical parameters and thus can 
be used for a quick assessment of the natural frequencies of both the real turbines and the small-scale models. 
Furthermore, a relationship between the diagonal and non-diagonal element in the stiffness matrix is 
introduced, so that the foundation stiffness can be obtained from either the p-y analysis or the loading test. 
The results of the proposed expression are compared with the measured frequencies of six real or model 
turbines reported in the literature. The comparison shows that the proposed analytical expression predicts the 
natural frequency with reasonable accuracy. For two of the model turbines, some errors were observed 
which might be attributed to the difference between the dynamic and static modulus of saturated soils. The 
proposed analytical solution is quite simple to use, and it is shown to be more reasonable than the analytical 
and the empirical formulas available in the literature. 
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1. Introduction 
 

The wind turbine towers are dynamically sensitive structures (Bhattacharya et al. 2013a, b, 

Lombardi et al. 2013). In order to avoid resonance, the natural frequency of the turbine-foundation 

system should be kept sufficiently separated from the forcing frequencies due to wind turbulence, 

waves, the rotational frequency (1P) and the blade passing frequency (2P or 3P). Therefore, the 

estimation of the natural frequency of the whole system is essential in design calculation (DNV, 

2014). However, determining the natural frequency is one of the most challenging tasks. 

Deviations from the design natural frequencies are observed for some real wind turbine towers 

(Arany et al. 2015, Zaaijer 2006). Since the turbines installed are becoming higher and heavier, the 

prediction of natural frequency is even more important because the intervals of target frequency 

are much narrower for heavier turbines (Arany et al. 2016). 
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In early studies, the wind turbine towers were assumed to be settled on infinitely stiff 

foundations. The natural frequencies of the fixed-base model can be obtained by analytical or 

numerical method (Jafri et al. 2011, Tempel and Molenaar 2003). However, subsequent works of 

Zaaijer (2002a, b, 2006) and Bhattacharya et al. (2011, 2013a, b) reveal that the foundation 

stiffness plays an important role in the calculation of natural frequencies. As a result, foundation 

models are introduced into the dynamic analysis. One of the commonly used model of the 

foundation is a stiffness matrix, which is also known as three-spring model (Arany et al. 2015). 

Frequency results based on the stiffness matrix are shown to be reasonable predictions for wind 

turbine towers supported by monopile (Zaaijer 2006). However, the coupled stiffness in the matrix 

is often ignored (i.e. the uncoupled springs assumption) to obtain an analytical solution. Based on 

the model of uncoupled springs, analytical expressions have been developed by Adhikari and 

Bhattacharya (2011, 2012) to calculate the first natural frequency. From a physical point of view, 

the lateral displacement of the monopile of a wind turbine is mainly induced by the moment, but 

not the lateral force, thus the coupled stiffness cannot be ignored. A mathematical model (Arany et 

al. 2015) has been provided for the stiffness matrix, but the model leads to a transcendental 

equation and thus can only be solved numerically. Based on the numerical results of the 

transcendental equation, Arany et al. (2016) proposed an empirical formula for the stiffness matrix. 

However a clear expression with pure physical parameters is not reported in the literature. 

Although the numerical method can be used to model the turbine towers with more complicated 

details, an analytical expression considering a reasonable foundation is still useful to check the 

numerous combinations of design parameters as a first step. This analytical expression can also 

provide a physical understanding of natural frequency of a turbine tower. This can be helpful to 

verify the output from a numerical program, as well as the results of a scale-model test. 

The aim of this work is to provide a physical derivation of the first natural frequency based on 

Rayleigh’s method. A new expression based on pure physical parameters is derived for the natural 

frequency of the turbine towers, for which the foundation is modelled as a stiffness matrix. The 

expression is then validated against the experimental measurements for both the real turbines and 

the small-scale models. Furthermore, a relationship is introduced between the diagonal and 

non-diagonal element in the stiffness matrix, such that the foundation stiffness can be obtained 

from either the commonly used p-y analysis or the static loading test. A comparison is also made 

between the new expression and other formulas available in the literature. 

