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Abstract.    Synchronous multi-pressure measurements were carried out with relatively long time duration 
for a double-layer reticulated shell roof model in the atmospheric boundary layer wind tunnel. Since the long 
roof is open at two ends for the storage of coal piles, three different testing cases were considered as the 
empty roof without coal piles (Case A), half coal piles inside (Case B) and full coal piles inside (Case C). 
Based on the wind tunnel test results, non-Gaussian time-dependent statistics of net wind pressure on the 
shell roof were quantified in terms of skewness and kurtosis. It was found that the direct statistical estimation 
of high-order moments and peak factors is quite sensitive to the duration of wind pressure time-history data. 
The maximum value of COVs (Coefficients of variations) of high-order moments is up to 1.05 for several 
measured pressure processes. The Mixture distribution models are proposed for better modeling the 
distribution of a parent pressure process. With the aid of mixture parent distribution models, the existing 
translated-peak-process (TPP) method has been revised and improved in the estimation of non-Gaussian 
peak factors. Finally, non-Gaussian peak factors of wind pressure, particularly for those observed hardening 
pressure process, were calculated by employing various state-of-the-art methods and compared to the direct 
statistical analysis of the measured long-duration wind pressure data. The estimated non-Gaussian peak 
factors for a hardening pressure process at the leading edge of the roof were varying from 3.6229, 3.3693 to 
3.3416 corresponding to three different cases of A, B and C. 
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1. Introduction 
 

Many researchers have carried out investigations for the non-Gaussian statistics of wind 
pressure processes (Sadek and Simiu 2002, Tieleman et al. 2006, Kwon and Kareem 2011, Huang 
et al. 2013, Yang et al. 2013, Peng et al. 2014, Yu et al. 2014, Abhilash et al. 2014). Based on the 
translation process theory, two common approaches of translation methods are found in literatures. 
One type is based on the Hermite model and its variant; this type includes Kwon and Kareem’s 
formula (2011), the approximate Hermite model expression proposed in Yang et al. (2013) and 
Peng et al. (2014). In this type of approach, the non-Gaussian properties of skewness 3  and 

kurtosis 4  are used. The second type of approach is based on the point-to-point cumulative 

distribution function (CDF) mapping procedure from non-Gaussian to Gaussian, with the Sadek–
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Simiu (SS) procedure (2002) and the recently proposed translated-peak-process (TPP) method 
(Huang et al. 2013). Whereas the Sadek–Simiu procedure maps extreme values from the Gaussian 
space to the non-Gaussian space, the TPP method aims to properly model local peak distribution of 
non-Gaussian processes with the parametric Weibull distribution, from which the peak factor and 
the fractile level are obtained analytically. The TPP method has the same advantage as the Sadek–
Simiu procedure because it makes use of all information contained in the time series. Furthermore, 
the TPP method provides the closed-form solution of peak factors. As long as the Weibull 
distribution parameters available, the peak factor and fractile levels of a non-Gaussian process can 
be analytically evaluated.  

The possible improvement of the point-to-point mapping approach is the better modeling of 
parent wind pressure distributions. Recently, various mixture models have been proposed for the 
entire data distribution. One is so called multi-component mixture models, which make use of two 
or more component distributions to form a "mixed" or "compound" distribution. Bordes et al. 
(2006) developed a methodology for estimating unknown parameters in a two-component mixture 
model and the properties of the proposed estimators were illustrated by a Monte Carlo study. 
Akdag et al. (2010) applied the two-component mixture Weibull distribution to estimate wind 
speed characteristics for determining the annual mean wind power density. The other is the flexible 
extreme value mixture model (FEVMM), which simultaneously captures the bulk of the 
distribution (typically the main mode) with the flexibility of an extreme value model for the 
upper/lower tails (MacDonald et al. 2011a, b). Zheng et al. (2014) adapted mixture probability 
distributions to fit the wind pressure coefficients over the roof surface of low-rise buildings. The 
FEVMM has been used in translation methods to better estimate peak pressure effects (Peng et al. 
2014, Ding and Chen 2014). However, the use of a mixture model may not offer a significant 
improvement over the existing translation methods (Peng et al. 2014). It is necessary to further 
investigate the effectiveness of the mixture models in the TPP method.  

Hermite model–based approaches, including Kwon and Kareem’s formula (Kwon and Kareem 
2011), the work of Yang et al. (2013) and Peng et al. (2014) have inherent limits due to the use of 
the Hermite moment model developed by Winterstein (1988). The original Hermite moment model 
provides a representation of the functional transformation from a Gaussian process to a 
non-Gaussian softening process defined as the kurtosis 4  greater than 3 (Winterstein 1988). 

