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Abstract.  The effects of finite cylinder free end shape on the mean and fluctuating wind pressures were 
investigated experimentally and numerically by using three different roof shapes: flat, conical and 
hemispherical. The pressure distributions on the roofs and the side walls of the finite cylinders partially 
immersed in a simulated atmospheric boundary layer have been obtained for three different roof shapes. 
Realizable k-ε turbulence model was used for numerical simulations. Change in roof shapes has caused 
significant differences on the pressure distributions. When compared the pressure distributions on the 
different roofs, it is seen from the results that hemispherical roof has the most critical pressure field among 
the others. It is found a good agreement between numerical and experimental results. 
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1. Introduction 
 

The roofs of finite cylindrical buildings such as tall buildings, gymnasiums and hangars are 

built in different geometries due to their attractive architectural shapes. Many high-rise buildings 

are structured as a finite cylinder with a free end. Pressure distribution on the free end of finite 

cylinder has been affected from the roof shape. For this reason, the evaluation of the pressure 

distribution on the different roof geometries is very important for wind engineering applications.  

There are some studies about the pressure distributions on flat, conical and hemispherical roofs 

of cylindrical buildings in literature. Purdy, Maher et al. (1967) obtained pressure distributions on 

the cylinders with a flat roof. Farivar (1981) investigated the effect of finite cylinder free end on 

the mean pressure, pressure fluctuations and drag force. Okamoto and Sunabashiri (1992) found 

that the wake behind finite cylinder of small aspect ratio is symmetric. Kareem and Cheng (1999) 

experimentally obtained mean and fluctuating pressure distributions on a cylinder of finite height 

in simulated turbulent boundary layer flows at subcritical Reynolds numbers. Uematsu, Watanabe 

et al. (1999) presented the results of a wind pressure measurement in a wind tunnel as well as of a 

dynamic-response analysis of a circular flat roof. The results indicated that a gust loading factor 

approach can be applied to the evaluation of the design wind loads for the structural frame of 
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circular flat roofs. 

Kitagawa, Fujino et al. (2002) measured wind pressure acting on a rigid circular tower and 

studied the characteristics of the pressures originated tip-associated vortices. Park and Lee (2002) 

investigated the wake structure behind an isolated finite cylinder embedded in various atmospheric 

boundary layers with the measurements of wake velocity and mean pressure distribution on the 

cylinder surfaces. Park and Lee (2003) examined the effect of the gap distance between two finite 

cylinders embedded in atmospheric boundary layer on the flow characteristics of the near-wake 

and elucidated the flow structure near the finite cylinder free end in detail. Pattenden, Turnock et 

al. (2005) studied the flow over a finite-height cylinder of aspect ratio 1 by means of surface flow 

visualization, particle image velocimetry and surface pressure measurements. Sumner and 

Heseltine (2008) studied the wake of a finite circular cylinder mounted normal to a ground plane 

in a low-speed wind tunnel experimentally. Uematsu, Moteki et al. (2008) investigated the 

characteristics of wind pressures acting on circular flat roofs with a wind tunnel experiment. Hain, 

Köhler et al. (2008) performed tomographic and time resolved PIV measurements to examine the 

3D flow topology and the flow dynamic above the upper surface of a low-aspect ratio cylinder. 

Dobriloff and Nitshe (2009) conducted the surface pressure and wall shear stress measurements on 

a finite wall mounted circular cylinder and in the vicinity of cylinder. 

Sabransky and Melbourne (1987) obtained wind pressure distributions on the circular 

cylindrical walls and conical roofs of typical grain storage silos. Macdonald, Kwok et al. (1988) 

obtained wind pressures on tanks with a conical roof. A comprehensive study of the aerodynamic 

pressure distribution on hemispherical domes including the determination of the mean, standard 

deviation, minimum and maximum and area average pressure coefficients is conducted by Taylor 