 

 

2. Models of wind turbine-foundation system 
 

Dimensions of a typical wind turbine tower and the mathematical models are shown in Fig. 1. 

The pile above the mudline is not considered in the upper structure because (i) for a real wind 

turbine tower, the bending stiffness of the monopile is far more larger than that of the tower, and 

(ii) an early study (Zaaijer 2006) shows that the kinetic energy of the monopile is only about four 

orders of magnitude less than that of the tower, which means the inertia of the pile is negligible. 

On the other hand, the pile both above and below mudline is considered in the foundation models. 

Thus the decrease in stiffness (and natural frequency) of the whole system due to deeper water 

sites is taken into account. 
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Fig. 1 Dimensions of a wind turbine tower supported by monopile and the mathematical models for 

dynamic analysis 

 
 
2.1 Fixed base model of wind turbine tower 

 
Classically, a wind turbine tower is modeled as a cantilever beam with a top mass, M. The 

beam is fixed at the bottom as shown in Fig. 1(b), thus the foundation characteristics are ignored. 

First natural frequency of that model is given by Blevins (2001) 

 
3

1 3

332

140

FB

EI
f

M mL L



 

 
 
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where L = beam length; EI = bending stiffness of the beam; and m = mass per unit length of the 

beam. A similar expression for the fixed base model can also be found in Tempel and Molenaar 

(2003). 

The turbine tower is typically a tapered column, thus EI in Eq. (1) should be replaced by an 

equivalent bending stiffness, EIeq. According to a physical derivation (Arany et al. 2016), the 

equivalent EI is obtained as 
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where EIt is the bending stiffness at the top of the tower, Db and Dt denotes the diameter at the 

bottom and at the top of the tower. For a tower of constant diameter, it can be verified that 
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Fig. 2 Foundation model of a laterally loaded pile 

 

 

Equivalent m of a tapered tower can also be calculated via integration. The final expression is 

  2
2

T T
T T b t T

V
m t D D t

L

 
     (4) 

where VT = volume of the tapered tower; tT = wall thickness; and ρT = density of the tower material. 

With the equivalent EI and m, the tapered tower is transformed into a uniform beam, thus can be 

analysed as Figs. 1(b)-1(d). 

 

2.2 Foundation models 
 

A typical model of laterally loaded pile is shown in Fig. 2. DP, EIP are the diameter and bending 

stiffness of the monopile, respectively. If the inertia of the pile is negligible, the behaviour of the 

foundation can be represented completely by a stiffness matrix (K) which describes the 

relationship between the general load (F) and the displacement vector (u) at the pile head (Zaaijer 

2006). 
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F Ku   (5) 

where F = lateral force; M = moment; u = lateral displacement; θ = dimensionless rotation (in rad); 

k11 = lateral stiffness; k22 = rotational stiffness; and k12 = k21 = coupled stiffness. A more general 

stiffness matrix will include the element of k33, which describes the vertical stiffness. But during 

the lateral vibration, the strain energy caused by the vertical displacement is a constant. Thus k33 is 

not relevant in the dynamic analysis. 

In order to simplify the model, the non-diagonal element in Eq. (5) is often ignored and the 
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stiffness matrix reduces to uncoupled springs 
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where kl and kr denotes the stiffness of the lateral and rotational springs, respectively. In real 

foundations, the two springs tend to weaken each other during deformation. This can be described 

by the negative value of k12. Therefore, the foundation stiffness is overestimated in the model of 

uncoupled springs. 