Most of existing Hermite model-based methods or formulas are therefore only applicable to a 
softening process with a positive excess kurtosis. In the Sadek-Simiu procedure, a gamma 
distribution was selected to model the parent distribution of a given pressure process. Because a 
gamma distribution has a positive excess kurtosis, it cannot be used to describe the parent 
distribution of a hardening process. To complete the original Hermite moment model for all 
practical paired values of skewness and kurtosis, several attempts have been made to extend the 
moment-based Hermite translation model for hardening non-Gaussian processes ( 4 − 3 < 0) with 

empirical formulations for determining the translation model coefficients (Choi and Sweetman 
2010, Chen 2014, Ding and Chen 2014). The modeling of translation function for hardening 
non-Gaussian wind effect processes has not been extensively addressed in literature (Chen 2014, 
Ding and Chen 2014). Huang et al. (2014) observed hardening wind pressure processes on a 
long-span roof model tested in the wind tunnel, and proposed an analytical formula for 
non-Gaussian peak factors of hardening load processes.  

Based on the wind tunnel tests, the high-order moments, i.e., skewness and kurtosis, of the 
wind pressure processes measured on a double-layer reticulated shell roof are evaluated 
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statistically. According to the arrangements of coal piles inside the roof, three different cases are 
tested in the simulated atmospheric boundary layer winds. The paper work is derived from a 
practical project to assess wind-resistant structural design of a double-layer reticulated shell roof 
with a 120 m span through wind tunnel tests. The sensitivities of high-order statistics of wind 
pressure on the roof to the arrangement of coal piles are studied. The existing TPP method is 
revised by introducing two types of mixture distribution models to make better predictions of peak 
factors for non-Gaussian wind pressure processes. Comparative performance studies have been 
further carried out to reveal the advantage and disadvantage of various state-of-the-art translation 
methods, and investigate the effectiveness of mixture models in the TPP method. The main 
contribution of the paper is to reveal non-Gaussian time-dependent statistical properties of wind 
pressure on the roof and to develop new non-Gaussian wind pressure models for estimating peak 
wind loads more accurately. The new statistical property findings of wind pressure fields are 
important to understand dynamic wind load processes on the complex roof structure. The revised 
TPP method together with the proposed mixture non-Gaussian distribution models could be 
applied in wind engineering practices to better estimate peak wind loads on a complex building 
structure based on the limited wind tunnel test data. 

 
 

2. Wind tunnel experiments  
 
A cylindrical reticulated roof structure with a height of 45 m and a span of 120 m is planned to 

construct in a coastal site of China. The roof is as long as 240 m, and is open at two ends to store 
large amounts of coal piles for producing thermal power. The site is in the A category (open 
terrain), with a power law exponent of α=0.12 for the mean wind speed profile stipulated in the 
Chinese Load Code (GB50009-2012). The turbulence intensity profile recommended for the A 
category is given by the following expression 

       10 ( )
10u

Z
I I         (1) 

where Z is the height, I10=0.12. The simulated mean wind speed and turbulent profiles in the wind 
tunnel were provided in Fig. 1, where Ug is defined as the mean wind speed at a gradient height of 
300 m for the A category site. It seems that the experimental curves of wind structures fit well 
with the theoretical ones.  

Wind tunnel experiments were carried out in a boundary layer wind tunnel, which has a 
working cross section of 4 m wide × 3 m high and a length of 18 m. A model of the roof structure 
was made at a geometric scale of 1:150 by carefully mimicking the detailing of reticulated 
structural members as shown in Fig. 2. Three different testing cases were considered as the empty 
roof without coal piles (Case A of Fig. 2(a)), half coal piles inside (Case B of Fig. 2(b)) and full 
coal piles inside (Case C of Fig. 2(c)). It is noted that the cross section of coal piles (see Fig. 3) is 
designed according to the practice of thermal power industry in China. Spires and roughness cube 
elements were used to simulate the desired boundary layer wind structure following the A category. 
Wind pressures on the rigid model of the roof shell were measured using a synchronous 
multi-pressure sensing system (SMPSS). A total of 500 pressure sensors were densely distributed 
on the roof of the model to quantify the net pressure actions at 250 locations, as shown in Fig. 4.  
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(a) Mean wind speed profile (b) Turbulent intensity profile 

Fig. 1 Simulated wind field structures in wind tunnel tests 
 
 
At each measuring site, a pair of pressure taps was installed to measure external and internal 

pressure effects simultaneously. The wind tunnel test was carried out with a wind speed of 15.4 
m/s at the reference height of 1.0 m above the wind tunnel floor. The design wind speed with a 
return period of 100 years for the construction site is approximately 52.52 m/s at a full-scale height 
of 150 m. Therefore, the wind speed scale in the wind tunnel experiment was approximately 1/3.4 
and the time scale became 1/44. Long-time duration pressure measurements were made for four 
typical wind angles of 0°, 30°, 45° and 90°, as defined in Fig. 4. The pressure data were recorded 
at a sampling frequency of 625 Hz for time duration of 300 s, which is equivalent to 220 minutes 
in full-scale situations.  

