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Abstract. The response of functionally graded ceramic-metal plates is investigated using theoretical
formulation, Navier's solutions, and a new displacement based on the high-order shear deformation theory
are presented for static analysis of functionally graded plates. The theory accounts for a quadratic variation
of the transverse shear strains across the thickness, and satisfies the zero traction boundary conditions on the
top and bottom surfaces of the plate without using shear correction factors. The plates are assumed to have
isotropic, two-constituent material distribution through the thickness, and the modulus of elasticity of the
plate is assumed to vary according to a power-law distribution in terms of the volume fractions of the
constituents. Numerical results of the new refined plate theory are presented to show the effect of the
material distribution on the deflections, stresses and fundamental frequencies. It can be concluded that the
proposed theory is accurate and simple in solving the static and free vibration behavior of functionally
graded plates.
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1. Introduction

Functionally graded materials (FGMs) are a class of composites that have a continuous
variation of aterial properties from one surface to another. These materials can be fabricated by
varying the percentage content of two or more materials such that the new materials have the
desired property gradation in spatial directions. The gradation in the properties of the materials
reduces thermal stresses, residual stresses and stress concentration factors found in laminated
composites. FGMs have gained widespread applicability as thermal barrier structures, wear- and
corrosion-resistant coatings other than joining dissimilar materials. They are usually made from a
mixture of ceramics and metals to attain the significant requirement of material properties.

Due to the increased relevance of the FGMs structural components in the design of engineering
structures, many studies have been reported on the static, and vibration analyses of functionally
graded (FG) plates. Fekrar, EI Meiche et al. (2012) analyzed the buckling response of FG hybrid
composite plates using a new four variable refined plate theory. Bouremana, Benrahou et al. (2013)
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proposed a novel first shear deformation beam theory based on neutral surface position for FG
beams. Mantari and Guedes Soares (2012) studied the bending analysis of thick exponentially
graded plates using a new trigonometric higher order shear deformation theory. Tai and Kim
(2013a) used a simple quasi-3D sinusoidal shear deformation theory for functionally graded plates.
Tai and Kim (2013b) proposed a simple higher-order shear deformation theory for bending and
free vibration analysis of functionally graded plates. Zhang (2013) studied the modeling and
analysis of FGM rectangular plates based on physical neutral surface and high order shear
deformation theory. Prakash, Singha et al. (2009) studied the Influence of neutral surface position
on the nonlinear stability behavior of functionally graded plates. Belabed, Houari et al. (2014)
used an efficient and simple higher order shear and normal deformation theory for functionally
graded material (FGM) plates. Tai, Nguyen et al. (2014) studied the analysis of functionally
graded sandwich plates using a new first-order shear deformation theory. Chen, Yang et al. (2016)
studied the free and forced vibrations of shear deformable functionally graded porous beams. Sina,
Navazi et al. (2009) investgated an analytical method for free vibration analysis of functionally
graded beams. Xiang and Yang (2008) analyzed the free and forced vibration of a laminated FGM
Timoshenko beam of variable thickness under heat conduction. Kocatlirk and Akbas (2013)
studied the thermal post-buckling analysis of functionally graded beams with
temperature-dependent physical properties. Al-Basyouni, Tounsi et al. (2015) investigated size
dependent bending and vibration analysis of functionally graded micro beams based on modified
couple stress theory and neutral surface position. Tai et al. (2012) studied the bending and free
vibration of functionally graded beams using various higher-order shear deformation beam
theories. Bourada, Kaci et al. (2015) used a new simple shear and normal deformations theory for
functionally graded beams. Hebali, Tounsi et al. (2014) studied the static and free vibration
analysis of functionally graded plates using a new quasi-3D hyperbolic shear deformation theory.
Ait Yahia, Ait Atmane et al. (2015) analyzed the wave propagation in functionally graded plates
with porosities. Bennoun, Houari et al. (2016) analyzed the vibration of functionally graded
sandwich plates using a novel five variable refined plate theory. Ait Amar Meziane, Abdelaziz et al.
(2014) proposed an efficient and simple refined theory for buckling and free vibration of
exponentially graded sandwich plates under various boundary conditions. Mahi, Adda Bedia et al.
(2015) studied the bending and free vibration analysis of isotropic, functionally graded, sandwich
and laminated composite plates using a new hyperbolic shear deformation theory. Bousahla,
Houari et al. (2014) investigated a novel higher order shear and normal deformation theory based
on neutral surface position for bending analysis of advanced composite plates. Bellifa et al. (2016)
studied the bending and free vibration analysis of functionally graded plates using a simple shear
deformation theory and the concept the neutral surface position. Bounouara, Benrahou et al. (2014)
studied the free vibration of functionally graded nanoscale plates resting on elastic foundation
using a nonlocal zeroth-order shear deformation theory. Belkorissat, Houari et al. 2015) developed
new shear deformation plates theories involving only four unknown functions. Larbi Chaht et al.
(2015) studied the bending and buckling of functionally graded material (FGM) size-dependent
nanoscale beams including the thickness stretching effect. Ahouel, Houari et al. (2016)
investigated a size-dependent mechanical behavior of functionally graded trigonometric shear
deformable nanobeams including neutral surface position concept. Zemri, Houari et al. (2015)
proposed an assessment of a refined nonlocal shear deformation theory beam theory for a
mechanical response of functionally graded nanoscale beam. Nedri, EI Meiche et al. (2014)
developed new shear deformation plate theorie involving only four unknown functions for free
vibration analysis of laminated composite plates resting on elastic foundations. Tounsi, Houari et
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al. (2013) use a refined trigonometric shear deformation theory for thermoelastic bending of
functionally graded sandwich plates. Zidi, Tounsi et al. (2014) study hygro-thermo-mechanical
loading for the bending of FGM plates using a four variable refined plate theory. Bouderba, Houari
et al. (2013) studied the thermomechanical bending response of FGM thick plates resting on
Winkler—Pasternak elastic foundations. Bouderba, Houari et al. (2016) studied the thermal stability
of functionally graded sandwich plates using a simple shear deformation theory. Attia, Tounsi et al.
(2015) developed the free wvibration analysis of functionally graded plates with
temperature-dependent properties using various four variable refined plate theories.

