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Abstract.    The structural integrity of tube bundles represents a major concern when dealing with high risk 
industries, such as nuclear steam generators, where the rupture of a tube or tubes will lead to the undesired 
mixing of the primary and secondary fluids. Flow-induced vibration is one of the major concerns that could 
compromise the structural integrity. The vibration is caused by fluid flow excitation. While there are several 
excitation mechanisms that could contribute to these vibrations, fluidelastic instability is generally regarded 
as the most severe. When this mechanism prevails, it could cause serious damage to tube arrays in a very 
short period of time. The tubes are therefore stiffened by means of supports to avoid these vibrations. To 
accommodate the thermal expansion of the tube, as well as to facilitate the installation of these tube bundles, 
clearances are allowed between the tubes and their supports. Progressive tube wear and chemical cleaning 
gradually increases the clearances between the tubes and their supports, which can lead to more frequent and 
severe tube/support impact and rubbing. These increased impacts can lead to tube damage due to fatigue 
and/or wear at the support locations. This paper presents simulations of a loosely supported multi-span U- 
bend tube subjected to turbulence and fluidelastic instability forces. The mathematical model for the 
loosely-supported tubes and the fluidelastic instability model is presented. The model is then utilized to 
simulate the nonlinear response of a U-bend tube with flat bar supports subjected to cross-flow. The effect of 
the support clearance as well as the support offset are investigated. Special attention is given to the 
tube/support interaction parameters that affect wear, such as impact and normal work rate. 
 

Keywords:  flow-induced vibrations; fluidelastic instability; impact; friction; loosely-supported tubes; 
nuclear steam generators 

 
 
1. Introduction 
 

Flow-induced vibrations of heat-exchanger tubes is identified as one of the most significant 
safety issues in operating nuclear steam generators. These issues are manifested in the form of 
failures due to fatigue and fretting wear at the supports. Such failures can be very expensive in the 
case of nuclear steam generators. Therefore, flow-induced vibrations have been the subject of 
extensive research in the past five decades to understand the phenomenon and to establish 
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guidelines for the design and safe operation of these devices. The vibrations are excited by several 
excitation mechanisms. Turbulence and fluidelastic instability are the two dominant mechanisms 
in most heat exchangers (Païdoussis 1983, Weaver and Fitzpatrick 1988). Fluidelastic instability is 
considered to be the most destructive mechanism and is characterized by the evolution of large 
amplitude oscillations when the flow velocity exceeds a certain threshold. If this threshold is 
exceeded, tubes may fail catastrophically in a short period of time. A detailed description of this 
mechanism can be found in the work of Price (1995). In order to avoid such failures counter 
measures, such as limiting the flow velocity and stiffening the tube structure, are considered. 
Therefore, supports are installed to provide a stiffer tube configuration. Tube/support assemblies 
are usually loose-fitting to accommodate tube thermal expansion and to facilitate the 
manufacturing and the assembling process. However, the existence of these supports allows for 
impacting and sliding against the support to take place. This in turn results in fretting wear damage 
potential at the tube support locations. The prevention of such failures can be obtained by careful 
design with proper selection of tube supports bars especially in the U-bend region. Nevertheless, 
some situations may arise from worn or ill-positioned supports. This may result in larger than 
usual tube/support gaps. In such a case the tube may be exposed to high levels of impact and 
sliding force due to both turbulence and fluidelastic coupling forces induced by the cross-flow. 
Prediction of tube response under the conditions of loose supports and fluidelastic force are a very 
complex process due to the nonlinearity of both the tube boundary conditions (loose supports) and 
the fluidelastic forces. Predicting such wear requires temporal records of quantities such as the 
impact forces and the tube response. This paper deals with such predictive analyses, and attempts 
to present a simulation for a full U-bend tube configuration. The work also presents a systemic 
assessment of the determination of the appropriate number of anti-vibration bars in the U-Bend 
region. Moreover, the effect of support offset on the dynamic response of the U-bend configuration 
is also investigated. 
 