The wind pressure results are presented in terms of the net pressure coefficient, which is 
defined as follows 

           ex in

p 20.5
i i

i

P t P t
C t

V 


  (2) 

Where Cpi is the net pressure coefficient for the ith measuring position of the roof; ex
iP and in

iP
are the pressure values at the external and internal surfaces of the roof, respectively. The main 
focus of this study is on the non-Gaussian and time-dependent characteristics of the wind pressure 
processes defined in Eq. (2). 

Due to the sensitivity of the flow to Reynolds number for a curved surface, it is necessary to 
implement a certain level of surface roughness across the exterior of the roof model by simple 
paper strips as shown Fig. 5. The Reynolds number for the roof model during wind tunnel test is 
about 8.2105, which is greater than the critical Reynolds number of 2105 for a smooth cylinder 
(Butt et al. 2014). Therefore, the wind pressure results in the wind tunnel tests can be applied to 
the real turbulent wind conditions.  
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Fig. 4 Arrangements of pressure taps on the shell roof 
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polynomial model, could be expressed as (Winterstein and MacKenzie 2012) 

        
2

4 31. 25 3 (6) 

It is clear that  4 should be greater than 3. Therefore, the Hermite polynomial model (HPM) 

proposed in the work of Yang et al. (2013) and Peng et al. (2014) is only applicable for softening 
non-Gaussian processes. Fig. 6 presents a scatter plot of paired values of skewness and kurtosis in 
moment space for all measured long-time duration net pressure coefficients at four angles (0°,  
30°, 45° and 90°) of three cases (A, B and C). Therefore, total 25043=3000 data points were 
plotted in Fig. 6. The colors of each point in the scatter plot were randomly selected by Matlab 
program to distinguish the data points from each other. While the parabolic dashed curve shown in 
Fig. 6 represents the practical limit given by Eq. (5), the parabolic solid curve indicates the 
monotonic region of Eq. (6). As shown in Fig. 6, the skewness–kurtosis combinations of all 
measured net pressure coefficients on the roof are above this parabolic limit. As expected, a small 
number of points fall out of the monotonic region and below the line of 4γ = 3, indicating the 
occurrence of hardening wind pressure processes are relatively rare.  

The contours of skewness and kurtosis of the wind pressure field are presented in Figs. 7 and 8 
for three cases under 90° wind. Fig. 7 shows that the patterns of skewness distributions are more or 
less the same for three test cases. On the other hand, the presence of coal piles inside the roof 
seems to change the distribution patter of kurtosis contours. Under the wind angle of 90°, the wind 
flows pass through the empty roof easily. For the other two cases of half and full coal piles, wind 
flows inside the roof would be disturbed by coal obstacles. Especially for the case of half coal 
piles, which are placed at the middle position along the long direction of the roof, wind flow 
would break away from the surface of the coal obstacles. Once this separation occurs, the wind 
flow inside the roof might form unsteady and recirculating vortices.  

 
 

 