Bakora and Tounsi (2015) investigated the thermo-mechanical post-buckling behavior of thick
functionally graded plates resting on elastic foundations. Boukhari, Ait Atmane et al. (2016) used
an efficient shear deformation theory for wave propagation of functionally graded material plates.

The purpose of this study is to develop a shear deformation plate theory for FG plates which is
simple to use. The number of independent unknowns of present theory is four, as against five in
other shear deformation theories. The material properties of plate are assumed to vary according to
power law distribution of the volume fraction of the constituents whereas Poisson’s ratio is
constant. The accuracy and convergence of the present method are demonstrated through
numerical results. A detailed parametric study is carried out to highlight the influences of aspect
and thickness ratios, material property graded indexes on the static of the FG plate.

2. Theoretical formulation

Consider a rectangular FGM plate having the thickness h, length a, and width b. A Cartesian
coordinate system (x, y, z) is used to label the material point of the plate in the unstressed
reference configuration, as depicted in Fig. 1. It is assumed that the material is isotropic and
grading is assumed to be only through the thickness. The xy plane is taken to be the undeformed
mid plane of the plate with the z axis positive upward from the mid plane.

b

X
z

] —

Fig. 1 Geometry of rectangular FG plate and coordinates
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2.1 Basic assumptions

The assumptions of the present theory are as follows:

The displacements are small in comparison with the plate thickness and, therefore, strains
involved are infinitesimal.

The transverse displacement W includes two components of bending w, , and shear w,. These
components are functions of coordinates X, y, and time t only.

