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Abstract. The response of functionally graded ceramic-metal plates is investigated using theoretical 
formulation, Navier's solutions, and a new displacement based on the high-order shear deformation theory 
are presented for static analysis of functionally graded plates. The theory accounts for a quadratic variation 
of the transverse shear strains across the thickness, and satisfies the zero traction boundary conditions on the 
top and bottom surfaces of the plate without using shear correction factors. The plates are assumed to have 
isotropic, two-constituent material distribution through the thickness, and the modulus of elasticity of the 
plate is assumed to vary according to a power-law distribution in terms of the volume fractions of the 
constituents. Numerical results of the new refined plate theory are presented to show the effect of the 
material distribution on the deflections, stresses and fundamental frequencies. It can be concluded that the 
proposed theory is accurate and simple in solving the static and free vibration behavior of functionally 
graded plates. 
 

Keywords:  theoretical formulation; Navier's solutions; FGM plate; static 

 
 
1. Introduction 
 

Functionally graded materials (FGMs) are a class of composites that have a continuous 

variation of aterial properties from one surface to another. These materials can be fabricated by 

varying the percentage content of two or more materials such that the new materials have the 

desired property gradation in spatial directions. The gradation in the properties of the materials 

reduces thermal stresses, residual stresses and stress concentration factors found in laminated 

composites. FGMs have gained widespread applicability as thermal barrier structures, wear- and 

corrosion-resistant coatings other than joining dissimilar materials. They are usually made from a 

mixture of ceramics and metals to attain the significant requirement of material properties. 

Due to the increased relevance of the FGMs structural components in the design of engineering 

structures, many studies have been reported on the static, and vibration analyses of functionally 

graded (FG) plates. Fekrar, El Meiche et al. (2012) analyzed the buckling response of FG hybrid 

composite plates using a new four variable refined plate theory. Bouremana, Benrahou et al. (2013) 
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proposed a novel first shear deformation beam theory based on neutral surface position for FG 

beams. Mantari and Guedes Soares (2012) studied the bending analysis of thick exponentially 

graded plates using a new trigonometric higher order shear deformation theory. Tai and Kim 

(2013a) used a simple quasi-3D sinusoidal shear deformation theory for functionally graded plates. 

Tai and Kim (2013b) proposed a simple higher-order shear deformation theory for bending and 

free vibration analysis of functionally graded plates. Zhang (2013) studied the modeling and 

analysis of FGM rectangular plates based on physical neutral surface and high order shear 

deformation theory. Prakash, Singha et al. (2009) studied the Influence of neutral surface position 

on the nonlinear stability behavior of functionally graded plates. Belabed, Houari et al. (2014) 

used an efficient and simple higher order shear and normal deformation theory for functionally 

graded material (FGM) plates. Tai, Nguyen et al. (2014) studied the analysis of functionally 

graded sandwich plates using a new first-order shear deformation theory. Chen, Yang et al. (2016) 

studied the free and forced vibrations of shear deformable functionally graded porous beams. Sina, 

Navazi et al. (2009) investgated an analytical method for free vibration analysis of functionally 

graded beams. Xiang and Yang (2008) analyzed the free and forced vibration of a laminated FGM 

Timoshenko beam of variable thickness under heat conduction. Kocatürk and Akbaş (2013) 

studied the thermal post-buckling analysis of functionally graded beams with 

temperature-dependent physical properties. Al-Basyouni, Tounsi et al. (2015) investigated size 

dependent bending and vibration analysis of functionally graded micro beams based on modified 

couple stress theory and neutral surface position. Tai et al. (2012) studied the bending and free 

vibration of functionally graded beams using various higher-order shear deformation beam 

theories. Bourada, Kaci et al. (2015) used a new simple shear and normal deformations theory for 

functionally graded beams. Hebali, Tounsi et al. (2014) studied the static and free vibration 

analysis of functionally graded plates using a new quasi-3D hyperbolic shear deformation theory. 

Ait Yahia, Ait Atmane et al. (2015) analyzed the wave propagation in functionally graded plates 

with porosities. Bennoun, Houari et al. (2016) analyzed the vibration of functionally graded 

sandwich plates using a novel five variable refined plate theory. Ait Amar Meziane, Abdelaziz et al. 