Fig. 6 Paired values of skewness and kurtosis 
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Fig. 9 Skewness of pressure processes along the cross sections of the roof under 90° wind 
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Fig. 10 Kurtosis of pressure processes along the cross sections of the roof under 90° wind 
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The effect of coal obstacles on the high-order statistics of wind pressure was also studied along 
three typical cross sections of the roof, i.e., the leading edge C cross section, the middle M cross 
section and the outlet X cross section. It was found from Fig. 9(a) that the negative skewness of 
-0.7 for the empty roof was changed to be -0.1 for two other cases at the measuring sites of C02 
and C03. Such a substantial change might be due to the block of wind flow by coal obstacles when 
wind starts to enter the roof. Along the middle M cross section and the outlet X cross section as 
shown in Figs. 9(b) and 9(c) and Figs. 10(b) and 10(c), the effect of coal obstacles on the values of 
skewness and kurtosis becomes smaller compared to the leading edge C cross section.  
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Fig. 11 Estimated time-dependent skewness and kurtosis for C02 under 90° wind 
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The sensitivities of skewness and kurtosis to the record duration were presented in Figs. 11-13. 
Each data point in Figs. 11-13 is an estimation based on increasing data record with a 10-miniute 
step. Figs. 11-13 present high-order moments for three typical net pressure processes, measured at 
the pressure tap sites, i.e., C02, M03 and X05 (denoted as square in Fig. 4) under 90° wind. The 
estimated values of skewness and kurtosis are obviously fluctuated with the varying record 
duration. The dispersion of the estimated high-order moments could be measured by the 
coefficients of variations (COVs), which is defined by the standard deviation (STD) of the 
estimator over its mean. Table 1 summaries the results of COVs for high-order moments of 
pressure processes measured at sites of C02, M03 and X05 under wind. The estimated higher 
statistical moments generally have large variations, i.e., greater than 0.1, especially when the 
process is of strongly non-Gaussian properties. It should be noted that the COV results in the 
bracket were calculated with the absolute values of the estimator, otherwise the almost zero mean 
may cause too large COV, i.e., much greater than 1. Such significant COV results of skewness and 
kurtosis indicate that high-order moments of non-Gaussian pressure processes might become 
non-stationary.    
 

0 2 4 6 8 10 12 14 16 18 20 22
-0.5

-0.4

-0.3

-0.2

-0.1

S
ke

w
n

e
ss

Time(/10min)

 Empty
 Half-coal
 Full-coal

(a)  

0 2 4 6 8 10 12 14 16 18 20 22
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

K
ur

to
si

s-
3

Time(/10min)

 Empty
 Half-coal
 Full-coal

(b)  

Fig. 12 Estimated time-dependent skewness and kurtosis for M03 under 90° wind 
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Fig. 13 Estimated time-dependent skewness and kurtosis for X05 under 90° wind 
 
 
 
Table 1 COV of high-order moments for pressure processes on the roof under 90° wind 

  Empty Half coal Full coal 

C02 
Skewness -0.04 -0.23 (0.84) 
Kurtosis-3 (1.05) -0.30 -0.42 

M03 
Skewness -0.10 -0.15 -0.10 
Kurtosis-3 0.35 0.36 0.30 

X05 
Skewness -0.13 (0.62) -0.17 
Kurtosis-3 (0.43) 0.47 0.64 
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4. Mixture models for parent pressure distribution 
 

4.1 Flexible extreme value mixture model (FEVMM) 
 
The point-to-point CDF mapping approaches, i.e., the TPP methods, require the parent 

distribution models. In this paper, two types of mixture distribution models were used for 
analyzing the parent wind pressure data. The FEVMM includes a non-parametric smooth kernel 
density estimator below some threshold accompanied with the generalized Pareto distribution 
(GPD) model for the upper tail above the threshold. This mixture model avoids the need to assume 
a parametric form for the bulk distribution, and captures the entire distribution function below the 
threshold using a smooth flexible non-parametric form. The expression for GPD is 

        
 

  1/

Pr 1 1
1

X X
GPD

X

F x F u x u
F x X x X u

F u







  

         
 (7) 

where u denotes the chosen threshold;  and   are scale and shape parameters, respectively. 

When =0, the GPD becomes exponential distribution. The inference of GPD parameters can be 
performed using either maximum likelihood or method of moments applied to the data beyond the 
selected tail-index u (Harris 2005). The GPD model provides an approximation to parent CDF 
above a selected high threshold u as 

         1 ,     X X GPD XF x F u F x F u x u       (8) 

The corresponding probability density function (PDF) of Eq. (8) can be denoted as KP-pdf. The 
original version of the TPP method can be modified by adopting the proposed mixture model for 
parent pressure distribution. The modified version was denoted as ParTPP for comparison 
purposes.  

 
4.2 Multi-component mixture models 
 
In a mathematical sense, a random variable has a finite mixture distribution, if its distribution 

can be represented by a probability density function (PDF) of the form 

  

  1 1 1 2 2 2

1

( | ) ( | ) ... ( | )

0,  ( | ) 0,  ( | ) 1, 1,2,..., ,  0

k k k

k

i i i i i i
i

f x p f x p f x p f x

p f x f x dx i k p

  

 


   

      (9) 

where ( | )i if x  is the component density of the mixture; k is the number of components that 

constitute the mixture; the parameters 1p , 2p ,…, kp are the mixing weights and 1 , 2 ,…, k are 

the parameters of each component distribution. In this work, the mixture consists of two 
components and each component density function is either a normal distribution or a well-known 
two-parameter Weibull density function. Consequently, the mixture density can be expressed as: 