(1991). Hongo (1995) made a detailed measurements of wind pressures on spherical domes with 

rise/span ratios ranging from zero (flat roof) to 0.5 (hemisphere) in a wind tunnel. Maher (1996) 

performed a wind tunnel study on cylindrical tanks with spherical roofs. Leder (2003) measured 

the wake behind a cylinder of aspect ratio 2, with two different end shapes flat and hemispherical 

and showed that change in end shape cause change in vorticity. Blackmore, Tsorki et al. (2004) 

investigated the wind loads on the cylindrical and curved roofed buildings to provide architects 

and designers with an alternative to regular rectangular building forms. Park and Lee (2004) 

studied flow structure near the various free ends of the finite cylinder immersed in an atmospheric 

boundary layer. They systematically varied the free-end corner shape and carried out flow analysis 

using the PIV technique, flow visualization and hot-wire anemometry. Portela and Godoy (2005a) 

conducted wind tunnel experiments using finite cylindrical model with a conical roof and obtained 

pressure distributions due to wind on the cylindrical part and on the roof. They concluded that 

conical roofs are responsible for an increase in pressures on the central part of the roof. Portela and 

Godoy (2005b) obtained pressure distributions on the cylindrical steel tanks with a dome roof. 

They noted that the details of the geometric transition between the cylindrical body and the roof 

are crucial in the evaluation of pressures on the roof, since this transition changes the main features 

of the flow separation. Li, Tamura et al. (2006) obtained wind pressure distributions on cylindrical 

shells considering different aspect ratios in the wind tunnel models. Cheng and Fu (2010) 

performed a series of pressure measurements on a hemispherical dome to investigate Reynolds 

number effects on characteristics of wind loads. Wang and Lee (2015) conducted a wind tunnel 

study to measure internal and external pressures on a low-rise building model with different 

openings on its roof corners. They noted that the length of the front edge of the roof affects the 

development of conical vortices on the corner. Mooneghi, Irwin et al. (2016) performed large scale 

experiments to investigate the wind loading on concrete roof pavers on the flat roof of a low-rise 
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building. They developed a simplified guideline for design of loose-laid roof pavers against wind 

uplift. 

Fröhlich and Rodi (2004) investigated flow field around a surface mounted circular cylinder of 

height 2.5 times the diameter by using large eddy simulations method. They showed that the 

results obtained from numerical model are in fairly good agreement with measurements. Afgan, 

Moulinec et al. (2007) numerically investigated flow structure around wall mounted circular 

cylinders of finite height for different aspect ratios with large eddy simulation (LES) and then 

compared to experimental results. They found that pressure coefficient profile at mid-height of 

finite cylinder is significantly different from that of an infinite cylinder. Air flow field around a 

surface-mounted hemisphere of a fixed height for two different turbulent boundary layers are 

investigated experimentally and numerically by Tavakol, Yaghoibu et al. (2010). Faghih and 

Bahadori (2010) determined the air pressure distribution over domed roofs employing 3D RNG 

k-ε turbulence model. Krajnovic (2011) investigated the flow around a tall fine cylinder using LES. 

The flow resulting from the LES was used to present a detailed picture of both the instantaneous 

and the time-averaged flow. Turbulent flow over a wall mounted finite cylinder with free end was 

simulated with LES by Javadi and Kinai (2014). 

Conical and spherical roofed buildings are increasingly used in the modern built environment 

because they offer aerodynamically efficient shapes and provide architects and designers with an 

alternative to regular rectangular building forms. The determination of wind induced loads on flat, 

conical and spherical roofs of finite cylinders is essential to the design of these roofs knowledge of 

the effects of architectural details on these loads is also of interest. It is of importance to define 

both the location and magnitude of these suctions. There is little information available on the wind 

loads on these kinds of roofs. The purpose of this study is to examine the distributions of wind 

loads on flat, conical and spherical roofs of finite cylinders and reveal the changes in pressure 

distribution on these roofs. For this reason, three different roof types were introduced to examine 

their influence on the distribution of pressure field. 

 

 

2. Experimental details 
 

The experiments were carried out in a low speed, open circuit wind tunnel with a test section of 

457 mm high, 457 mm wide and 2450 mm long. The combination of barrier, vortex generators and 

roughness elements at the entrance to the test section was used to simulate atmospheric boundary 

layer (power-law exponent, n=0.2) over a city suburb. Cylindrical models with different roofs were 

constructed to a geometric scale of 1:50. A turbulent boundary layer of 150 mm thickness was 

obtained at the free stream velocity of 15 m/s, giving a Reynolds number based on cylinder 

diameter of Re=100000. A schematic diagram of the wind tunnel test-section and the measurement 

system is given in Fig. 1. δ and H represent the boundary layer thickness and characteristic height 

of model, respectively. A smoke-wire technique is used to visualize the flow structure around 

models. A 0.2 mm diameter stainless steel wire is vertically located at the entrance of test section. 