(2014) proposed an efficient and simple refined theory for buckling and free vibration of 

exponentially graded sandwich plates under various boundary conditions. Mahi, Adda Bedia et al. 

(2015) studied the bending and free vibration analysis of isotropic, functionally graded, sandwich 

and laminated composite plates using a new hyperbolic shear deformation theory. Bousahla, 

Houari et al. (2014) investigated a novel higher order shear and normal deformation theory based 

on neutral surface position for bending analysis of advanced composite plates. Bellifa et al. (2016) 

studied the bending and free vibration analysis of functionally graded plates using a simple shear 

deformation theory and the concept the neutral surface position. Bounouara, Benrahou et al. (2014) 

studied the free vibration of functionally graded nanoscale plates resting on elastic foundation 

using a nonlocal zeroth-order shear deformation theory. Belkorissat, Houari et al. 2015) developed 

new shear deformation plates theories involving only four unknown functions. Larbi Chaht et al. 

(2015) studied the bending and buckling of functionally graded material (FGM) size-dependent 

nanoscale beams including the thickness stretching effect. Ahouel, Houari et al. (2016) 

investigated a size-dependent mechanical behavior of functionally graded trigonometric shear 

deformable nanobeams including neutral surface position concept. Zemri, Houari et al. (2015) 

proposed an assessment of a refined nonlocal shear deformation theory beam theory for a 

mechanical response of functionally graded nanoscale beam. Nedri, El Meiche et al. (2014) 

developed new shear deformation plate theorie involving only four unknown functions for free 

vibration analysis of laminated composite plates resting on elastic foundations. Tounsi, Houari et 
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al. (2013) use a refined trigonometric shear deformation theory for thermoelastic bending of 

functionally graded sandwich plates. Zidi, Tounsi et al. (2014) study hygro-thermo-mechanical 

loading for the bending of FGM plates using a four variable refined plate theory. Bouderba, Houari 

et al. (2013) studied the thermomechanical bending response of FGM thick plates resting on 

Winkler–Pasternak elastic foundations. Bouderba, Houari et al. (2016) studied the thermal stability 

of functionally graded sandwich plates using a simple shear deformation theory. Attia, Tounsi et al. 

(2015) developed the free vibration analysis of functionally graded plates with 

temperature-dependent properties using various four variable refined plate theories. 

Bakora and Tounsi (2015) investigated the thermo-mechanical post-buckling behavior of thick 

functionally graded plates resting on elastic foundations. Boukhari, Ait Atmane et al. (2016) used 

an efficient shear deformation theory for wave propagation of functionally graded material plates. 

The purpose of this study is to develop a shear deformation plate theory for FG plates which is 

simple to use. The number of independent unknowns of present theory is four, as against five in 

other shear deformation theories. The material properties of plate are assumed to vary according to 

power law distribution of the volume fraction of the constituents whereas Poisson’s ratio is 

constant. The accuracy and convergence of the present method are demonstrated through 

numerical results. A detailed parametric study is carried out to highlight the influences of aspect 

and thickness ratios, material property graded indexes on the static of the FG plate. 

 

 

2. Theoretical formulation 
 

Consider a rectangular FGM plate having the thickness h, length a, and width b. A Cartesian 

coordinate system (x, y, z) is used to label the material point of the plate in the unstressed 

reference configuration, as depicted in Fig. 1. It is assumed that the material is isotropic and 

grading is assumed to be only through the thickness. The xy plane is taken to be the undeformed 

mid plane of the plate with the z axis positive upward from the mid plane. 

 

 
 

Fig. 1 Geometry of rectangular FG plate and coordinates 
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2.1 Basic assumptions 
 

The assumptions of the present theory are as follows: 

The displacements are small in comparison with the plate thickness and, therefore, strains 

involved are infinitesimal. 

The transverse displacement W includes two components of bending wb , and shear ws. These 

components are functions of coordinates x, y, and time t only. 

( , , ) ( , ) ( , )b sW x y z w x y w x y                         (1) 

The transverse normal stress σz is negligible in comparison with in-plane stresses σx and σy. 

