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Abstract.  The nonlinear aerodynamic instability of a tensioned plane orthotropic membrane structure is 
theoretically investigated in this paper. The interaction governing equation of wind-structure coupling is 
established by the Von Kármán’s large amplitude theory and the D'Alembert’s principle. The aerodynamic 
force is determined by the potential flow theory of fluid mechanics and the thin airfoil theory of 
aerodynamics. Then the interaction governing equation is transformed into a second order nonlinear 
differential equation with constant coefficients by the Bubnov-Galerkin method. The critical wind velocity is 
obtained by judging the stability of the second order nonlinear differential equation. From the analysis of 
examples, we can conclude that it’s of great significance to consider the orthotropy and geometrical 
nonlinearity to prevent the aerodynamic instability of plane membrane structures; we should 
comprehensively consider the effects of various factors on the design of plane membrane structures; and the 
formula of critical wind velocity obtained in this paper provides a more accurate theoretical solution for the 
aerodynamic stability of the plane membrane structures than the previous studies. 
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1. Introduction 
 

The building membrane structure has become popular during the last few decades. Because of 

its economy, beauty, and light weight, it is widely applied in large span structures, such as 

stadiums, terminal buildings, exhibition centers and works of art, etc. However membrane 

structure is very sensitive to the wind load because of its light weight, low stiffness and low 

natural frequency. Therefore, the wind load is the main control load of the membrane structure, 

and the aerodynamic instability may occur when the wind velocity reaches a certain value (Miyake 

et al. 1992, Kawakita et al. 1992).  

In engineering practices, the main stadium of American Atlanta Olympics (Georgia Dome) was 
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destroyed by strong winds in 1995; the openable membrane roof of Montreal Olympic Stadium in 

Canada was slitted in a snowstorm in 1999; the membrane roofs of the Cheju World Cup stadium 

in Korea and Wenzhou University stadium in China were also locally destroyed by the wind loads 

in 2002 and 2004, respectively. In addition to these incidences, there were many other analogous 

wind-induced accidents of membrane structures (Luo 2006). It is noteworthy that the 

wind-resistant designs were carried out for these structures before their construction, but the 

wind-induced damage still occurred under the condition of the local wind velocity lower than the 

design critical wind velocity. This phenomenon has attracted the scholars’ great attention to 

explore the aerodynamic instability mechanism of this kind of structures under wind load. 

At present, relatively consistent view is that the membrane structure vibrates mainly in single 

mode for divergence instability under a lower wind velocity, and it presents a trend of multi-mode 

coupling for flutter instability with the increasing of the wind velocity (Minarni et al. 1993, Sun et 

al. 2003). However, due to the complexity of the problem, the studies on the quantitative analysis 

are poor.  

Sygulski (1994, 1997) derived the critical instability wind velocity of a piece of membrane 

supported on a rigid board in the uniform potential flow by applying the finite element method and 

boundary element method. Sygulski (1996) investigated the aeroelastic dynamic stability of the 

vibration of a three-dimensional pneumatic structure in wind flow, and the analytical prediction is 

in agreement with observation of wind-tunnel experiments. Glück et al. (2001)
 
presented a 

numerical method of a time-dependent fluid-structure coupling for membrane and thin shell 

structures with large displacements; and this coupled algorithm provides some reference for the 

calculation of fluid-structure interaction of analogous structures. Attar et al. (2005) applied a 

reduced order system identifying approach to analyze the structural nonlinear behavior of 

aeroelastic configurations; and the results agreed well with those from a high-fidelity aeroelastic 

model. Stanford et al. (2007, 2008) constructed a novel experimental facility that integrated a wind 

tunnel with a visual image correlation system for simultaneous measurement of wing 

displacements, strains, and aerodynamic loads, and the numerical and experimental data have 

suitable correspondence for moderate angles of attack. Combined with a finite difference 

membrane model with 3rd order piston theories, Scott et al. (2007) applied NASTRAN normal 

modes in the structured compressible flow solver to simulate the dynamic aeroelastic stability of 

membrane structures for aero-capture, and the results obtained are well consistent with a static 

aeroelastic analysis. Michalski et al. (2011) outlined a virtual design method by fluid–structure 