 

2.3 Empirical method for stiffness matrix 
 

Since the uncoupled springs model might overestimate the first natural frequency, an empirical 

method is developed by Arany et al. (2016) for the model of stiffness matrix. According to the 

numerical results of a transcendental equation (Arany et al. 2015), a closed form expression is 

fitted as 

 1 R L FBf C C f  (7) 

where CR and CL are dimensionless coefficients. The two coefficients can be expressed as 

functions of the stiffness parameters 

    11 22 12 11 22 12, , , , , , , , , ,R R L LC C EI L k k k a C C EI L k k k b    (8) 

in which a and b are empirical constants. Eq. (7) implies that the first natural frequency (f1) is 

obtained by multiplying the fixed base frequency by two factors which account for the foundation 

flexibility. If the pile head is significantly higher than the mudline, another coefficient should be 

multiplied in Eq. (7). Detailed expressions for this empirical method can be found in Arany et al. 

(2016). 

 

 

3. Elements in the stiffness matrix 
 

Several methods can be used to determine the stiffness of the foundation. For monopiles 

embedded in a certain type of soil, some formula methods have been summarized by Zaaijer (2006) 

and Arany et al. (2016). But the real turbine towers are usually founded on complex layered soils, 

which make it difficult to determine the parameters used in the formulas. Another method to obtain 

the foundation stiffness is the p-y analysis recommended by API (2007). The p-y method is widely 

used to model the lateral springs as shown in Fig. 2. For each of the soil types, API (2007) presents 

clear values of the spring parameters, which can also be used for the layered soils. Alternatively, 

the foundation stiffness can be measured directly from the static loading tests. To avoid the 

difficulty in choosing parameters, formula methods are not adopted in this study. The stiffness of 

the foundation is obtained from the p-y curves or the static loading tests. Although the p-y curves 

describe a nonlinear soil behaviour, the monopile foundation of a real wind turbine is generally 

working in the linear regime (Arany et al. 2016). Therefore, the initial stiffness of the foundation is 

used in this study. 
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3.1 Cyclic p-y curves 
 

For dynamic analysis, cyclic p-y curves are used to represent the lateral soil springs. The p-y 

curves are determined by the soil type and generally based on such parameters: (i) undrained shear 

strength (su) for clays, (ii) effective friction angle (φ’) for dry or saturated sands, (iii) dry unit 

weight (γd) or submerged unit weight (γ’) of the soil. Detailed formulas for the soil springs can be 

found in API (2007). Monopile above the mudline is considered as an extra cantilever beam as 

shown in Fig. 2. With a given load (F), displacement vector (u) at the pile head is calculated 

through a FEM method. 

From p-y analysis, two displacement vectors, u1=(u1, θ1)
T
 and u2=(u2, θ2)

T
, can be calculated for 

two load cases, F1=(F1, M1)
T
 and F2=(F2, M2)

T
. To obtain the stiffness matrix, F1 and F2 should be 

linear independent. Then the three elements in the stiffness matrix are given by 
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  (9) 

If u1 and u2 are in the linear regime, the obtained stiffness matrix will be independent of the 

magnitudes of F1 and F2. 

For the uncoupled springs model, the spring stiffness is usually represented by the initial 

tangent of the load-displacement curve for each degree of freedom. To obtain an F-u curve, the 

moment M is fixed to zero. Substituting M=0 into Eq. (5), the stiffness of lateral spring is given by 

 
2

12
11

22

l

k
k k

k
   (10) 

Similarly, the stiffness of rotational spring is obtained by substituting F=0 into Eq. (5). 
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3.2 Static loading test 
 

Fig. 3 shows two types of static load tests on a monopile (Bhattacharya and Adhikari 2011; 

Bhattacharya et al. 2013b). According to the test results, the spring stiffness (kl and kr) are 

measured directly from the initial tangent of the F-u and M-θ curve. In order to obtain the three 

elements in the stiffness matrix, some relationship should be introduced between the diagonal and 

non-diagonal elements. Based on the p-y analysis on a number of monopile foundations, the 

following relationship is introduced 

 
12 11 22k k k   (12) 

where δ is a dimensionless constant. Elements in the stiffness matrix are calculated for varied 

monopiles from p-y method. The parameters of monopiles are based on real situations with varied 

pile diameters (0.02-4 m), pile lengths (0.45-30 m) and soil conditions (clayey or sandy layers). 