W (X, Y, 2) =W, (X, y) + W (X, y) @

The transverse normal stress o, is negligible in comparison with in-plane stresses o, and g,.
The displacements U in x-direction and V in y-direction consist of extension, bending, and
shear components

U=u+u,+U,, V =V+V, +V, (2)

The bending components u, and v, are assumed to be similar to the displacements given by the
classical plate theory. Therefore, the expression for u, and v, can be given as
oW, oW,
u,=-z2—= v, =—2—=> (3a)

OX oy

The shear components us and v; give rise, in conjunction with w; , to the parabolic variations of
shear strains vy, , vy, and hence to shear stresses T, , 7y, through the thickness of the plate in
such a way that shear stresses ., , Ty, are zero at the top and bottom faces of the plate.
Consequently, the expression for us and v; can be given as

uS:—f(z)gs vS:—f(z)i/;f (3b)

2.2 Displacement fields and strains

Based on the assumptions made in the preceding section, the displacement field can be
obtained

ava
OX
8WS
oy

U(x,y,2) =y (x y) — 2 2 £ (2)
OX

(4)

V(X ¥,2) =V (X y)—z%—f(z)

W(X, Y, 2) =W, (X, y) +W,(X, y)

where up and v, are the mid-plane displacements of the plate in the x and y direction, respectively;
w, and w; are the bending and shear components of transverse displacement, respectively.
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The kinematic relations can be obtained as follows
g, =el+zk+f(2)k
g =¢,+2k +f(z) kS
_ .0 b s
yxy _7/xy+z I(xy—}_ f(Z) kxy

. ®)
7yz=g(z) }/yz
Vv =9(2) 75,
g, =0
Where
50:% b:_azwb S:_azwS
x| oxt ox?
0_ Ny o o'W, O°W,
y T A N T T Ry T T
oy oy oy
2 2
0 =Wo Mo o 50 ys _ OV (6)
oy oX oXoy oxoy
s _OW, o 0w,
7/yz ay 1V x2 OX
g(z)=1-f'(z) and f'(2) :¥

while f (z) represents shape functions determining the distribution of the transverse shear strains
and stresses along the thickness and is given as

f(2)=1z —%sin(%z) @

2.3 Constitutive relations

The material properties of FG plate are assumed to vary continuously through the thickness of
the plate in accordance with a power law distribution as

P()=(P —Pb)(%%)k R @®)

Where P denotes a generic material property like modulus, P, and P, denotes the property of
the top and bottom faces of the plate respectively, and k is a parameter that dictates material
variation profile through the thickness. Here, it is assumed that modules E and G vary according to
the Eq. (8) and v is assumed to be a constant. The linear constitutive relations of a FG plate can be
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written as
Oy _Qn Qp 0 &y
Oy = Q. Q, O &y
Tyy L 0 0 Q66 Yy (9)
Z-yz _ _Q44 0 :| 7yz
TZX L 0 Q55 yzx

Where
E(z
Q11 = Q22 = 1_(—)2
vE(2)
Q,= T (10)
E(2)

Q44 = st :Qse = 21+v)

2.4 Governing equations

The governing equations of equilibrium can be derived by using the principle of virtual
displacements. The principle of virtual work in the present case yields

+
— N T

X

[(0,08,+ 0,06, + 7,87, +7,,07,, +7,67,).dQdz — [ qow.dQ =0 (11a)
Q Q

NS

Where Q is the top surface.
Substituting Egs. (5) and (9) into Eq. (11(a)) and integrating through the thickness of the plate,
Eqg. (11(a)) can be rewritten as

N,.Se; +N,.0c) + N, .5y, + M5k + M. .5k]
[| +M3 0K5 + M.S5ks +M;.ok; + M5 .Sk, dQ =0 (12)
"l+s2.078, +52.875, —q(ow, +6w,)

Where
N N, N, | & 1
MP, MJ, Mg, :j(ax,ay,zxy z  bdz (13a)

S s s h
M, MS, M - f(2)

xy ! 2
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h
2
(S;z ' S;z) = I (sz ' Tyz)g(z)dz (13b)
h
2

The governing equations of equilibrium can be derived from Eg. (12) by integrating the
displacement gradients by parts and setting the coefficients Su,, ov,, Sw,, and Sw, zero

separately. Thus, one can obtain the equilibrium equations associated with the present shear
deformation theory