The displacements U in x-direction and V in y-direction consist of extension, bending, and 

shear components 

sb uuuU  ,  sb vvvV                     (2) 

The bending components ub and vb are assumed to be similar to the displacements given by the 

classical plate theory. Therefore, the expression for ub and vb can be given as 

b b
b b

w w
u z v z

x y

 
   

 
                        (3a) 

The shear components us and vs give rise, in conjunction with ws , to the parabolic variations of 

shear strains γxz  , γyz  and hence to shear stresses τxz  , τyz  through the thickness of the plate in 

such a way that shear stresses τxz , τyz are zero at the top and bottom faces of the plate. 

Consequently, the expression for us and vs can be given as 

   s s
s s

w w
u f z v f z

x y

 
   

 
                 (3b) 

 

2.2 Displacement fields and strains 
 

Based on the assumptions made in the preceding section, the displacement field can be 

obtained 

0

0

( , , ) ( , ) ( )

( , , ) ( , ) ( )

( , , ) ( , ) ( , )

b s

b s

b s

w w
u x y z u x y z f z

x x

w w
v x y z v x y z f z

y y

w x y z w x y w x y

 
    


 

  
 

  



                   (4) 

where u0 and v0 are the mid-plane displacements of the plate in the x and y direction, respectively; 

wb and ws are the bending and shear components of transverse displacement, respectively.  
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The kinematic relations can be obtained as follows 

0

0

0

 ( ) 

 ( ) 

 ( ) 

( ) 

( ) 

0

b s

x x x x

b s

y y y y

b s

xy xy xy xy

s

yz yz

s

xz xz

z

z k f z k

z k f z k

z k f z k

g z

g z

 

 

 

 

 



   


  
   







 

                          (5) 

Where 

2 2
0 0

2 2

2 2
0 0

2 2

2 2
0 0 0

, ,

, ,

, 2 , 2

,

( )
( ) 1 '( ) '( )

b sb s
x x x

b sb s
y y y

b sb s
xy xy xy

s ss s
yz xz

u w w
k k

x x x

v w w
k k

y y y

u v w w
k k

y x x y x y

w w

y x

df z
g z f z and f z

dz







 

   
    
  
  

    
  


    

     
     

  
 
 


  



                  (6) 

while f (z) represents shape functions determining the distribution of the transverse shear strains 

and stresses along the thickness and is given as 

( ) sin( )
z

f z z
h h

 
                            (7) 

 
2.3 Constitutive relations 
 

The material properties of FG plate are assumed to vary continuously through the thickness of 

the plate in accordance with a power law distribution as 

1
( ) ( )( )

2

k

t b b

z
P z P P P

h
                          (8) 

Where P denotes a generic material property like modulus, Pt and Pb denotes the property of 

the top and bottom faces of the plate respectively, and k is a parameter that dictates material 

variation profile through the thickness. Here, it is assumed that modules E and G vary according to 

the Eq. (8) and ν is assumed to be a constant. The linear constitutive relations of a FG plate can be 
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written as 

11 12

12 22

66

44

55

0

0

0 0

0

0

x x

y y

xy xy

yz yz

zx zx

Q Q

Q Q

Q

Q

Q

 

 

 

 

 

    
    

    
        

       
    

       

                         (9) 

Where 

11 22 2

12 2

44 55 66

( )

1

( )

1

( )

2(1 )

E z
Q Q

E z
Q

E z
Q Q Q










 









   

                           (10) 

 

2.4 Governing equations  
 

The governing equations of equilibrium can be derived by using the principle of virtual 

displacements. The principle of virtual work in the present case yields 

2

2

( ). . . . 0

h

x x y y xy xy yz yz xz xz

h

d dz q w d          



 


                  (11a) 

Where  is the top surface. 

Substituting Eqs. (5) and (9) into Eq. (11(a)) and integrating through the thickness of the plate, 

Eq. (11(a)) can be rewritten as 

0 0 0. . . . .