interaction simulation for membrane structures under the impact of fluctuating wind loads and 

provided results on the unique validation of this method at real-scale tests of a highly flexible 29 m 

umbrella, and the comparative analysis proved the effectiveness of this method. Lu et al. (2013) 

and Sun et al. (2014)
 
studied the fluid-structure interaction (FSI) of membrane structures under 

wind actions by novel numerical method, and obtained some significant results for the 

wind-resistant design of membrane structures. Zhou et al. (2014)
 
established a framework to 

numerically analyze the added mass of open flat membranes by using the boundary element 

method, and the comparison between numerical and experimental results showed the added mass 

only considering the effect of geometric shape can agree well with the test results in low-order 

modes. Wu et al. (2015) studied the aero-elastic instability characteristics and mechanism of two 

closed-type saddle-shaped tensioned membrane structures by wind tunnel test, and obtained some 

significant conclusions.  

Additionally, some significant analytical studies were carried out for the aerodynamic 

instability of membrane structures. Yang and Liu (2005) applied the non-moment theory of thin 
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shallow shells and the potential flow theory in fluids to study the aerodynamic instability critical 

wind velocity of three-dimensional membrane structures, and the linear instability critical wind 

velocity is obtained by Routh-Hurwitz stability criterion. Wu et al. (2008) presented a 

computational method for simulating the wind-structure interaction effects of tension structures, 

and the results provide some significance basis for the computation of wind-introduced instability 

critical wind velocity. Zheng et al. (2011) adopted the similar analytical approach to obtain the 

nonlinear critical wind velocity of planar orthotropic membrane structures in large amplitude 

theory; and then their further research obtained the analytical solution of the nonlinear critical 

wind velocity of the hyperbolic paraboloid orthotropic membrane structure (Xu et al. 2011). 

However the stress function in their study did not fully satisfy the stress boundary conditions, so 

their results are not complete and need further amendment.  

In this paper we theoretically study the aerodynamic stability of the tensioned plane membrane 

structure and propose a new stress function that fully satisfies the stress boundary conditions for 

further study. The governing equation is derived by the von Kármán’s large amplitude theory and 

D'Alembert’s principle. The critical instability wind velocity is obtained by judging the stability of 

the governing equation. Through the parametric analysis, some significant conclusions are 

obtained for the wind-resistant design of the plane membrane structure. The analytical method 

herein provides favorable reference for the stability analysis of the analogous structures. 

 

 

2. Structural model and governing equations  

 
The studied structure model is a rectangular plane membrane structure with its four edges 

simply supported as shown in Fig. 1. The membrane material is orthotropic and its two orthogonal 

directions are x and y directions with different Young's modulus. a and b denote the spans in x and 

y directions, respectively. N0x and N0y denote the initial stress in x and y directions, respectively. 

Point O is the original point of xoy coordinate system. The wind direction is x direction and its 

velocity is V. 

According to the von Kármán’s large amplitude theory and D’Alembert’s principle (Liu et al. 

2013, 2014), the dynamic motion equation and compatible equation of the orthotropic membrane 

are 

   
2 2 2 2
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22 2 22 2 2 2 2

1 2

2 2 2 2 2 2

1 2 1 2

2 2

1 1
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y y xyx x

w w w w w
N N N N N

t t x y x y

N N NN N w w w

E h y E h x E h x E h y Gh x y x y

p t

x y
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 
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      
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

        
                 

       (1) 

where 0  is the areal density of membrane; w is the deflection:  , ,w x y t ; 0  is the damping 

coefficient of the structure; xN  and yN  are the stress increments in x and y directions, 

respectively; xyN  is the shear stress; 0xN  and 0 yN  are the initial stress in x and y directions, 

respectively; h is the membrane's thickness; 1E  and 2E  are the Young's modulus in x and y 

direction, respectively; G is the shear modulus; 1  and 2  are the Poisson's ratio in x and y 

directions, respectively; ( )zp t  is the external load in z direction. 
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Fig. 1 Tensioned orthotropic plane membrane model with four edges clamped 

 

 

The introduction of stress function  , ,x y t   yields 
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 (2) 

The maximum vibration displacement of the membrane is much smaller than the boundary size, 

so the shearing actions among the membrane fibers are very small, and the effect of shearing 

stresses is thus assumed negligible, i.e., 0xyN   (Zheng et al. 2011, Xu et al. 2011). Therefore 

 
2 22 4

2 2 2 2
0

y xyx
N NN

h
x y x y x y

  
    
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 (3) 

The external load ( )zp t  can be expressed as follows 

 2 1( )zp t p p   (4) 

where 1p  and 2p  are the pressure on the lower and upper surface, respectively; and 1p  

approximately equals the static atmospheric pressure p . 