Before each test the smoke-wire was coated by paraffin oil and then heated by Joule effect of DC 

current. The flow pattern visualized is photographed successively by a video camera. Flow 

visualization is performed at Re=20000 since this technique is limited to the small Reynolds 

numbers. 

The mean and fluctuating surface pressure measurements were conducted with a measurement 

chain system consisting of the components of signal conditional module, Setra 239 pressure 
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transducer, A/D converter, package and computer. The output of the pressure transducer was fed 

through a signal conditioning unit before being digitized and recorded. The signals from the 

transducer are sampled at a rate of 1000 samples per second for a period of 16 s and data were 

low-pass filtered at 300 Hz. Measurements have been performed at the spacing of 15° wind angle 

along the mid-axis of the model. The mean and fluctuating velocity measurements at the reference 

boundary layer were performed with TSI IFA 100 constant-temperature anemometer and TSI 

model 1211 hot-film probe. 

The cylindrical models having different roof shapes and the distribution of the pressure 

measurement taps on their surfaces are shown in Fig. 2. The models used in this study were made 

of polyvinyl chloride. The dimensions of cylindrical part of the models were H=150 mm, D=100 

mm. H represent model height and D is the model diameter for cylindrical part. Heights of conical 

and hemispherical roofs are the same as 50 mm. Roof and wall pressures were measured for 

cylindrical building models having flat, conical and hemispherical roof shapes. To obtain the 

surface pressure distributions, 16 pressure taps of 0.8 mm inner diameters were placed on the roof 

and the side wall of cylinder and the models were rotated from 0° to 180° in 15° increments in a 

counter clockwise direction (θ) as incoming flow. A scanning valve was used to supply linkage 

from pressure taps to pressure transducer. All pressure taps were connected to a scanning valve 

using 60 cm lengths of vinyl tubing with 1 mm inside diameter. The pressure difference between 

the local surface pressure (P) and the static pressure (Po) was divided by the reference dynamic 

pressure at a equivalent height to give pressure coefficient Cp expressed as Cp=(P-Po)/0.5ρUo
2
, 

where Uo is the free-stream velocity and ρ is the air density. Ambient temperature and atmospheric 

pressure were continuously recorded during the experiments to identify changes in the air density 

which could affect the local pressures measured in the wind tunnel. The blockage ratio defined as 

the ratio of the projected model area to the cross-sectional area of test section is 9%. Correction for 

the effect of the wind tunnel blockage was made in this study. West and Apelt (1982) found that 

the surface pressure distribution of a circular cylinder varies only slightly with respect to the 

blockage ratio of the model. The uncertainties of mean and fluctuating velocity measurements are 

found as ± % 2 and ± % 4, respectively. The uncertainties of mean and fluctuating pressure 

measurements are ± % 3 and ± % 4.5, respectively (Holman 1994). The experimental results were 

reproducible within these uncertainty ranges. 

 

 

Fig. 1 Wind tunnel test section and pressure measurement system 
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Fig. 2 Dimensions of model geometries (a) cylindirical model with a flat roof, (b) cylindirical model with 

a conical roof and (c) cylindirical model with a hemispherical roof 

 

 

3. Numerical study 
 
3.1 Mathematical model 
      

In the present study, it is assumed that the air flow is turbulent, steady-state and Newtonian 

with temperature-dependent fluid properties. A numerical solution of the mean flow field requires 

resolving the Reynolds averaged Navier-Stokes equations. These equations for three-dimensional, 

incompressible and continuity flow in Cartesian tensor form can be written as given below, 

 

mass continuity 

𝜕

𝜕𝑥𝑖

(𝜌𝑢𝑖) = 0 (1) 

momentum 

𝜕

𝜕𝑥𝑗
(𝜌𝑢𝑖𝑢𝑗) = −

𝜕𝑃

𝜕𝑥𝑖
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𝜕

𝜕𝑥𝑗
*𝜇 (

𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
−

2

3
𝛿𝑖𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗
)+ +

𝜕

𝜕𝑥𝑗
(−𝜌𝑢𝑖

′𝑢𝑗
′̅̅ ̅̅ ̅̅ ) (2) 

where, the term (−𝜌𝑢𝑖
′𝑢𝑗

′̅̅ ̅̅ ̅̅ ) is the Reynolds stress, defined as 
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−𝜌𝑢𝑖
′𝑢𝑗