. . . . 0

. . ( )

b b b b

x x y y xy xy x x y y

b b s s s s s s

xy xy x x y y xy xy

s s s s

yz yz xz xz b s

N N N M k M k

M k M k M k M k d

S S q w w

    

   

   


    
 
      
 
     

           (12) 

Where  

2

2

, , , 1

, , , ( , , )

, , , ( )

h
x y xy

b b b

x y xy x y xy

hs s s

x y xy

N N N

M M M z dz

M M M f z

  





   
   

   
   

  

                (13a) 
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2

2

( , ) ( , ) ( )

h

s s

xz yz xz yz

h

S S g z dz 





                         (13b) 

The governing equations of equilibrium can be derived from Eq. (12) by integrating the 

displacement gradients by parts and setting the coefficients 
0u , 

0v , 
bw , and 

sw  zero 

separately. Thus, one can obtain the equilibrium equations associated with the present shear 

deformation theory 

2 22

2 2

2 22

2 2

: 0

: 0

: 2 0

: 2 0

xyx

xy y

b bb
xy yx

b

s s ss s
xy y yzx xz

s

NN
u

x y

N N
v

x y

M MM
w q

x x y y

M M SM S
w q

x x y y x y









 
 

 

  

 
 


     

    


    
     

     

          (14) 

Using Eq. (9) in Eq. (13), the stress resultants of a sandwich plate made up of three layers can 

be related to the total strains by 

,

s

b s b s

s s ss s

N A B B

M A D D k S A

B D HM k





     
     

     
    
     

                 (15) 

Where 

       , , , , , , , ,
t tt

b b b b s s s s

x y xy x y xy x y xyN N N N M M M M M M M M             (16a) 

     0 0 0, , , , , , , ,
t t t

b b b b s s s s

x y xy x y xy x y xyk k k k k k k k                     (16b) 

11 12 11 12 11 12

12 22 12 22 12 22

66 66 66

0 0 0

0 , 0 , 0

0 0 0 0 0 0

A A B B D D

A A A B B B D D D

A B D

     
     

  
     
          

         (16c) 

11 12 11 12 11 12

12 22 12 22 12 22

66 66 66

0 0 0

0 , 0 , 0

0 0 0 0 0 0

s s s s s s

s s s s s s s s s

s s s

B B D D H H

B B B D D D H H H

B D H

     
     

       
     
     

        (16d) 
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    44

55

0
, , , ,

0

s
t t

z s s

xz yz xz yz s

A
S S S A

A
  

 
    

 
                (16e) 

The stiffness coefficients ijA and ijB , etc., are defined as 

11 11 11 11 11 11

12 12 12 12 12 12

66 66 66 66 66 66

2
2 2

11

2

1

(1, , , ( ), ( ), ( ))

1

2

s s s

s s s

s s s

h

h

A B D B D H

A B D B D H

A B D B D H

Q z z f z zf z f z dz







 
 

 
 
 

 
 
 
 
 
 
 



              (17a) 

22 22 22 22 22 22 11 11 11 11 11 11( , , , , , ) ( , , , , , )s s s s s sA B D B D H A B D B D H           (17b) 

 
2

2

11 44 552

2

( ) ( )
, ( )

1 2(1 )

h

s s

h

E z E z
Q A A g z dz

 





  
                (17c) 

Substituting from Eq. (15) into Eq. (14), we obtain the following equation 

01111 udA + 02266 udA +   0126612 vdAA  - bwdB 11111 -   bwdBB 1226612 2        (18a) 

                    -   S

SS wdBB 1226612 2 - S

S wdB 11111 =0   

02222 vdA + 01166 vdA +   0126612 udAA  - bwdB 22222 -   bwdBB 1126612 2        (18b) 

                     -   S

SS wdBB 1126612 2 - 022211 S

S wdB  

011111 udB +   01226612 2 udBB  +   01126612 2 vdBB  + 022222 vdB - bwdD 111111      (18c) 

-   bwdDD 11226612 22  - bwdD 222222 - S

S wdD 111111 -   S

SS wdDD 11226612 22   

                     - 0222222 S

S wdD  

011111 udB S
+   01226612 2 udBB SS  +   01126612 2 vdBB SS  + 022222 vdB S

- b

S wdD 111111     (18d) 
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-   b