By substituting Eqs. (2)-(4) into Eq. (1), one obtains 
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      
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 (5) 
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2
4 4 2 2 2

4 4 2 2

1 2

1 1 w w w

E y E x x y x y

       
   
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 (6) 

The membrane structure is a typical flexible structure, and its bending resistance is so weak that 

the bending resistance of the membrane is neglected in this paper. Therefore, the boundary of the 

studied membrane structural model is considered as simply supported. Thus the displacement and 

bending moment are equal to zero, i.e. the boundary condition (7). In Eq. (7), the second order 

derivatives of w are equal to zero, which means the bending moments on the boundary is zero. 

Even if there are initial stress 0xN  and 0 yN  in the membrane, the stress increment xN  and yN  

on the boundary are zero, which is expressed by the boundary condition (8).  

The corresponding displacement and stress boundary conditions can be expressed as: 
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 (8) 

 

 

3. Determination of aerodynamic force 
 

The air viscosity should be considered if the vibration wavelength is close to the air boundary 

layer thickness (Dowell et al. 1970). But the low-order modes often play a dominant role in the 

vibration of civil engineering structures, so the vibration wavelength is far larger than the 

boundary layer thickness. Meanwhile, the experimental studies of Uematsu et al. (1986) showed 

that the turbulence in the boundary layer has slight effect on the wind-induced structural response. 

Therefore, the potential flow can be considered as inviscid, stationary, uniform and incompressible 

in this paper. Assume that the flow acts on the upper surface of the structure only, and the direction 

of the flow velocity V is x-axis direction (as shown in Fig.1). 

According to the fluid Bernoulli Equation, the outdoor (upper surface) pressure 2p  is 

(Forsching 1982) 

 

0

2

z z

p V p
x t

 
 



   
    

  
 (9) 

where   is the air density; ( , , , )x y z t    is the perturbed velocity potential function; 
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 0 0 ,z z x y is the surface function under initial stress; p  is the static atmospheric pressure. 

According to the potential theory, ( , , , )x y z t  in Eq. (9) must satisfy the Laplace’s equation 

(10) and boundary condition (11).  

 
2 2 2

2 2 2
0

x y z

      
  
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 (10) 

 2z

z z
v V

z x t

   
   
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 (11) 

where zv  is the flow velocity component in z direction. 

According to the thin airfoil theory of aerodynamics, ( , , , )x y z t  that satisfies Eqs. (10) and 

(11) can be expressed as follows (Ivovich et al. 1991) 
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where Ra  denotes the structural projection area in the plane xoy. 

The membrane surface function under wind loadings is 

 0( , , ) ( , ) ( , , )z x y t z x y w x y t   (13) 

Because the studied membrane is plane, 0( , ) 0z x y  . Then we obtain 

 ( , , ) ( , , )z x y t w x y t  (14) 

By substituting Eq. (14) into (12), one obtains 
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where  0 ,0Ra a b      , the gas inertial load 
*  which attached to the lower surface 

is taken into consideration in 1A  (Yang and Liu 2005), and assume 
*  . 

Then Eq. (15) can be simplified as 

 2 1 2 3 4   p A A A A p       (16) 

The substitution of Eq. (16) into Eq. (5) yields 
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4. Critical wind velocity of instability 

 

The functions that satisfy the boundary conditions Eq. (7) are separated as follows (Liu et al. 

2013, 2014) 

      
,

, , ,mn mn

m n

w x y t T t W x y   (18) 

where Wmn(x, y) is the given mode shape function;  mnT t  is function of time; m and n are 

positive integer. 