  1 1 2 2( | ) ( | ) (1 ) ( | )f x pf x p f x      (10) 
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When considering a mixture of double Weibull, the mixture density distribution can be defined 
as WW-pdf 

 1 1 2 21 11 2
1 1 2 2

1 1 1 2 2 2

( | , , , , ) { ( ) exp[ ( ) ]} (1 ){ ( ) exp[ ( ) ]}k k k kk kx x x x
f x k c k c p p p

c c c c c c
       (11) 

where the parameters  1k , 2k and 1c , 2c  are called shape parameters and scale parameters, 

respectively. If considering a mixture of normal and Weibull, the mixture density distribution 
becomes NW-pdf: 

 1 1

2
11

1 2
1 1 1

1 ( )
( | , , , , ) { ( ) exp[ ( ) ]} (1 ){ exp[ ]}

22
k kk x x x

f x k c p p p
c c c

 


 
      (12) 

where  and  are the mean and standard deviation of the normal distribution. The maximum 
likelihood method is applied in the present study to estimate the values of the parameters, which 
maximize the function of log-likelihood. For two-component Weibull mixtures, the function of 
log- likelihood can be defined as 

  1 1 2 2

1 1 2 2

1 11 2
1 1 1 2 2

1 1 1 1 2 2 2

1 11 2

1 1 1 1 2 2 2

ln ,..., | , , , , ln { ( ) exp[ ( ) ]} (1 ){ ( ) exp[ ( ) ]}

ln { ( ) exp[ ( ) ]} (1 ){ ( ) exp[ ( ) ]}

n
k k k ki i i i

n
i

n
k k k ki i i i

i

x x x xk k
L x x k c k c p p p

c c c c c c

x x x xk k
p p

c c c c c c

 



 



 
     

 
 

     
 




    (13) 

The Newton-Raphson algorithm can be used to maximize the above log-likelihood function 
(Titterington et al. 1995).  
 

4.3 The goodness-of-fit for mixture models 
 
Fig. 14 presents wind pressure histograms from observed data together with NW-pdf, WW-pdf 

and KP-pdf, for pressure processes measured at C02 under 90° wind. It can be seen the proposed 
mixture distribution models seem to fit well with the histograms, even in cases that wind pressure 
data set does not show a bimodal distribution. Table 2 lists the empirical values of the distribution 
parameters (e.g., 1k , 2k , 1c , 2c ) and the mixing weight p of the mixture models for C02 under 90° 

wind. It was found that the mixing weight values for both NW-pdf and WW-pdf are greater than 
0.1, indicating the significance of “compound” in these two mixture models. The empirical values 
of the parameters of the FEVMM and single Weibull were reported in Table 3.  

The goodness-of-fit of a statistical model describes how well it fits a set of observations. In this 
paper, three commonly used statistical tests are used to evaluate the fitness of various mixture 
models. The probability plot correlation coefficient (PPCC) test developed by Filliben (1975) is 
known a simple and powerful goodness-of-fit test. The test statistic is the correlation coefficient r 
between the ordered observations ix and the corresponding fitted quantiles im determined by the 

proposed probability distribution models. If the assumption that the observations could have been 
drawn from the fitted distribution is true, the value of r is close to unity. The correlation coefficient 
r is defined by (Filliben 1975) 
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(a) Empty roof 

(b) Half coal piles 

(c) Full coal piles 

Fig. 14 The PDF of pressure process at C02 under 90° wind 
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Table 2 Emprical values of the parameters of the two mixture models 

Site Case 
NW-PDF WW-PDF 

k c μ σ p k1 c1 k2 c2 p 

C02 

Empty 1.82 10.03 1.31 0.35 0.54 1.84 11.05 1.50 4.35 0.43

Half-coal 2.42 13.62 1.79 0.33 0.19 2.33 10.36 1.80 7.27 0.38

Full-coal 1.90 11.24 1.30 0.31 0.15 1.80 7.96 1.33 5.21 0.26

 
 

Table 3 Emprical values of the parameters of KP-PDF and single Weibull 

Site Case 
KP-PDF Weibull 

    u k c 

C02 

Empty 0.09 0.06 2.22 1.67 5.33 

Half-coal -0.22 0.05 2.72 2.04 5.75 

Full-coal 0.00 0.05 2.19 1.48 4.41 

 

 

      1

2 2

1 1

( )( )