SS wdDD 11226612 22  - b

S wdD 222222 - S

S wdH 111111 -   S

SS wdHH 11226612 22   

                     - S

S wdH 222222 + S

S wdA 1155 + 02244 S

S wdA  

where ijd , ijld , and ijlmd  are the following differential operators 

 
2 3 4

, , , , , , 1,2ij ijl ijlm

i j i j l i j l m

d d d i j l m
x x x x x x x x x

  
   
        

         (19) 

 

2.4 Closed-form solution for simply supported plates 
 

Rectangular plates are generally classified in accordance with the type of support used. We are 

here concerned with the exact solution of Eqs. (18(a)-18(d)) for a simply supported FG plate. The 

following boundary conditions are imposed at the side edges 

0 0   at   / 2,  / 2b ss
b s x x x

w
v w w N M M x a a

y


        


          (20a) 

0 0   at   / 2,  / 2b ss
b s y y y

w
u w w N M M y b b

y


        


         (20b) 

To solve this problem, Navier assumed that the transverse mechanical load, q  in the form of a 

double trigonometric series as 

     









1 1

sinsin,
m n

mn yxqyxq                       (21) 

The coefficients mnq  for the case of uniformly distributed load (UL) are defined as follows 

2

016

mn

q
qmn     for m,n odd                       (21a) 

0mnq    for m,n even                        (21b) 

For the case of a sinusoidally distributed load, we have 

1 nm  and 011 qq                        (21c) 

Where bnam / , /    and 0q  represents the intensity of the load at the plate 

center. 

Following the Navier solution procedure, we assume the following solution form for u0 , v0 , wb 

and wb that satisfies the boundary conditions 
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mnU , mnV  , bmnW , and smnW  are arbitrary parameters to be determined. 

Eqs. (21) and (22) reduce the governing Eqs. (18) to the following form 

    C P                               (23a) 

Where  

   t
sb WWVU ,,, , [C] and [G] refers to the flexural stiffness. 

         





















44342414

34332313

24232212

14131211

aaaa

aaaa

aaaa

aaaa

C                            (24) 

in which 

 

2

44

2

55

4

22

22

6612

4

1144

4 

22

2 2

6612

4

1134

4

22

22

6612

4

1133

2

22

2

661224

2

22

2

661223

2

22

2

6622

2

6612

2

1114

2

6612

2

1113

661212

2

66

2

1111

)2(2

  )2(2

)2(2

] )2[( 

] )2[( 

] )2([ 

] )2([ 

  





















ssssss

ssss

sss

sss

AAHHHHa

DDDDa

DDDDa

BBBa

BBBa

AAa

BBBa

BBBa

AAa

AAa





















        (25) 

 

 

3. Results and discussion 
 

In numerical analysis, static analysis of simply supported FG Plates is evaluated. The FG plate 

is taken to be made of aluminum and alumina with the following material properties 

Ceramic ( CP : Alumina, Al2O3): 380cE GPa; 3.0 ;  

Metal ( MP : Aluminium, Al): 70mE  GPa; 3.0 ;  

552



 

 

 

 

 

 

Bending analysis of FGM plates using a sinusoidal shear deformation theory 

 

And their properties change through the thickness of the plate according to power-law. The 

bottom surfaces of the FG plate are aluminum rich, whereas the top surfaces of the FG plate are 

alumina rich.  

For convenience, the following dimensionless form is used 
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The effect of volume fraction exponent on the dimensionless stresses and displacements of a 

FGM square plate subjected to uniform and sinusoidal distributed loads is shown in Tables 1 and 2, 

respectively. As it can be seen, the dimensionless stresses and displacements results for sinusoidal 

load distribution always less than uniform distribution load. As the plate becomes more and more 

metallic, the difference increases for deflection w  and in-plane longitudinal stress x while it 

decreases for in-plane normal stress y . It is important to observe that the stresses for a fully 

ceramic plate are the same as that for a fully metal plate. This is because the plate for these two 

cases is fully homogeneous and the stresses do not depend on the modulus of elasticity. As seen 

from this tables, the results of the present theory are close to those obtained by the SSDT of 

Zenkour (2006). 

The effect of aspect and side-to thickness ratios on the center deflection of the FGM plate under 

uniform distributed load are plotted in Figs. 2 and 3, respectively. As in can be seen, in the case of 

ceramic plate the deflection is less than of metallic plate. 