 
2. Modelling 
 

A loosely supported tube which is subjected to turbulence and fluidelastic force is described by 
the following equation 

                                         (1) 

where w(t) is the response of the tube, M is the total mass, C is the damping coefficient, K is the 
system stiffness, and Fturb is the turbulence excitation force. Matrices M, C, and K contain the 
contributions of the fluid flow and the contact at the support. Due to the loose supports, the system 
stiffness and damping are nonlinear. One one approach to model of the system involves splitting 
the working space into two regions (states) within which the system behaves linearly. Therefore, 
the nonlinearity will represent the transition from one state to another. It is possible to separate the 
flow and contact contributions to the system matrices in the form of forces and move it to the 
right-hand side of the above equation as follows 

                   (2) 

In the above equation, Ks and Cs represent the structural components of the system while Ms 
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contains both the structural, internal flow added mass, and external flow added masse. Ff(t) and 
Fturb(t) are the fluidelastic forces and the turbulence excitation forces, respectively. In some cases, 
the external forces also have an additional constant component (preload, Fpre(t)) to represent the 
steady drag force and tube/support offset. In general the tube structure is discretized using finite 
elements. 

The mathematical treatments of the impact force range from discretizing both the tube and each 
support using beam and plate elements, and applying a generalized overlap and contact algorithm 
to a much more efficient specialized algorithm utilizing a localized tube deformation effect. The 
latter method will be utilized here and was described in full detail by Hassan et al. (2002). 
However, a brief description is presented in this section. Loose supports can be modelled by a 
number of massless bars attached by an equivalent contact spring and damper (Fig. 1). Impact 
takes place when the normal displacement component at the support location exceeds the tube 
support gap. In such an event, a corrective force is estimated based on the overlap displacement 
and applied as an external force to the system. The normal contact force (Fcn) is given by 

Fcn  Fspr Fdmp for wn Cr,     and

Fcn0 for wn Cr,           
                                     (3) 

where Fspr and Fdmp are the spring and damping forces while Cr is the radial clearance. During the 
tube support contact, friction arises if the tube is excited to move in a tangential direction to the 
support. Several models have been developed to deal with a steam generator’s tube bundle friction. 
These models include the Velocity Limited Friction Model (VLFM), the Spring Damper Friction 
Model (SDFM), and the Force Balance Friction Model (FBFM). A detailed description and 
comparison of these models can be found in the work of Hassan and Rogers (2005). In the current 
work, the FBFM is used with a velocity feedback algorithm. 

As mentioned earlier turbulence excitation is a significant vibration mechanism that determines 
the long term life of the tubes. Deep within the tube bundle, tubes are excited by the turbulence 
generated within the bundle, which is in turn governed by the tube bundle geometry. In general, 
fluid excitation due to turbulence is modelled as randomly distributed forces. The bounding power 
spectral density (PSD) measured by Oengören and Ziada (1998) for a tube array of 
pitch-to-diameter ratio (P/d) of 1.61 was utilized in this work to generate the time-domain fluid 
forces. It is a common approach to excite the system through a fully correlated turbulence force 
along the entire tube length. However, such an assumption is not entirely accurate and is overly 
conservative. The correlation length of the turbulent forces is typically a few diameters. A less 
conservative approach is to use a number of random forces, assuming a full correlation within each 
tube span – see, for instance, Hassan et al. (2003). The power spectral density (PSD) of the 
dynamic force acting on any element is expressed as 

SFF 
1

4
 f

2d3U 3l2,                                                    (4) 

where ρf, U, and ϕ are the fluid density, the pitch flow velocity, and the spectral bound of the 
turbulence forces, respectively. For triangular arrays with small spacing, the spectral bound for the 
lift ϕL and drag ϕD directions are given by 
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Fig. 3 Linear tube response 

 
 

The inlet velocity	ܷሺെܵ௢ሻ and pressure ܲሺെܵ௢ሻ are considered to be constant. The parameter ݄ 
accounts for the resistance due to viscous losses. A reasonable estimate of the resistance coefficient 
can be obtained by assuming that it does not vary significantly with the Reynolds number in the 
vicinity of the stability threshold for each array (Lever and Weaver 1986). It was also shown that 
݄ does not greatly influence the stability threshold of the system. Therefore, an average value of 
0.275 was used for all simulations. Additional effects, such as the flow separation oscillation, can 
be introduced which requires the modeling of the boundary at the tube/flow channel interface 
(Anderson et al. 2014).  