′̅̅ ̅̅ ̅̅ = 𝜇𝑡 (
𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
) −

2

3
(𝜌𝑘 + 𝜇𝑡

𝜕𝑢𝑖

𝜕𝑥𝑖
) 𝛿𝑖𝑗 (3) 

Numerical solutions are performed by using Realizable k-ε turbulence model because of 

capturing the near-wall turbulence effects more accurately. This turbulence model is more 

responsive to the effects of rapid strain and streamlines curvature, flow separation, reattachment 

and recirculation. This model consists of two transport equations which solve the turbulent kinetic 

energy (k) and turbulent dissipation rate (ε). The transport equations are as follows 

𝜕

𝜕𝑥𝑖
(𝜌𝑘𝑢𝑗) =

𝜕

𝜕𝑥𝑖
*(𝜇 +

𝜇𝑡

𝜎𝑘
)

𝜕𝑘

𝜕𝑥𝑗
+ + 𝐺𝑘 + 𝐺𝑏 − 𝜌휀 − 𝑌𝑀 + 𝑆𝑘 (4) 

𝜕

𝜕𝑥𝑗
(𝜌휀𝑢𝑗) =

𝜕

𝜕𝑥𝑗
*(𝜇 +

𝜇𝑡

𝜎𝜀
)

𝜕휀

𝜕𝑥𝑗
+ + 𝜌𝐶1𝑆𝜀 − 𝜌𝐶2

휀2

𝑘 + √𝜈휀
+ 𝐶1𝜀

휀

𝑘
𝐶3𝜀𝐺𝑏 + 𝑆𝜀 (5) 

where 𝐺𝑘 is the production of turbulent kinetic energy due to the mean velocity gradients, 𝐺𝑏 

represents the generation of the turbulent kinetic energy due to buoyancy while 𝑌𝑀 is referred to 

the fluctuation rates related to the overall dissipated turbulent thermal energy. 𝜎𝑘  and 𝜎𝜀  

represent the turbulent Prandtl numbers based on 𝑘 and 휀, respectively; while 𝑆𝑘 and 𝑆𝜀 are 

further generation terms. The turbulent viscosity is defined by 

𝜇𝑡 = 𝜌𝐶𝜇

𝑘2

휀
 (6) 

The model constants for the Realizable k-ε model are given by:  

𝐶1𝜀 = 1.44,   𝐶2 = 1.9,   𝜎𝑘 = 1.0 𝑎𝑛𝑑  𝜎𝜀 = 1.2.   𝐶𝜇 is no longer a constant in this model. 

 

3.2 Flow field and boundary conditions 
 

A schematic of computational domain is shown in Fig. 3 where the flow field, the main 

dimensions and the prescribed boundary conditions are specified. Only half of the models was 

used for simulation because of symmetry. Therefore, the boundary condition of one lateral surface 

is symmetrical. The boundary conditions on the models surfaces and the other lateral surfaces were 

considered as wall. No slip assumption used for wall shear condition. The mean velocity and 

turbulence profiles measured at reference boundary layer were used as velocity inlet conditions of 

computational domain and pressure outlet boundary conditions were assumed at outlet planes. 

 

3.3 Numerical solution procedure 
 

The governing equations were solved using the ANSYS-FLUENT 14, by finite volume 

discretization, using a segregated solver with an implicit formulation. The discretized equations for 

the pressure-velocity coupling were solved by using the SIMPLEC algorithm on staggered grids. 

SIMPLEC procedure uses modified equation for face flux correction. The use of modified 

correction equation accelerates convergence. Pressure was solved using standard discretization 

scheme. A second order discretization method was used for the other variables (momentum, 

turbulent kinetic energy and turbulence dissipation rate). Second order discretization scheme 

presents higher-order accuracy especially for complex flows involving separation. Enhancement 
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wall treatment was used as wall function to obtain reasonably accurate predictions near the wall. 