( ) (m )

n

i i
i

n n

i i
i i

x x m m
r

x x m



 

 


 



 
                          (14) 

where x and m are the mean values of the observations and the fitted quantiles, respectively. The 
Kolmogorov-Smirnov test (K-S) is also used to decide if a sample comes from a population with a 
specific distribution. The KS indicator is defined as the maximum error in cumulative distribution 
functions 

    ˆmax i i
i

KS F F    (15) 

where Fi is the empirical distribution function of the observations; îF is the fitted theoretical 

cumulative distribution function. Lesser KS value indicates better fitness. Another measure of 
fitness is the root mean squared error (RMSE), which provides a term-by-term comparison of the 
actual deviation between the empirical and fitted probabilities. A lower value of RMSE indicates a 
better distribution function model. The RMSE is defined as 

         
1/22

1

1 ˆRMSE
n

i i
i

F F
n 

 
  
  
                      (16) 
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Table 4 Tests of goodness-of-fit for mixture models applied to pressure processes at C02 under 90° wind 

Cases PDF 
C02 

PPCC KS RMSE 

Empty roof 

NW 0.99997 0.00314 0.00107 

WW 0.99996 0.00372 0.00126 

KP 0.99999 0.00376 0.00095 

W 0.99298 0.05674 0.02130 

Half coal 

NW 0.99989 0.00470 0.00150 

WW 0.99994 0.00371 0.00128 

KP 1.00000 0.00199 0.00077 

W 0.99591 0.03844 0.01443 

Full coal 

NW 0.99991 0.00433 0.00163 

WW 0.99991 0.00422 0.00140 

KP 1.00000 0.00209 0.00074 

W 0.99792 0.03041 0.01181 

 
Table 4 shows the tests of goodness-of-fit for mixture models applied to pressure processes at C02 
under 90° wind. Generally, mixture models have smaller KS and RMSE values compared to the 
single Weibull model. The PPCC values of mixture models are also very close to 1.0. Based on the 
test results of goodness-of-fit, the mixture models should be the better choices for modeling the 
PDFs of asymmetric distribution or strongly non-Gaussian pressure processes. 

 
 

5. Non-Gaussian peak factors 
 
5.1 The CDF mapping approach 
 
For a zero-mean process, the so-called peak factor can be defined as the ratio of the mean 

extreme value to the standard deviation value of the process. Different methods were employed in 
this paper to calculate peak factors of wind pressure processes. The SS procedure, the TPP method 
and its revised version represent the common CDF mapping approach. The detail of the TPP 
method can be referred to the work (Huang et al. 2013). Here, the main procedure of the TPP 
method was provided. In the TPP method, the mean extreme of a given non-Gaussian process X(t) 
is calculated by the so called Weibull peak factor as 

    
   

 

1/
1/ 0

0
0

ln
ln

lnW

v T
g v T

v T


  




     
 (17) 
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where ,  = the shape parameter and the scale parameter of the peak Weibull distribution, 

respectively;  = Euler’s constant (  0.5772); 0 = the mean zero upcrossing rate of the 

non-Gaussian process;  T= time duration. When 2   and 2  , Eq. (17) is reduced to the 
classical Davenport’s peak factor as 

         0 02 ln / 2 lnWg v T v T   (18) 

The peak distribution of the given non-Gaussian pressure process was modelled by the 
two-parameter Weibull distribution, which was empirically determined by a translation procedure 
from peaks of a Gaussian process to the peaks of the non-Gaussian process. The mapped peak data 
of the non-Gaussian process are then fitted to the Weibull distribution to determine the scale and 
shape parameters required by Eq. (17). The translation procedure to generate the peaks of the 
non-Gaussian process is executed with the following steps: 
(a) Select a probability value (between zero and one) for the cumulative distribution function 

(CDF)    21
( ) 1 exp

2mY pk m pk pkF y P Y y y
       

, which is the Rayleigh distribution 

for peaks mY  of a standardized Gaussian process. 

(b) Find the corresponding peak value ypk through the Rayleigh distribution.  

(c) Find the corresponding Gaussian distribution function value  pky at the peak ypk .  

(d) With    pk x pky F x  determine the corresponding value of non-Gaussian peak pkx , 

where  xF x is the CDF of the non-Gaussian process x(t). 

(e) The desired point on the CDF  
mX pkF x of the non-Gaussian peaks mX can be obtained 

from the abscissa of the non-Gaussian peak pkx and the ordinate with  
mX pkF x =  

mY pkF y . 

(f)  Repeat steps (a)~(e) by assigning an increased probability value of  
mY pkF y to generate the 

CDF of the peaks mX for the given non-Gaussian process x(t). 