Fig. 4 shows the results of calculations as a scatter plot. A linear relationship can be found between 
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k12 and the square root of k11k22. Indicated on Fig. 4 are also the approximate ranges of pile 

diameter (the exact pile diameter depends on other properties of the pile and the soil). It is clear 

that Eq. (12) captures the relationship between the diagonal and non-diagonal elements with good 

accuracy, no matter for model piles with very small diameter, or real monopiles of offshore wind 

turbines. The fitted value of δ is 0.826 with R-square=0.998. According to the formula methods 

presented by Zaaijer (2006), the value of δ is 0.768 (Randolph’s formula) or 0.866 (formula based 

on the effective fixity length), which is quite close to the value fitted from p-y analysis. 

 

 

 

Fig. 3 Static loading test on a monopile: (a) lateral displacement testa and (b) moment test 

 

 

 

 

Fig. 4 Relationship between the diagonal and non-diagonal stiffness obtained from p-y analysis 
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Substituting Eq. (12) into Eqs. (10) and (11) the elements in the stiffness matrix are calculated 

by 
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l r
l r
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  (13) 

It appears that the static loading test is the only method to obtain the foundation stiffness 

through direct measurement. However, for piles in the saturated soils, the difference between the 

static and dynamic modulus might lead to some errors, which will be discussed in the case studies. 

 

 
4. Expression of first natural frequency 

 

Based on Rayleigh’s method, expression for the natural frequency of a wind turbine-foundation 

system can be derived. In free vibration, energy is exchanged between the kinetic energy (T) and 

strain energy (V). Since the maxima of these two types of energy (Tmax and Vmax) are identical, the 

natural frequency (circular frequency ω) is obtained from 
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where the function ψ denotes the vibration mode. A precise mode shape will lead to the smallest 

frequency. According to Rayleigh’s approach (Clough and Penzien 1993), a hypothetical mode 

shape is introduced as shown in Fig. 5, which is actually the deflection curve of a beam with a 

small point load on the end. The beam (Euler-Bernoulli beam) is settled on a flexible foundation 

which is represented by a stiffness matrix. For the first natural frequency, it will be shown that the 

results calculated from this vibration mode is in good agreement with the measured frequencies. 

With reference to Fig. 5 
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where 0Z  denotes the lateral deflection of the cantilever beam on a fixed base (with infinite 

foundation stiffness). It is simply given by 
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in which P = the small point load on the end of the beam. The magnitude of P is insignificant 

because it vanishes in the final expression. Deformation of the foundation can be calculated from 

Eq. (5) as 
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Fig. 5 A beam on flexible foundation with a small point load on the end (the deformation is 

enlarged to show the relationships) 

 

 

Strain energy of the system includes the energy of the curved beam and that of the foundation. 

During the vibration, the strain energy of vertical force (gravity) remains nearly constant, thus it 

will be ignored in the analysis. With Eqs. (15) and (17), Vmax is given by 
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Since the strain energy is equal to the work of load P, Vmax can also be given by 

max

1

2 x L
V P


 , which will lead to the same answer as Eq. (18). 

The kinetic energy of the system is expressed as 

 max max max

B MT T T   (19) 
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where max

BT  is the kinetic energy of the beam, and max

MT  denotes the kinetic energy of the top mass. 

The two parts of kinetic energy are given by 
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which can be combined with Eqs. (14) and (18) to provide 
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With the use of Eqs. (17) and (16) in Eq. (21), load P vanishes and the frequency   can be 

expressed by a function of the physical parameters 
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To simplify the expression, two dimensionless parameters are defined by 
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where εu = coefficient of lateral displacement; εθ = coefficient of rotational displacement. For a 

given wind turbine-foundation system, both εu and εθ are just dimensionless constants. With the 

use of Eq. (23), Eq. (21) can now be written as 
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which is a simple expression that can even be worked out with a pocket calculator. It can also be 

used to provide a sensitivity analysis. 