The convergence criterion for the residuals was set to 1x10
-5

 for all dependent variables. Vertical 

slices of the three dimensional meshes near the cylindrical buildings having different roof types 

are shown in Fig. 4. Non-uniform structured grid is used to discretize the governing equations. To 

ensure the attainment of grid-independent results, sensitivities of both grid numbers and grid 

distributions were tested for each case. The mesh used was refined for each model until negligible 

differences were obtained. Finally, total number of 700000 grid cells were used to obtain grid 

independent results for the building models.  

 

 

4. Result and discussion 
 

The mean velocity and turbulence intensity profiles of the stream wise velocity component 

measured at the reference boundary layer are shown in Fig. 5. It is seen that mean velocity profile 

in the reference boundary layer agrees well with power law of n=0.2 and the turbulence intensity 

near the wall reaches up to 11%. 

 

 

 

Fig. 3 Dimensions of the solution domain, and the boundary conditions 

 

 

   
(a) (b) (c) 

Fig. 4 A vertical slice of the three dimensional mesh near the cylindrical building. (a) with flat roof, (b) 

with conical roof and (c) with hemispherical roof 
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Fig. 5 Profiles of mean velocity and turbulence intensity 

 

 

Flow patterns around cylindrical buildings having different roof shapes obtained with 

smoke-wire technique and Realizable k-ε turbulence model are given together in Fig. 6. In general, 

flow images obtained by numerical solutions are coherent with the photographs of flow 

visualization. Incoming flow to the flat roof is separated from the leading edge of the model and 

mixing layer is descended to the leeward edge of the model. Two reverse flow regions occur both 

on the flat roof and the rear of the model along the flow (Figs. 6(a) and 6(d)). For the building 

model having conical roof, the flow attaches to the windward roof and a recirculation region 

occurs behind of the model because of flow separated from tip of the conical roof. Formed and 

separated vortex stemmed from reverse flow are spread through the rear of the model along the 

flow. Complex recirculation regions are observed behind of the model because of the roof shape 

(Figs. 6(b) and 6(e)). For the model with hemi-spherical roof, incoming flow follows the model 

surface and separates from the top of the dome (Fig. 6(c) and 6(f)). 

The resulting data consists of mean, maximum, minimum and root-mean-square (rms) values of 

the surface pressure which have been normalized by the free stream mean dynamic pressure. The 

variations of mean, maximum, minimum and rms values of pressure coefficients along the 

mid-axis of finite cylinder model having flat roof are given as comparatively with measurements 

of Uematsu, Moteki et al. (2008) and with the mean pressure coefficients computed from 

Realizable k-ε turbulence model in Fig. 7. Pressure distribution on the windward wall is positive 

due to impinging effect. Negative pressure fields occur both on the roof and leeward wall of the 

cylinder because of flow separated from the leading edge of the roof. 
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(a) (d) 

  
(b) (e) 

  
(c) (f) 

Fig. 6 Flow patterns around cylindrical buildings obtained with smoke-wire technique and Realizable k-ε 

turbulence model (a),(d) with flat roof, (b),(e), with conical roof, (c),(f) with hemispherical roof 

 

 

The flow separated from the leading edge of circular flat roof reattaches downstream on the 

roof and then separates again from the leeward edge of roof. The largest negative pressures occur 

in separation flow region near the leading edge of the roof and are progressively reduced in 

magnitude in the reattachment region on the roof surface. Pressure distribution along the leeward 

wall is almost uniform and is under the atmospheric pressure. It is seen that there is a good 

accordance among the measured and computed mean pressure distributions of present study and 

Uematsu, Moteki et al. (2008) measurements. Fig. 8 show the mean and minimum pressure 

distributions obtained experimentally and mean pressure distribution computed with Realizable 
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k-ε turbulence model on the circular flat roof and cylinder surface. Fig. 8(a) shows the contours 

with mean pressure coefficients experimentally obtained for the flat roof of finite cylinder. There is 

symmetry of the pressures measured on the roof with respect to the windward meridian. It can be 

seen that the contour lines are roughly perpendicular to the wind direction, expect in the leeward 

edge of the roof where a three-dimensional effect becomes significant. Only negative values were 

observed on the roof, which represents suctions or pressures exerted in an outward direction. 