The above TPP procedure require the information of the parent CDF, which may be empirically 
obtained by using various methods or models, including the kernel-smoothing method (Hastie et al. 
2009), the FEVMM, and the two-component mixture models. For comparison, the original TPP 
method with the kernel-smoothing estimator, the TPP method with the FEVMM, and the TPP 
method with the mixture models are denoted as TPP, parTPP and mixTPP, respectively.   

 
5.2 The Hermite model approach 
 
The Hermite model approach was implemented by employing two non-Gaussian peak factors 

for softening processes and hardening processes, respectively. For a softening process, Kwon and 
Kareem (2011) revisited the non-Gaussian peak factor and developed the following expression of 
the Hermite moment-based non-Gaussian peak factor (Kareem and Zhao 1994, Kwon and Kareem 
2011) 
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    
 

 
      

 

      
 (19) 

where )ln(2 0T  ; 0 = mean zero upcrossing rate of a standardized non-Gaussian process 

x(t) (obtained from a general non-Gaussian process X(t) as x(t)=  ( ) /X XX t   ,where X
=mean value of X(t), X = the standard deviation of X(t)); 3 4, ,h h  are parameters of the 

moment-based Hermite model (Winterstein 1988), which gives a transformation from a standard 
Gaussian process y(t) to the standardized non-Gaussian process x(t)  

      2 3
3 4( 1) ( 3 )x y h y h y y         (20) 

where the parameters h3 and h4 control the shape of the distribution, while the parameter 
2 2 1/2
3 4(1 2 6 )h h    is the scaling factor. In the “softening” case, that is, 4 3  , the 

second-order and third-order approximate analytical solutions are available (Winterstein 1988, 
Winterstein and Kashef 2000). New expressions for h3 and h4 were recently suggested by Yang et 
al. (2013) 

 3
3 3 3 4 30.1967 0.01646 0.01809h        (21) 

 2 2 2
4 4 3 4 3 40.0721 0.03176 0.02942 0.00179 0.002348h            (22) 

Eqs. (19), (21), (22) establish a way to evaluate non-Gaussian peak factors of softening 
processes, denoted as NGS.  

Based on the work of Choi and Sweetman (2010), an analytical solution for the non-Gaussian 
peak factor of a hardening process can be obtained as (Huang et al. 2014)  

 
   1/3 1/3

2 2 23
1 2 0 0 0 0

4

1
3 1 1

3 3NGH

h
g a a C C C C

h

              (23) 

where 1 4 4 2 3 4(1 3 )/ , /a h h a h h   and 0C  are three parameters depending only on the Hermite 

coefficients h3 and h4; 0C is given as follows 

 

  1.53
3 4 1 2 2

0 2
1 2

27 / / 9 2 9

54 3

h h a a a
C

a a

         
     (24) 

The use of Eq. (23) to calculate the non-Gaussian peak factor of a hardening process is denoted 
as NGH. 
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(a) Empty roof (Skewness=-0.6681, Kurtosis=2.9976) 

(b) Half coal piles (Skewness=-0.0897, Kurtosis=2.6376) 

(c) Full coal piles (Skewness=0.0169, Kurtosis=2.7905) 

Fig. 15 Comparison of estimated peak factors of pressure process at C02 under 90° wind 
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Table 5 The percentage errors of calculated peak factors compared with results of final DSA for C02 

Methods 
Cases 

Empty roof Half coal Full coal 

DAV -9.33% -2.64% -1.41% 

NGH 15.74% -7.25% -5.43% 

TPP 12.73% -4.63% -2.37% 

parTPP 11.95% -4.03% -1.35% 

mixTPP(NW) 5.95% -4.94% -1.48% 

mixTPP(WW) 4.05% -1.82% -1.00% 

 
 
6. Results and discussions  

 
The peak factor results were respectively calculated by five methods, i.e., DAV (Davenport’s 

peak factor), TPP, ParTPP, MixTPP and NGS (or NGH). The total duration of pressure time history 
data for direct statistical analysis was 220-minute in full-scale, including 22 samples of 10-minute 
pressure coefficient data. The expected maximum (peak factor) of pressure coefficients for 
10-minute duration were then computed by averaging the 22 observed maximum pressure 
coefficients over the 22 samples of 10-minute records. The direct statistical analysis (DSA) could 
provide benchmark results for weighting up other methods.  