ON, ON

Sur—2+—2=0
OX oy
oN ON
ov:—2+ Y =0
OX oy (14)
asz 82Mb aZMb
Swy i —*++2—=>+—>+q=0
ox oxdy oy
M S O°M:,  O*M: s 0S?
5Ws:a|le+2 2+ 2y+8SXZ+ 2 +q=0
OX Oxoy oy oXx oy

Using Eq. (9) in Eq. (13), the stress resultants of a sandwich plate made up of three layers can
be related to the total strains by

N A B B°||¢
MPl=| A D D°[{k’}, S=A% (15)
MS BS DS HS ks

Where

t t t
N ={N, N, Ny M2 ={M2 M) Mp b M®={M3 M M (162)
e={e,6% 0} K=k ke = ke ke ke (16b)

Ail A12 O Bll BlZ O Dll D12 O
A=A, A, 0| B=|B, B, 0| D=D, D, 0 (16¢)

0 0 A, 0 0 By 0 0 D

By B, O Dy D; O Hi H; O
B°=/B, B, 0|[D=D, D, 0| H=H, H; 0 (16d)

0 0 B 0 0 D 0 0 H
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s [AL 0
S={s5.S.} . » {7xz’7yz}'A_|:0 Agj

The stiffness coefficients AIJ and BIJ , etc., are defined as

A, By, Dy Blsl Dlsl H 151
A12 Blz D12 8152 Dlsz H 152 =
As Bgs Dgs Bese Dese H ese

ol 1

| Quz,2, (2,28 (2), f°(2)] v (a2

= 1-v
2

(A22’ BZZ’ D22’ BZSZ’ ;2’ ;2) = (A117 Bll’ Dll' Blsl' lsl’ 131)

(z)] dz

h

B E(Z) A, ¢ E(z

Q“_l Ihz
2

Substituting from Eq. (15) into Eq. (14), we obtain the following equation
A11d11u0 + Aeedzzuo + (A12 + A66 )d12VO - Blldlllwb - (Blz + ZBee )dlzzwb

- (8152 + 28656 )dlzzws - BlsldlllWS =0

Azzdzzvo + AGGdllvo + (A12 + Aee )d12u0 - Bzzdzzzwb - (Blz + 2866 )d112Wb

- (Blsz + 28656 )dllzws - Blsld 220Ws = 0

Blldllluo + (BlZ + 2866 )d122u0 + (812 + 2866 )d112V0 + BZZdZZZVO - Dlldllllwb

- 2(D12 + 2D66 )dllZZWb - D22d2222Wb - Dlsldllllws - Z(Dlsz + 2D656 )dllzzws

s
- Dzzdzzzzws =0

S S S S S S S
BlldllluO + (BlZ + 2866 hlZZUO + (812 + 2 BGB bllZVO + BZZdZZZVO - Dlldlllle

(16e)

(17a)

(17b)

(17¢c)

(18a)

(18b)

(18¢c)

(18d)
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S S S S S S
- 2(D12 + 2D66 1122Wp - D22d2222Wb - H11d1111Ws - Z(H 12t 2H 66 JM1122Ws

s s s
-H 22d2222Ws + Assdnws + A44d22Ws =0

where d..,d

ijr Hijlo

and d are the following differential operators

ijlm

2 3 4
dij= 4 ’dijlzé—’dijlmza—’
OX;OX; OX;0X;0X, OX;0X ;0% OX,

(i,j,1,m=12) (19)

2.4 Closed-form solution for simply supported plates

Rectangular plates are generally classified in accordance with the type of support used. We are
here concerned with the exact solution of Egs. (18(a)-18(d)) for a simply supported FG plate. The
following boundary conditions are imposed at the side edges

Vo=w, —w, =5 N —MP=M:=0 at x=-a/2 a/2 (202)

S

Up =W, =W, =N,=M}=M;=0 at y=-b/2, b/2 (20b)

To solve this problem, Navier assumed that the transverse mechanical load, ¢ in the form of a
double trigonometric series as

iqmn sin (Ax)sin (uy) (21)

n=.