To demonstrate the model, a simplified one-degree of freedom system is utilized. The system 
parameters, such as tube diameter, stiffness, and mass, are 0.01905 m, 1039.2 N/m, and 0.66 kg, 
respectively. The tube is subjected to air cross-flow. The above algorithm, including the turbulence 
and FEI excitation, were implemented and the time integration was conducted using the Newmark 
technique. Fig. 3 shows the tube response as a function of the velocity. The rms tube response is 
expressed as a percentage of the tube diameter while the flow velocity is normalized by the tube 
diameter and the natural frequency (Ur=U/fd). The response gradually increases as the flow 
velocity increases up to a reduced flow velocity of 44. During this range of flow velocity, the 
response is dominated by the random forces due to the turbulence effect. Beyond a reduced flow 
velocity of 44 an abrupt increase in the response takes place as a result of the system crossing the 
FEI stability threshold. Both FEI and turbulence are affecting the tube response. However, the 
relative contribution of each component varies depending on the proximity to the stability 
threshold. 
Detailed implementation procedure of the above model in a general-purpose finite element code 
INDAP (Incremental Nonlinear Dynamic Analysis Program) was described in detail by Hassan 
and Mohany (2013). In this implementation, each finite element is attached to a flow cell identical 
to that shown in Fig. 2(a). The depth of the flow cell matches the element length (dl) as shown in 
Fig. 2(b). For each element, the history of the average displacement component in the lift direction 
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(a) (b) (c) (d) 

Fig. 5 U-bend tube configurations: (a) Configuration 1, (b) Configuration 2, (c) Configuration 3 and (d) 
Configuration 4 

 
 

Each tube is supported by 7 tube sheet supports (broached hole supports) in the hot and the cold 
leg, as shown in Fig. 4(b). The differences between these configurations lie in the number and 
locations of the flat bar supports (Fig. 5). Typical flow distribution in the U-bend can be found in 
the work of Mohany et al. (2012). Such flow distribution was adopted in this work. Configurations 
1, 2, 3, and 4 have 2, 4, 6, and 12 flat bar supports, respectively, as shown in Fig. 5. For each 
configuration, the clearance between the tube and the flat bar supports was varied between 0.1 mm 
to 1.0 mm. Each simulation was run for 10 sec with a time step of 0.01 msec. The rms streamwise 
and transverse responses of the tube were determined. In addition, the impact forces and the 
normal work rate were calculated. 

 
 

3. Results  
 

Fig. 6 shows the rms tube response for the transverse and streamwise directions for 
Configurations 2, 3, and 4. Configuration 1 was found to be fluidelastically unstable resulting in a 
very large tube response and extremely high impact force levels. Therefore, the results of 
Configuration 1 were omitted from this section. Figure 6 shows the response for a clearance of 1.0 
mm. The transverse response shows peaks at the mid-spans and valleys of the supports especially 
for the hot leg (nodes 1-20) and cold leg (nodes 60-91); refer to Fig. 4(a). For all configurations, 
the transverse response has its highest values in the U-bend region where the anti-vibration bars 
are located. Configuration 2 exhibits the highest transverse response with values up to 6% of the 
tube diameter, while the lowest response was found for Configuration 4. In addition, the response 
of Configuration 4 is almost flat in the U-bend region. This can be attributed to the large number 
of flat bars used. In general, the streamwise response is much smaller than the transverse response. 
However, Configuration 4 shows a higher streamwise response than the transverse counterpart. 

Fig. 7 shows the rms impact force at the U-bend anti-vibration bars for two sets of support 
clearances (0.1 mm and 1.0 mm). The anti-vibration bars were numbered 1, 2, 3, etc. starting from 
the hot side and moving counterclockwise towards the cold side (see Fig. 5). For all configurations 
the impact force level is higher for larger support clearances. The highest level of impact force was 
found in Configuration 2 (Fig. 7(a)). When higher numbers of supports were used, the impact 
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force level was lowered. In addition, using more anti-vibration bars increased the ratio of the 
impact force level for the large and small clearances. Moreover, using more supports yielded a 
better distribution of the impact force across the anti-vibration bars. 

Normal work is one of the most important parameters that is utilized to estimate the fretting 
wear potential. The normal work rate is defined as the normal component of the contact force, ܨ௖௡, 
integrated over the sliding distance, ݓ௦. As shown in Fig. 8, similar trends are manifested in the 
case of the impact force level, and the normal work rate lowers as the number of supports is 
increased. For the clearance case of 1.0 mm, the predicted normal work rate of Configuration 2 is 
in the range of 45 to 70 mW. These are considered extremely high values as well-designed steam 
generators are expected to have work rate levels in the range of a few mW. Configuration 3 also 
exhibits high values of work rate for a clearance of 1.0 mm. However, for the case of 0.1 mm the 
work rate is much lower (about 10 mW). 