For a beam fixed at the bottom, it is obvious that 0u    , thus Eq. (24) reduces to 

 
3

3

33

140

EI

M mL L

 
 

 
 

 (25) 

Eq. (25) is exactly the same equation as Eq. (1). Thus Eq. (24) is actually the generalization of 

the classical case so that a non-diagonal stiffness matrix is considered in the dynamic model. 

Here it can be argued that if Eq. (6) is used (a diagonal stiffness matrix), Eq. (22) becomes 

 

 

23

2
23

2 4 2 2
2 23 3

2

3

3

1
11 1533 3

140 3 60

r l

l r

r l

l r

l l r r
l r

l r l r

k k LL

EI k k

k k LL
M

EI k k

k L k k L k
k L kL L

mL
EI EI k k k k







  
  
  
 

       
     

   
  

  (26) 

which is the expression of the first natural frequency for the model of uncoupled springs. Eq. (26) 

is simpler than Eq. (22). But compared to Eq. (24), Eq. (26) provides very less advantage in 

calculations. 

If the damping ratio, ζ, is considered in the analysis, a coefficient of 21    should be 

multiplied in the right-hand-side of Eq. (24).According to Arany et al. (2016), the total damping is 

typically between 2% and 8% for an operational turbine. Therefore, the coefficient of 21   is 

very close to unity (0.997~1) and thus can be ignored in the calculations of the first natural 

frequency. 

 

 

5. Validation of the proposed equation for monopiles and discussion 
 

In this section, the results of proposed expressions are validated against the experimental 

measurements for real turbines and model tests. The analyzed real and model turbines are 

presented in Table 1, as well as references to the sources of data. For the two real turbines, Lely A2 

and A3 in Netherlands, the input parameters in the p-y analysis are available in Zaaijer (2002a). 

Foundation stiffness of Model A is also obtained from p-y method. The calculations shown in 

Section 3.1 are carried out for the two real turbines and Model A. 

For Models B-D, the spring stiffness (kl and kr) were measured directly from static loading tests 

(Bhattacharya and Adhikari 2011). Thus the elements in the stiffness matrix can be obtained as 

shown in Section 3.2. The spring stiffness and natural frequency were measured after 14,400 

cycles of 3P loading so that the characteristic of model turbine and foundation has held relatively 

steady. Table 2 shows the obtained stiffness for all cases. 
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The natural frequencies calculated from different expressions are shown in Table 3. Varied 

analytical expressions and an empirical method are carried out for all the cases. The analytical 

expressions are based on the three mathematical models as shown in Fig. 1. For the fixed base 

model, uncoupled springs and stiffness matrix, Eqs. (1), (26) and (24) are used respectively. 

 

5.1 Discussion on analytical results of stiffness matrix 
 

The measured natural frequencies for each case are available in the literature (Bhattacharya and 

Adhikari 2011, Yu et al. 2014, Zaaijer 2006). Comparison between the results of varied 

expressions and the measured values are also shown in Table 3. The proposed expression based on 

stiffness matrix gives reasonable predictions for both the real turbines and the scale models. In the 

first four cases (two real turbines, Models A and B), the errors are quite small (±1.2%). Larger 

errors are observed in Models C (10.6%) and D (-16.2%). Since the foundation stiffness was 

obtained from static loading tests for these two models, the errors might be attributed to the 

difference between the static and dynamic modulus of saturated soils. 