Ms

Xy=

'L

m

The coefficients q,,, for the case of uniformly distributed load (UL) are defined as follows

16
Uy =22 for m,n odd (21a)
mnz
0., =0 form,neven (21b)

For the case of a sinusoidally distributed load, we have
m=n=1 and q,;, =0, (21c)

Where A =mx/a,u=nxz/b and ¢, represents the intensity of the load at the plate

center.
Following the Navier solution procedure, we assume the following solution form for ug , Vo , Wy
and w, that satisfies the boundary conditions
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Ug U nn COs(A X)sin(p y)
\% © 2 | VynSIN(A X)cos
Wp m=n— | Wpmn Sin(A x)sin(p y)
Wi Wemn sin(A x)sin(p y)
Umnns Vin s Wpmn» and - Wy, are arbitrary parameters to be determined.
Egs. (21) and (22) reduce the governing Egs. (18) to the following form
[Cl{A} ={P} (23a)
Where
{A}=1{U,v, W, , W, ', [C] and [G] refers to the flexural stiffness.
a11 alZ a13 al4
[C] — alZ a22 a23 a24 (24)

in which

a, = A11/12 + A%,u2

2, =2 4 (A, + Ayg)

a,, = —A[B,,A° + (B, +2B,) 1°]

a,, = -A[BJ A% + (B, + 2BS;) 1?1

y = AGA + A, u° (25)
8,5 = —[(By, + 2Bgq) A* + By, u°]

8y, = —u[(B}, +2Bg) A* + Bj,u’]

ay, = DyA* +2(Dy, + 2Dy )A*u” + D, 1’

a,, = DA +2(D;, +2D)A* u® + D3, ut

a,, = HO A  +2(H, + 2H )P + Ho, it + AL A + AL i’

3. Results and discussion

In numerical analysis, static analysis of simply supported FG Plates is evaluated. The FG plate
is taken to be made of aluminum and alumina with the following material properties

Ceramic (P : Alumina, Al,0;): E, =380GPa;v=0.3;
Metal (Py, : Aluminium, Al): E_ =70 GPa;v=0.3;
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And their properties change through the thickness of the plate according to power-law. The
bottom surfaces of the FG plate are aluminum rich, whereas the top surfaces of the FG plate are
alumina rich.

For convenience, the following dimensionless form is used

— 3 _ 3 _ _ 3 _
w=10 Ech4 M{E,Ej, u:lm%u(O,E,—h], v =100 Ech4 V(E,O,—hj
Qo 22 2 4 2 6

0o God
o= N (abhy == _h fabhy —_h (50N
* hg, \2'2'2)" 7Y hgy *\2°2'3)" Y hgy, YU 3

— h b — h a_h
Ty, = foz (O,E,Oj, Tyz = nyz (E,O,gj .
0 0

The effect of volume fraction exponent on the dimensionless stresses and displacements of a
FGM square plate subjected to uniform and sinusoidal distributed loads is shown in Tables 1 and 2,
respectively. As it can be seen, the dimensionless stresses and displacements results for sinusoidal
load distribution always less than uniform distribution load. As the plate becomes more and more

metallic, the difference increases for deflection w and in-plane longitudinal stress o, while it

decreases for in-plane normal stressa. It is important to observe that the stresses for a fully

ceramic plate are the same as that for a fully metal plate. This is because the plate for these two
cases is fully homogeneous and the stresses do not depend on the modulus of elasticity. As seen
from this tables, the results of the present theory are close to those obtained by the SSDT of
Zenkour (2006).

The effect of aspect and side-to thickness ratios on the center deflection of the FGM plate under
uniform distributed load are plotted in Figs. 2 and 3, respectively. As in can be seen, in the case of
ceramic plate the deflection is less than of metallic plate.