From the above results, high and undesirable values of impact forces and normal work rates can 
be observed for a lower number of anti-vibration bars. With only 2-4 bars, Configurations 1 and 2 
would not represent a viable design option. Configurations 3 and 4 with 6-12 bars seem to exhibit 
reasonable normal work rate values with Configuration 3 being a borderline case. 

 
 

 

   

(a) Configuration 2 (b) Configuration 3 (c) Configuration 4 

Fig. 6 Streamwise (dotted line) and transverse (solid line) response along the tube nodes 
 
 

 

 

   

(a) Configuration 2 (b) Configuration 3 (c) Configuration 4 

Fig. 7 Rms impact force at the supports located in the U-bend 
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Introducing a one-sided offset results in a significant decrease in the impact force for the large 
clearance case. The reduction is in the range of 30% to 50% for Supports 3-5. A significant 
increase in the impact force in the two middle supports (3 and 4) was predicted when the alternate 
offset was introduced. However the side supports (1, 2, 5, and 6) experience smaller impact force 
levels. 

 
 
 

(a) Transverse direction (b) Streamwise direction 

Fig. 10 The effect of the support offset on the response along the tube nodes 
 
 
 

   

(a) Clearance of 0.1 mm (b) Clearance of 1.0 mm 

Fig. 11 The effect of the support offset on the rms impact force 
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(a) Clearance of 0.1 mm (b) Clearance of 1.0 mm  

Fig. 12 The effect of the support offset on the normal work rate 
 

 
A prediction of the normal work rate for the two clearance cases is shown in Fig. 12. Small 

differences in the normal work rate level were predicted when introducing the one-sided offset for 
the small clearance. An increase in the normal work rate for Supports 3 and 4 was observed for the 
alternate offset case (Fig. 12(a)). Introduction of an offset is shown to have an attenuating effect on 
the work rate for the large clearance (Fig. 12(b)).  
The predicted response, impact force, and normal work rate show the complexity of the dynamic 
system and its sensitivity to the conditions at the supports in terms of the clearance and the offset 
conditions. For example, the alternate offset conditions result in a relatively large impact force at 
the top of the U-bend region, which provides a larger contact force and a larger friction capacity. 
Increasing the friction capacity allows the means of energy dissipation. This large energy 
dissipation takes place at the top of the U-bend region, which provides the maximum moment arm 
and hence, a greater effectiveness. Conversely, the one-side offset results in a lower impact force 
level, especially for the large clearance value (Fig. 11(b)). Smaller impact force levels limit the 
available friction capacity of the system. This in turn leads to a larger streamwise response (Fig. 
10(b)). Hence, certain combinations of support clearance and offset conditions could promote 
larger streamwise oscillations and could even result in instability. This would explain some of the 
recent failures, which took place in tube bundles in newly manufactured nuclear steam generators. 
 
 
5. Conclusions 
 

Simulations of a full scale U-Bend tube bundle were carried out. The simulations modelled the 
structural dynamics of the tube including the effect of loose supports. Modelling of the fluidelastic 
instability excitation was presented. Simulations were conducted for four configurations with 2, 4, 
6, and 12 anti-vibration bars installed in the U-bend region. For the rated flow velocity and the 
density distribution used, Configuration 1 is unstable while Configuration 4 (with 12 supports) is 
stable with safe normal work rate levels. While the use of 4 anti-vibration bars seems to provide 
stability, the normal work rates predicted are very high. Such a configuration can not be used. The 

1 2 3 4 5 6
0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Support
W

or
k 

R
at

e 
[W

a
tt]

 

 

Zero offset
One sided offset
Alternate offset

168



 
 
 
 
 
 

Simulations of fluidelastic forces and fretting wear in U-bend tube bundles of steam generators… 

third configuration was also stable with a relatively high normal work rate. Introducing the offset 
at the anti-vibration bars seems to be beneficial in reducing the response, impact force and normal 
work rates for large clearances. Little benefit can be gained from a support offset if the clearance 
between the tube and its support is tight. In fact, for small clearances such an offset might result in 
a higher tube response. The proposed model and the simulation results can be helpful in the design 
and prediction of flow-induced vibration of tube bundles in nuclear steam generators. 
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