In the case of Model C, the model pile was inserted into the saturated sand. The foundation 

stiffness might be reduced because of some sort of shock liquefaction, thus the calculation based 

on static modulus tends to overestimate the natural frequency. The turbines Lely A2 and A3 are 

also founded mainly on saturated sands. But the stiffness matrix is obtained from p-y curves for 

these two turbines. According to API (2007), the cyclic p-y springs are significantly softer than the 

static ones for sandy soils. Therefore, the reduction in dynamic stiffness is taken into account for 

the two real turbines and the predicted natural frequencies are quite close to the measured values. 

In the case of Model D, the model pile was embedded in saturated clay. For this model turbine, 

the natural frequency is underestimated by the analytical solution based on stiffness matrix. During 

the vibration, it appears that the pore water in saturated clay is unable to move. With such a 

restriction, the clay is actually stiffer than that in the static loading condition, because a 

consolidation process is allowed for the latter one. This might explain why the natural frequency is 

underestimated for model D. For the two real turbines, Lely A2 and A3, the p-y method also 

ignores the difference between the dynamic and static modulus of clays. But the clay layer is quite 

thin for these two turbines, thus the foundation stiffness is basically dominated by the sand layer 

and the deviation is not revealed. 

 
5.2 Comparison between results of different expressions 
 
The results of formulas available in the literature, i.e. an empirical formula based on stiffness 

matrix (Arany et al. 2016) and an analytical expression based on uncoupled springs (Adhikari and 

Bhattacharya 2011), are also shown in Table 3. It appears that the performance of the empirical 

formula is not so stable. For the first three cases (two real turbines and Model A), the empirical 

formula gives very accurate predictions on natural frequency. But large deviations (up to 78%) are 

observed in the other cases. From a physical point of view, entanglement between the parameters 

of mass and stiffness is shown in Eq. (24). Such entanglement is also shown in the analytical 

expressions based on the uncoupled springs (Adhikari and Bhattacharya 2011). This means that the 

empirical factors (CR and CL) might not be determined by the stiffness parameters alone. In another 

word, the mass parameters should play a role in Eq. (8). Thus the empirical formula somehow fails 

for the last three model turbines. 
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Table 1 Properties of upper structure, monopile and soil for real wind turbines and model tests 

Turbine (or model test) ID Lely(A2) Lely(A3) Model A Model B Model C Model D 

Reference Zaaijer (2002a) 

Yu et al.  

(2014, 2015) 

Bhattacharya and Adhikari (2011) 

           Top Mass M (kg) 32000 1.0 1.348 

Tower 

Height L (m) 39.0 1.0 1.0 

Diameter DT (m) 1.9-3.2 (conical) 0.043 (uniform) 0.038 (uniform) 

Wall thickness tT 

(m) 

0.012 0.002 0.0016 

EI (Nm2) 22×109* 11394 2125 

m (kg/m) 751.11 2.0 0.576 

Monopile 

Full length (m) 26 28 0.45 0.5 

Embedded 

length (m) 

13.9 20.9 0.45 0.5 

Diameter DP (m) 3.2 3.7 0.043 0.022 

Wall thickness tP 

(m) 

0.035 0.035 0.002 0.0013 

Material Steel Steel Steel Dural alloy Dural alloy Dural alloy 

Young’s 

modulus (GPa) 

210 210 210 70 70 70 

Soil 

conditions 

Upper layer 

Soft clay Dry sand 

uniform 

φ’=36°***, 

γd=16.8kN/m3**

* 

Dry sand 

uniform 

Saturated 

sand 

uniform 

Saturated clay 

uniform 

2m thick 4m thick 

su=20kPa**, γ’=8kN/m3** 

Sublayer 

Dense sand 

φ’=38°**, γ’=11kN/m3** 

* Equivalent EI considering the effect of tapering (Adhikari and Bhattacharya 2012). 