 

 

 
Table 1 Comparison of nondimensional deflection and stresses of square plate under uniformly distributed 

load (m, n = 100 term series, a = 10h) 

k Method w  
x  y  yz  

xz  xy  

Ceramic 
SSDT 0.4665 2.8932 1.9103 0.4429 0.5114 1.2850 

Present 0.4665 2.8932 1.9103 0.4429 0.5114 1.2850 

1 
SSDT 0.9287 4.4745 2.1962 0.5446 0.5114 1.1143 

Present 0.9287 4.4499 2.1647 0.5379 0.5375 1.1097 

2 
SSDT 1.1940 5.2296 2.0338 0.5734 0.4700 0.9907 

Present 1.1936 5.1737 1.9607 0.5998 0.4385 0.9867 

3 
SSDT 1.3200 5.6108 1.8593 0.5629 0.4367 1.0047 

Present 1.3268 5.6876 2.0435 0.5754 0.4360 0.9908 

metal 
SSDT 2.5327 2.8932 1.9103 0.4429 0.5114 1.2850 

Present 2.5327 2.8932 1.9103 0.4429 0.5114 1.2850 
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Table 2 Comparison of nondimensional deflection and stresses of square plate under sinusoidally distributed 

load (a=10h) 

k Method w  
x  y  yz  

xz  xy  

Ceramic 
SSDT 0.2960 1.9955 1.3121 0.2132 0.2462 0.7065 

Present 0.2960 1.9955 1.3121 0.2132 0.2462 0.7065 

1 
SSDT 0.5889 3.0870 1.4894 0.2622 0.2462 0.6110 

Present 0.5889 3.1212 1.4831 0.2610 0.2458 0.6107 

2 
SSDT 0.7572 3.6094 1.3954 0.2763 0.2265 0.5441 

Present 0.7573 3.6720 1.3854 0.2760 0.2254 0.5434 

3 
SSDT 0.8372 3.8742 1.2748 0.2715 0.2107 0.5525 

Present 0.8376 3.9571 1.2632 0.2708 0.2101 0.5520 

metal 
SSDT 1.6071 1.9955 1.3121 0.2132 0.2462 0.7065 

Present 1.6071 1.9955 1.3121 0.2132 0.2462 0.7065 

 

 

The variation of the shear stresses xy and yz of the simply supported FGM plate under uniform 

load are shown in Figs. 4 and 5, respectively. The gradient index is taken as k=2, and the thickness 

ratio a/h=10. It to be noted, that the stresses are tensile at the top surface and compressive at the 

bottom surface. 

Figs. 6 and 7 shows the variation of transversal shear stress xz and in-plane longitudinal stress 

xx of the FGM plate respectively. It’s clear that the distributions transversal shear stress xz are not 

parabolic. 
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Fig. 2 Dimensionless center deflection as function of the aspect ratio (a/b) of an FGM 
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Fig. 3 Dimensionless center deflection as a function of the side-to-thickness ratio (a/h) of an FGM square 

plate 
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Fig. 4 Variation of longitudinal tangential stress ( xy ) through-the thickness of an FGM plate for different 

values of the aspect ratio 
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Fig. 5 Variation of transversal shear stress ( yz ) through-the thickness of an FGM plate for different 

values of the aspect ratio  
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Fig. 6 Variation of transversal shear stress ( xz ) through-the thickness of an FGM plate for different 

values of the aspect ratio  
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Fig. 7 Variation of in-plane longitudinal stress ( xx ) through-the thickness of an FGM plate for different 

values of the side -to-thickness ratio 

 

 

4. Conclusions 
 

In this work, a refined plate theory based on the high order shear deformation theory is 

successfully developed for bending of a simply supported FG plates. The theory accounts for a 

quadratic variation of the transverse shear strains across the thickness, and satisfies the zero 

traction boundary conditions on the top and bottom surfaces of the plate without using shear 

correction factors. Accuracy and convergence of the present refined plate theories was verified by 

comparing the results obtained with those reported in the literature for the FG plate. Parametric 

studies for varying of the power low index, the aspect and side-to-thickness ratio are discussed and 

demonstrated through illustrative numerical examples. 
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