According to the basic vibration theory, the mode shape function is given by 

 ( , ) sin sin
m x n y

W x y
a b

 
  (19) 

where m and n denote the orders of vibration mode in x and y directions, respectively. Eq. (19) 

satisfies the boundary conditions automatically. 

We take one term of Eq. (18) for computation, i.e.  

  ( , , ) sin sinmn

m x n y
w x y t

a b
T t

 
  (20) 

In order to simplify the computation symbols, we let    , ,
mn

W x y W x y W  , 

   mn
T t T t T  .  

The substitution of Eq. (20) into Eq. (6) yields 
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The studied model is a symmetrical structure, so the stress function   should be an even 
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function and satisfy the stress boundary condition (7). Therefore, the stress function can be 

assumed as follows 

 2 2 2
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2 2
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The substitution of Eq. (22) into Eqs. (21) and (7) yields 
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Then the stress function is 
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The substitution of Eqs. (20) and Eq. (23) into Eq. (17) yields 
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According to the Bubnov-Galerkin method (Shin et al. 2004), Eq. (24) can be transformed as 

follows 
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where  0 ,0S x a y b     . 

Eq. (25) can be simplified as follows 
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Since that 0A  ( 0A  may occur only when /b a << 0.1, but it would not occur in 

engineering practices), Eq. (26) can be transformed into 
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Obviously, Eq. (27) is a nonlinear differential equation with respect to ( )T t , assume tha
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where f  denotes the amplitude. 

By substituting Eq. (28) into Eq. (27), and applying the Bubnov-Galerkin method again, one 

obtains 
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where 0T  is a cycle time, 
0 2 /T   . 

By integrating and simplifying Eq. (29), one obtains 
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 (30) 
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When the wind velocity approaches a certain value (critical value), the aerodynamic force will 

equal or even exceed the sum of deadweight and inertia force of the structure. This indicates that 

the divergence instability occurs. Then the frequency of the characteristic equation of the system 

becomes zero (Kornecki et al. 1976). Therefore, the critical condition for divergence instability is 

0  . 

By substituting A, C, D and 0   into Eq. (30), we can obtain the critical wind velocity of 

divergence instability 

 
 2 2 2 2 2 2 2

0 0
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 . (31) 

If wind velocity crV V , the divergence instability will occur, whereas if wind velocity 

crV V , the structure will be stable and safe.  

The critical wind velocity of divergence instability in previous study (Zheng et al. 2011) is 
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5. Analytical examples and discussion 

 

Take a membrane material which is commonly applied in building structures as an example.  

The basic parameters are E1=1520 MPa, E2=1290 MPa, h=0.82 mm,  =1.226 kg/m
3
. Let 

/b a   (the ratio of cross-wind (y) span to along-wind (x) span), 0 0/x yN N   (the ratio of 

prestress in x-direction to y-direction). The value of 3  is obtained by numerical integration 

method (Mathematica program) when all the parameters are determined. Then the critical 

velocities will be calculated by Eqs. (31) and (32) for analyzing the effect of these parameters.  

 

5.1 Span ratio   

 

Let a =20 m, m=n=1,  =1, f =1 m, N0x =2 kN/m. Then the curves of span ratio and critical 

wind velocity are calculated by Eqs. (31) and (32) and shown in Fig. 2. The span ratio   

increased from 0.5 to 10. 

From Fig. 2, we can see that the critical wind velocities of the two conditions all decrease 

gradually. When 1  , the critical wind velocities decrease sharply, and when 1  , the critical 

wind velocities decrease gently in general. When 1  , the critical wind velocities of Eq. (31) of 

the two conditions are equal to 51.04 m/s; and the critical wind velocities of Eq. (32) of the two 

conditions are equal and equal to 38.04 m/s.  

From Fig. 2, we can also conclude that: when 1  , a greater critical wind velocity crV  can 

be obtained if the smaller modulus is arranged in the along-wind direction (
1 2E E ), and the 
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smaller   is, the greater crV  is. The situation is just right opposite when 1  , namely, a 

greater critical wind velocity crV  can be obtained if the greater modulus is arranged in the 

along-wind direction (
1 2E E ). In addition, the critical wind velocity values that calculated by Eq. 