** Typical value for the soil type. 

***Measured and reported in the literature. 

 

 

Indicated in Table 3 are also the comparisons between the results of different mathematical 

models. It is obvious that the fixed base model gives the highest prediction of natural frequency, 

while the model of stiffness matrix gives the smallest one. The results calculated from the 

uncoupled springs are 2~40% higher than those calculated from the stiffness matrix. Thus the 

effects of coupled stiffness (k12) are not negligible. This means that the expression based on 
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stiffness matrix is more appropriate than that based on uncoupled springs. Similar opinion can be 

found in Arany et al. (2015). Among all the formulas, it is shown that the proposed analytical 

solution based on stiffness matrix gives the most reasonable predictions. 

 

 

 
Table 2 Parameters of the stiffness matrix and uncoupled springs for the real wind turbines and models 

Turbine (or model test) ID Lely(A2) Lely(A3) Model A Model B Model C Model D 

Methods p-y curves p-y curves p-y curves Static loading test* 

Elements in 

stiffness 

matrix 

k11 (MN/m) 94 242 1.48 0.118 0.112 0.0110 

k12 (MN) -1040 -2230 -0.300 -0.0170 -0.0156 -0.00318 

k22 (MN·m) 15800 28400 0.0866 0.00359 0.00318 0.00135 

Spring 

stiffness 

kl (MN/m) 24.5 66.5 0.441 0.0375 0.0357 0.0035 

kr (MN·m) 4130 7810 0.0257 0.00114 0.00101 0.000428 

* For models B-D, the spring stiffness were measured directly by Bhattacharya and Adhikari (2011), the elements in 

stiffness matrix are calculated from Eq. (13) with δ=0.826 

 

 

 
Table 3 Measured and predicted natural frequencies of the real wind turbines and models 

Turbine (or model test) ID Lely(A2) Lely(A3) Model A Model B Model C Model D 

Analytical 

expression 

(Hz) 

1 Fixed base 0.851 24.3 10.4 10.4 10.4 

2 Uncoupled springs* 0.696 0.761 15.0 3.94 3.75 2.42 

3 Uncoupled springs** 0.740   3.62 3.43 2.76 

4 Stiffness matrix* 0.641 0.728 13.3 3.52 3.35 1.97 

5 Empirical formula*** (Hz) 0.643 0.712 13.3 2.28 2.07 0.508 

6 Measured frequency (Hz) 0.634 0.735 13.3 3.52 3.03 2.35 

Difference between 3 and 6 (%)** 16.8   2.84 13.2 17.4 

Difference between 4 and 6 (%)* 1.14 -0.98 -0.15 0.00 10.6 -16.2 

Difference between 5 and 6 (%)*** 1.42  -3.13  -0.15  -35.2  -31.7  -78.4  

Difference between 2 and 4 (%) 8.62 4.58 13.1 11.9 11.9 22.8 

Difference between 3 and 4 (%) 15.47    2.84  2.39  40.10  

* Present study: Uncoupled springs by Eq. (26); Stiffness matrix by Eq. (24) 

** Results of the analytical solution based on uncoupled springs proposed by Adhikari and Bhattacharya (2011). 

*** Results of the empirical formula based on stiffness matrix proposed by Arany et al. (2016) , i.e., Eq. (7) 
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6. Conclusions 
 

A new analytical solution is derived for the natural frequency of wind turbine towers supported 

by monopile. The tower is modelled as a Euler-Bernoulli beam with a top mass and the foundation 

is represented by a stiffness matrix. The obtained expression is based on pure physical parameters 

and thus can be used for a quick assessment of the natural frequencies of both the real turbines and 

the small-scale models. A relationship is introduced between the diagonal and non-diagonal 

element, so that the stiffness matrix can be obtained from either the p-y analysis or the direct 

measurements of static loading test. Validation against the measured frequencies shows that the 

proposed expression gives reasonable predictions for both the real and the model turbines. For two 

of the model turbines, some errors (up to 16%) were observed which might be attributed to the 

difference between the dynamic and static modulus of saturated soils. It is shown that the proposed 

expression is quite simple to use, and it is more reasonable than the analytical and the empirical 

formulas available in the literature. 
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