Fig. 15 presents non-Gaussian peak factors of pressure processes from C02 under 90° wind for 
three cases. The 22 peak factor results were obtained with varying record duration corresponding 
to each method. That is to say, the data used for calculating peak factors is starting from the first 
10-minute duration to two 10-minute durations, up to 220-minute duration. For the empty case, the 
NGH largely overestimated the peak factors compared to the DSA benchmark results. The CDF 
mapping approach (i.e., TPP, parTPP and mixTPP) seems to have better performance in the 
estimation of non-Gaussian peak factors. While the parTPP just slightly improves the peak factor 
results, the mixTPP (WW) is capable of obtaining the best peak factor predictions with a small 4% 
overestimation compared to the final DSA of 3.6229. It was noted that the Davenport’s peak factor 
underestimated the peak factors due to the asymmetric distribution of the pressure process (i.e., 
skewness is up to -0.6681) under consideration.  

For the half-coal case, the pressure process with a kurtosis of 2.6376 is a hardening process. 
Various methods seem to all underestimated the peak factors compared to the final DSA of 3.3693. 
The mixTPP (WW) is also able to slightly improve the estimation of peak factors compared to the 
original TPP method. The DSA results of peak factors exhibit noticeable fluctuations indicating the 
possible non-stationary property of peak factor for a hardening process, which may cause the 
difficulty to adequately determinate peak wind loads in practice and needs to be better explained 
through a future study. The similar fluctuation in the estimation of peak factors was also observed 
for the full-coal case. The percentage errors of calculated peak factors compared with results of 
final DSA were reported in Table 3 for C02 under 90° wind. The TPP type methods are able to 
achieve better predictions of peak factors with percentage errors less than 5% (see Table 3) 
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compared to the moment-based translation method, i.e., NGH. Actually, the accuracy of the 
moment-based translation method is largely depending on the reliable estimation of skewness and 
kurtosis. For strongly non-Gaussian processes, the stable estimation of skewness and kurtosis is 
not guaranteed even using long duration pressure time histories since high-order moments might 
become non-stationary. The comparison of peak factor results could lead to a conclusion that the 
mixTPP method using two-component Weibull mixtures shows noticeable improvement over the 
original TPP method in the calculation of peak factors for strongly asymmetric distribution or 
hardening pressure processes. It is worth to note that the proposed mixTPP method is limited by 
the capability of adopted mixture distributions to accurately model non-Gaussian pressure data. 
The applicability of two-component Weibull mixtures to model general pressure data needs to be 
further studied in the future.  

 
 

7. Conclusions 
 
In this paper, high-order moments and peak factors of non-Gaussian pressure process are 

investigated based on the wind tunnel experiments of a cylindrical reticulated roof structure with 
or without coal piles inside. The focus is put on the estimation of time-dependent non-Gaussian 
statistics of long-duration pressure records for three different testing cases, i.e., the empty roof 
without coal piles, half coal piles inside and full coal piles. It was found that high-order moments 
of net wind pressure on the shell roof exhibit strong sensitivity to the record duration. The 
maximum value of COVs (Coefficients of variations) of high-order moments is up to 1.05 for 
several measured pressure processes. Such a significant dispersion of the estimated high-order 
moments using the conventional 10-miniute duration pressure data indicates that the moment-base 
translation method, which is depend on the estimated skewness and kurtosis, would suffer large 
uncertainty in the estimation of peak wind loads using short-term time history samples. The newly 
revealed statistical property of wind pressure fields is characterized as non-Gaussian 
time-dependent statistics, which could lead to a high-order non-stationary process with constant 
mean and variance.  

Various mixture distributions were introduced to describe and model non-Gaussian wind 
pressure processes, i.e., WW-pdf, NW-pdf and KP-pdf. The results of goodness-of-fit analysis 
show that both KP-pdf and WW-pdf are quite adequate to model hardening wind pressure process 
with PPCC values very close to unity. With the aid of mixture distributions, the TPP method has 
been revised and improved to estimate non-Gaussian peak factors. The comparison of 
non-Gaussian peak factors estimated by various state-of-the-art methods demonstrates that the 
MixTPP considering the two-component Weibull mixtures seems quite effective in further 
improving the accuracy of the current TPP method. The TPP method and its various revisions 
exhibit their advantages of stability and accuracy over the moment-based translation method in 
calculating non-Gaussian peak factors. The estimated non-Gaussian peak factors of wind pressure 
on the long roof with open ends were also found to be sensitive to the presence of coal piles inside, 
i.e., a hardening pressure process at the leading edge of the roof were varying from 3.6229, 3.3693 
to 3.3416 corresponding to three different cases of A, B and C.  
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