Table 1 Comparison of nondimensional deflection and stresses of square plate under uniformly distributed
load (m, n =100 term series, a = 10h)

k Method W oy oy Oy, Oy Oyy
Ceramic SSDT 0.4665 2.8932 1.9103 0.4429 0.5114 1.2850
Present 0.4665 2.8932 1.9103 0.4429 0.5114 1.2850
1 SSDT 0.9287 4.4745 2.1962 0.5446 0.5114 1.1143
Present 0.9287 4.4499 2.1647 0.5379 0.5375 1.1097
5 SSDT 1.1940 5.2296 2.0338 0.5734 0.4700 0.9907
Present 1.1936 5.1737 1.9607 0.5998 0.4385 0.9867
3 SSDT 1.3200 5.6108 1.8593 0.5629 0.4367 1.0047
Present 1.3268 5.6876 2.0435 0.5754 0.4360 0.9908
metal SSDT 2.5327 2.8932 1.9103 0.4429 0.5114 1.2850

Present 2.5327 2.8932 1.9103 0.4429 0.5114 1.2850
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Table 2 Comparison of nondimensional deflection and stresses of square plate under sinusoidally distributed
load (a=10h)

k Method w oy oy Oy Oy Oy
Ceramic SSDT 0.2960 1.9955 1.3121 0.2132 0.2462 0.7065
Present 0.2960 1.9955 1.3121 0.2132 0.2462 0.7065
1 SSDT 0.5889 3.0870 1.4894 0.2622 0.2462 0.6110
Present 0.5889 3.1212 1.4831 0.2610 0.2458 0.6107
5 SSDT 0.7572 3.6094 1.3954 0.2763 0.2265 0.5441
Present 0.7573 3.6720 1.3854 0.2760 0.2254 0.5434
SSDT 0.8372 3.8742 1.2748 0.2715 0.2107 0.5525
3 Present 0.8376 3.9571 1.2632 0.2708 0.2101 0.5520
metal SSDT 1.6071 1.9955 1.3121 0.2132 0.2462 0.7065

Present 1.6071 1.9955 1.3121 0.2132 0.2462 0.7065

The variation of the shear stresses t,,and 1, of the simply supported FGM plate under uniform
load are shown in Figs. 4 and 5, respectively. The gradient index is taken as k=2, and the thickness
ratio a/h=10. It to be noted, that the stresses are tensile at the top surface and compressive at the
bottom surface.

Figs. 6 and 7 shows the variation of transversal shear stress t,, and in-plane longitudinal stress
oy Of the FGM plate respectively. It’s clear that the distributions transversal shear stress T, are not
parabolic.

0,0 0,5 10 15 2,0 25 3,0

Fig. 2 Dimensionless center deflection as function of the aspect ratio (a/b) of an FGM
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55 metal

401K=10, alb=1

Fig. 3 Dimensionless center deflection as a function of the side-to-thickness ratio (a/h) of an FGM square
plate

24 alb=0.5 ah=10

Fig. 4 Variation of longitudinal tangential stress ( ty, ) through-the thickness of an FGM plate for different
values of the aspect ratio

0,7
0,6
0,5
0,4
l} 0,3
0,2

0,14

0,04

0,6 04 0,2 0,0 0,2 04 06
z/h

Fig. 5 Variation of transversal shear stress ( ty, ) through-the thickness of an FGM plate for different
values of the aspect ratio
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0,84

0,64

024

0,04

T T T T T T
0,6 04 -0,2 0,0 0,2 04 06
z/h

Fig. 6 Variation of transversal shear stress ( ty,) through-the thickness of an FGM plate for different
values of the aspect ratio

© ah=20

4 . ah=10

Fig. 7 Variation of in-plane longitudinal stress ( oy ) through-the thickness of an FGM plate for different
values of the side -to-thickness ratio

4. Conclusions

In this work, a refined plate theory based on the high order shear deformation theory is
successfully developed for bending of a simply supported FG plates. The theory accounts for a
guadratic variation of the transverse shear strains across the thickness, and satisfies the zero
traction boundary conditions on the top and bottom surfaces of the plate without using shear
correction factors. Accuracy and convergence of the present refined plate theories was verified by
comparing the results obtained with those reported in the literature for the FG plate. Parametric
studies for varying of the power low index, the aspect and side-to-thickness ratio are discussed and
demonstrated through illustrative numerical examples.
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