Critical negative pressures were obtained on the windward part of the roof. The highest suction 

was measured on the windward region of the circular roof with Cpmean = -1.20, as an approximate 

value of Cpmean = - 0.30 was obtained at the leeward region of the roof. Contours of mean wind 

pressure coefficients obtained experimentally were plotted along the circumference of the cylinder 

and are shown in Fig. 8(b). The positive pressure coefficients were obtained on the windward 

meridian, while the critical negative suctions were found at an angle near to 80° from windward. 

Due to the accelerating flow around the finite cylinder, the mean pressure coefficients decreases 

from 0.30 to -1.10 for cylinder angles of θ = 0° and 80° and the flow separates from the cylinder 

surface around θ = 80°. 

The critical values were measured between 20% and 80% of the height of the model. The pressure 

coefficients measured at the leeward meridian on the top of the cylinder are similar to those 

measured in the leeward region of the roof. The measured pressures increase with minimum 

pressure coefficients of Cpmin = -1.50 to -0.50 on the circular flat roof from the windward region to 

leeward region as seen in Fig. 8(c). Critical minimum suctions measured on the circular flat roof 

and cylinder surface are 20% higher than mean pressure coefficients (Figs. 8(c) and 8(d)). There is 

a good agreement between the mean pressure distributions obtained experimentally and 

numerically (Fig. 8(e) and 8(f)). 

Fig. 9 gives the variations of mean, maximum, minimum and rms values of pressure 

coefficients along the mid-axis on the conical roof of finite cylinder as comparatively with the 

mean pressure coefficients computed with Realizable k-ε turbulence model. Pressure coefficients 

take positive values on a big part of the windward roof. The negative pressure peak occurs in the 

separated flow region near the tip of the conical roof and are progressively reduced in magnitude 

on the leeward roof. Mean pressure coefficients computed numerically have the same trend with 

the experimental results. 

 

 

Fig. 7 Variation of pressure coefficients along the mid-axis of cylindirical model with flat roof in the flow 

direction 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Fig. 8 Contour of mean and minimum pressure coefficients in the cylindirical model with a flat roof (a), 

(c), (e) roof (b), (d), (f) cylinder 

 

 

Fig. 10 shows contours of mean and minimum pressure coefficients obtained experimentally 

and mean pressure coefficients computed with Realizable k-ε turbulence model on the conical roof 

respectively. There is symmetry of the pressures measured on the roof with respect to the 

windward meridian. Except the front part of the windward which is directly exposed to incoming 

flow, negative pressures were observed on the roof. Critical negative pressures were obtained on 
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the roof regions (at θ=90° and θ=270°) which are perpendicular to the incoming flow. At this 

regions, high negative values are expected due to separation of flow induced by the sudden change 

in the meridian between the cylinder wall and the roof surface (Portela and Godoy 2005a). The 

highest suction was measured on the roof regions normal to the flow with Cpmean = -0.80, as an 

approximate value of Cpmean = 0.10 was obtained at the windward region of the roof (Fig. 10(a)). 

The measured pressures increase with minimum pressure coefficients of Cpmin = -1.10 to -0.10 on 

the conical roof from the leeward region to windward region (Fig. 10(b)). Computed mean 

pressure distribution on the conical roof shows a good accordance with mean pressure distribution 

obtained experimentally (Fig. 10(c)). 

Fig. 11 shows the variations of mean, maximum, minimum and rms values of pressure 

coefficients along the mid-axis on the hemispherical roof of finite cylinder as comparatively with 

the mean pressure coefficients computed with Realizable k-ε turbulence model. Except the small 

part of the windward roof, pressure coefficients take negative values on the hemispherical roof. 

The negative pressure peak occurs on the top of the dome because of the separated flow and are 

progressively reduced in magnitude on the leeward roof. Mean pressure coefficients obtained 

numerically give a good agreement with mean pressure coefficients obtained experimentally. 

Contours of mean and minimum pressure coefficients obtained experimentally and mean 

pressure coefficients computed with Realizable k-ε turbulence model on the hemispherical roof are 

shown in Fig. 12. There is symmetry of the pressures measured on the roof with respect to the 

windward meridian. Except the small part of the windward which is directly exposed to incoming 

flow, negative pressures were observed on the roof. Similar to the results of conical roof, critical 

negative pressures were obtained on the roof regions (at θ=90° and θ=270°) which are 

perpendicular to the incoming flow. Portela and Godoy (2005b) and Cheng and Fu (2010) also 

found the values similar to those of the present study on the hemispherical roof. The highest 

suction was measured on the roof regions perpendicular to the incoming flow with Cpmean = -1.10, 

as an approximate value of Cpmean = 0.10 was obtained at the windward region of the roof (Fig. 