(31) are all greater than the corresponding results that calculated by Eq. (32), and the relative 

differences between them decreases with increasing of the span ratio λ. When λ=0.5, the relative 

differences are 34.84% (condition 1) and 35.67% (condition 2); and when λ=10, the relative 

differences are 26.14% (condition 1) and 24.50% (condition 2). 

 

 

 

 
(a) Higher modulus in the x (along-wind) direction (condition 1) 

 
(b) Lower modulus in the x (along-wind) direction (condition 2) 

Fig. 2. Curves of span ratio λ and critical wind velocity Vcr 
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Fig. 3 Curves of along-wind span a and critical wind velocity Vcr 

 
 
5.2 Along-wind span a  

 

Let m=n=1, γ =1, f =1 m, N0x=2 kN/m, and  0.5, 1, 2. Then the curves of along-wind span 

and critical wind velocity are calculated by Eqs. (31) and (32) and shown in Fig. 3. 

From Fig. 3, at different  , all the critical wind velocities that calculated by Eqs. (31) and (32) 

decrease gradually with the increasing of span a. They decrease sharply when 30a m  and 

decrease gently when a > 30 m. This shows that the span size should not be taken too large in the 

design, thus to prevent it from being destroyed in the wind. In addition, the critical wind velocity 

values calculated by Eq. (31) are all greater than the corresponding results calculated by Eq. (32). 

Meanwhile, the differences between them decrease with the increasing of the span a and the span 

ratio  . 

 

5.3 Pretension 0xN  

 

Let m=n=1, γ =1, K=1 m, a=20 m, and  0.5, 1, 2. Then the curves of pretension 0xN  and 

critical wind velocity are calculated by Eqs. (31) and (32) and shown in Fig. 4. 

From Fig. 4, we can see that all the critical wind velocities that calculated by Eqs. (31) and (32) 

increase gradually with increasing of pretension 0xN , and all of them present weak nonlinearity 

in general. This shows that we should apply a certain pretension to membrane structures and 

reinforce the structure in time after the relaxation of the membrane in engineering practices to 

grantee the safety of the structure. In addition, the critical wind velocities calculated by Eq. (31) 

are all greater than the corresponding results that calculated by Eq. (32); and the relative 

differences between them decrease with increasing of λ.  
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Fig. 4 Curves of pretension N0x and critical wind velocity Vcr 

 

 

 

Fig. 5 Curves of N0x-to-N0y ratio   and critical wind velocity Vcr 

 
 

5.4 N0x-to-N0y ratio  

 

Let m=n=1, K=1 m, a=20 m, N0x=2 kN/m and   0.5, 1, 2. The curves of N0x-to-N0y 

ratio and critical wind velocity are calculated by Eqs. (31) and (32) and shown in Fig. 5. 

Form Fig. 5, we can see that all the critical wind velocities that calculated by Eqs. (31) and (32) 

decrease with increasing of N0x-to-N0y ratio   when N0x keeps constant, and all of them present 

strong nonlinearity in general. The critical wind velocities decrease sharply when  <1, and 
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decrease gently when  >1. This shows that the critical wind velocity will decrease with 

decreasing of N0y when N0x keeps constant. In addition, the critical wind velocity values that 

calculated by Eq. (31) are all greater than the corresponding results that calculated by Eq. (32); and 

the relative differences between them increase with increasing of  .  

 

5.5 Amplitude f 

 

Let m=n=1, γ=1, a=20 m, N0x=2 kN/m and  0.5, 1, 2. The curves of the amplitude f and 

critical wind velocity are calculated by Eqs. (31) and (32) and shown in Fig. 6. 

Form Fig. 6, we can see that all the critical wind velocities that calculated by Eqs. (31) and (32) 

increase with increasing of amplitude f. When 0f  , crV  is equal to the results based on the 

small amplitude (linear) theory. In addition, the critical wind velocity values that calculated by Eq. 

(31) are all greater than the corresponding results that calculated by Eq. (32); and the relative 

differences between them increase with increasing of f.  