12(a)). The measured pressures increase with minimum pressure coefficients of Cpmin = -1.70 to 

0.20 on the conical roof from the leeward region to windward region (Fig. 12(b)). Computed mean 

pressure distribution on the hemispherical roof shows a good accordance with mean pressure 

distribution obtained experimentally (Fig. 12(c)). 

 

 

Fig. 9 Variation of pressure coefficients along the mid-axis of conical roof in the flow direction 
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(a) (b) 

 
(c) 

Fig. 10 Contour of pressure coefficients on conical roof  (a) mean (experimental), (b) minimum 

(experimental) and (c) mean (numerical) 

 

 

 

Fig. 11 Variation of pressure coefficients along the mid-axis of hemispherical roof in the flow direction 
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Although not shown, the pressure patterns on the cylindrical wall for conical and hemispherical 

roofs do not present any changes unlike the differences between pressure distributions found on 

the different roofs of finite cylinder. 

The variations of mean and minimum pressure coefficients measured on the three different roof 

shapes (flat, conical and hemispherical) along the mid-axis of finite cylinder are presented in Fig. 

13. Only negative pressure values were observed on the circular flat roof. Because of the flow 

separated from the leading edge, more critical negative pressures occur on the windward part of 

the flat roof. 

For the conical roof, there are positive pressure coefficients on a large part of the windward roof. 

The negative pressure peak occurs in the separated flow region near the tip of the conical roof and 

are reduced in magnitude on the leeward roof. Except the small part of the windward roof, 

pressure coefficients take negative values on the hemispherical roof. The negative pressure peak 

occurs on the top of the dome because of the separated flow and are progressively reduced in 

magnitude on the leeward roof. 

 

 

  
(a) (b) 

 
(c) 

Fig. 12 Contour of pressure coefficients on semi-spherical roof (a) mean (experimental), (b) minimum 

(experimental) and (c) mean (numerical) 
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(a) 

 
(b) 

Fig. 13 Comparison of pressure distributions along the mid-axis of various roof geometries in the flow 

direction (a) mean (b) minimum 

 

 

5. Conclusions 
 

In this study, the effects of finite cylinder free end shape were investigated experimentally and 

numerically by using three different roof shapes: flat, conical and hemispherical. In the 

experimental part, mean, rms, maximum and minimum values of surface pressures on the roof and 

on the cylindrical wall were measured for three finite cylinder models having different roof shapes. 

In the numerical part, three dimensional flow fields around the same building models were 

computed by using Realizable k-ε turbulence model. Pressure distributions on the windward walls 

are positive due to impinging effect. Negative pressure fields occur both on the roof and leeward 

wall for the finite cylinder of flat roof. The largest negative pressures occur in separation flow 

region near the leading edge of the roof and are progressively reduced in magnitude in the 

reattachment region on the flat roof surface. There is symmetry of the pressures measured on the 
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roofs with respect to the windward meridian. For the conical roof, except the front part of the 

windward which is directly exposed to incoming flow, negative pressures were observed on the 

roof. More critical negative pressures are obtained on the roof regions perpendicular to the 

incoming flow because of the separated flow near the tip of the conical roof. For the hemispherical 

roof, similar to the conical roof, critical negative pressures occur on the roof regions normal to the 

incoming flow. The evaluation of pressure distributions on the three different roof shape shows 

that the largest negative pressure peak occurs on the top of hemispherical roof. Pressure 

distributions on both conical and hemispherical roofs have similar trend.  Change in roof shapes 

causes significant differences on the pressure distributions.  When compared the pressure 

distributions on roofs, it is seen that hemispherical roof has the most critical pressure field among 

the others. For all simulations, mean pressure coefficients computed Realizable k-ε turbulence 

model exhibit a good accordance with mean pressure coefficients obtained experimentally. It is 

noted that this turbulence model gives satisfactory results for prediction of these kinds of flow 

fields. It is hoped that this study would provide data for the further researches on this subject. 
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