 

5.6 Mode shapes in terms of orders ,  m n  

 

Let γ=1, a=20 m, f =1 m, N0x=2 kN/m and  0.25, 0.5, 1, 2, 4. The critical wind velocities 

with different orders are shown in Table 1. 

From Table 1, we can see that span ratio 1   triggers higher-order instability mode along x 

direction (m>n=1); and the smaller   is, the higher order (m) the instability will occur on. In 

opposite, span ratio 1   triggers lower-order instability both in x and y directions (m = n =1). 

In addition, in Table 1, the critical wind velocity values that calculated by Eq. (31) are all greater 

than the corresponding results that calculated by Eq. (32); and the relative differences between 

them grow with increasing of orders. 

 

 

 

Fig. 6 Curves of amplitude K and critical wind velocity Vcr 
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Table 1 Critical wind velocity Vcr of different orders 

Order m=1,n=1 m=2,n=1 m=3,n=1 m=1,n=2 m=1,n=3 m=2,n=2 m=3,n=3 

λ=0.25 595.024 

(355.28) 

351.806 

(210.72) 

294.336 

(176.162) 

3769.1 

(2194.66) 

10060.6 

(5830.47) 

1889.64 

(1100.68) 

3504.18 

(2031.19) 

λ=0.5 139.76 

(91.0687) 

115.002 

(73.4078) 

154.072 

(94.12) 

703.017 

(419.761) 

1863.45 

(1092.21) 

383.831 

(229.901) 

706.079 

(414.654) 

λ=1 50.7397 

(37.8223) 

81.0667 

(52.147) 

138.356 

(84.0435) 

152.009 

(99.0505) 

371.835 

(227.638) 

119.715 

(76.4159) 

214.071 

(129.94) 

λ=2 36.5098 

(27.5547) 

76.2041 

(48.559) 

132.916 

(80.4944) 

52.5073 

(39.1398) 

90.7771 

(62.9378) 

82.5572 

(53.1058) 

145.179 

(88.5064) 

λ=4 33.961 

(25.2431) 

75.5349 

(47.9736) 

133.344 

(80.6845) 

36.9687 

(27.901) 

44.1043 

(33.4516) 

77.1299 

(49.1489) 

133.529 

(80.9736) 

Annotation:   

(1) Values without brackets are calculated by Eq. (31); values in brackets are calculated by Eq. (32); 

(2) The underlined and bold values represent critical instability modes triggered by the wind load. 

 

 

6. Conclusions 
 

The nonlinear aerodynamic stability of plane orthotropic membrane structure was studied by 

the analytical method. The critical velocity formula (31) was obtained considering the two 

characteristics of orthotropy and geometric nonlinearity. Comparing with formula (32), the effects 

of parameters were analyzed. The main conclusions are summarized as follows:  

  The span and span ratio λ of the plane membrane structure have a remarkable effect on the 

critical wind velocity. Generally, the critical wind velocity decrease with increasing of span, and 

the more different between the two span sizes (a and b) are, the greater the critical wind velocity is. 

Additionally, it has positive significance to arrange the membrane’s warp and weft rationally 

according to the local wind regime to prevent instability of the plane membrane structure.  

  The pretension and amplitude will also affect the critical wind velocity. The critical wind 

velocity grows with the increase of pretension and amplitude. Meanwhile, the stress increment, 

which is acquired from the geometric nonlinearity, can improve the lateral stiffness and enhance 

the aerodynamic stability of structures. 

  Different mode shapes represented by the order number m and n exhibit different critical 

wind velocities. Generally, higher-order divergence instability occurs when the span ratio 1  ; 

and lowest-order (m=n=1) divergence instability occurs when the span ratio 1  . 

  The critical wind velocities calculated by Eq. (31) are all greater than the corresponding 

results calculated by Eq. (32). This is because Eq. (31) is derived based on the stress function that 

fully satisfies the stress boundary conditions, but the stress function that result in Eq. (32) did not 

fully satisfy the stress boundary conditions. Therefore, Eq. (31) is more accurate.  
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In summary, the critical wind velocity formula (31) obtained in this paper provides a more 

accurate theoretical foundation for the aerodynamic stability of plane membrane structures. 

Meanwhile, we should comprehensively consider the effects of various factors on the design of 

membrane structures.   
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