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Abstract. In this paper, a refined shear deformation plate theory which eliminates the use of a shear
correction factor was presented for FG sandwich plates composed of FG face sheets and an isotropic
homogeneous core. The theory accounts for parabolic distribution of the transverse shear strains and satisfies
the zero traction boundary conditions on the surfaces of the plate. The mechanical properties of the plate are
assumed to vary continuously in the thickness direction by a simple power-law distribution in terms of the
volume fractions of the constituents. Based on the present refined shear deformation plate theory, the
governing equations of equilibrium are derived from the principle of virtual displacements. Numerical
illustrations concern buckling behavior of FG sandwiches plates with Metal-Ceramic composition.
Parametric studies are performed for varying ceramic volume fraction, volume fraction profiles, Boundary
condition, and length to thickness ratios. The accuracy of the present solutions is verified by comparing the
obtained results with the existing solutions.

Keywords: mechanical properties; functionally graded sandwich plate; buckling; shear deformation;
volume fraction

1. Introduction

The conventional sandwich structures are generally fabricated form three homogeneous layers,
two face sheets adhesively bonded to the core. However, the sudden change in material properties
across the interface between different materials can result in large interlaminar stresses. To
overcome these adverse effects, a new class of advanced inhomogeneous composite materials, that
compose of two or more phases with different material properties and continuously varying
composition distribution (using a simple functional law or an exponential law), has been
developed which is referred to as functionally graded materials (FGMSs). Such materials were
introduced as to take advantage of the desired material properties of each constituent material
without interface problems. The sandwich plate faces are typically made from a mixture of two
materials. While the core of this sandwich plate is fully homogeneous material. Studies related to
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FGM sandwich structures are few in numbers. Zenkour and Sobhy (2010) investigated the thermal
buckling of various types of FGM sandwich plate using sinusoidal shear deformation plate theory
(SPT). Zenkour (2005) studied the mechanical bending response, buckling and free vibration of
simply supported FGM sandwich plate in that paper. Three-dimensional finite element simulations
for analyzing low velocity impact behavior of sandwich panels with a functionally graded core
were conducted by Etemadi et al. (2009). An exact thermoelasticity solution for a two-dimensional
sandwich structures with functionally graded coating was presented by Shodja et al. (2007).
Tounsi and his co-workers (Hadji et al, 2011, Bachir Bouiadjra et al. 2012, Fekrar et al. 2012,
Tounsi et al. (2013), Klouche Djedid et al. 2014, Ait Yahia et al. 2015) developed new shear
deformation plates theories involving only four unknown functions. Wang and Shen. (2011)
analyzed non-linear free vibration, non-linear bending and postbuckling of sandwich plates with
FGM face sheets resting on an elastic foundation of Pasternak type. Kiani and Eslami (2012)
presented a simple approximate closed-form expression to predict the postbuckling response of
sandwich plates with FGM face sheets, which were subjected to uniform temperature rise loading.
Recently Ait Amar Meziane et al. (2014) proposed an efficient and simple refined theory for
buckling and free vibration of exponentially graded sandwich plates under various boundary
conditions. Zidi et al. (2014) analyzed the bending analysis of FGM plates under
hygro-thermo-mechanical loading using a four variable refined plate theory. Belabed et al. (2014)
presented an efficient and simple higher order shear and normal deformation theory for
functionally graded material (FGM) plates. Belabed et al. (2014) presented an efficient and simple
higher order shear and normal deformation theory for functionally graded material (FGM) plates.
Hebali et al. (2014) studied the static and free vibration analysis of functionally graded plates
using a new quasi-3D hyperbolic shear deformation theory. Bourada et al. (2015) analyzed the
thermomechanical bending response of FGM thick plates resting on Winkler—Pasternak elastic
foundations. Mahi et al. (2015) studied the bending and free vibration analysis of isotropic,
functionally graded, sandwich and laminated composite plates using a new hyperbolic shear
deformation theory. Hamidi et al. (2015) investigated a sinusoidal plate theory with 5-unknowns
and stretching effect for thermomechanical bending of functionally graded sandwich plates. Mahi
et al. (2015) analyzed the bending and free vibration analysis of isotropic, functionally graded,
sandwich and laminated composite plates using a new hyperbolic shear deformation theory.
Al-Basyouni et al. (2015) presented size dependent bending and vibration analysis of functionally
graded micro beams based on modified couple stress theory and neutral surface position. Zemri et
al. (2015) studied the mechanical response of functionally graded nanoscale beam: an assessment
of a refined nonlocal shear deformation theory. Bennoun et al. (2016) analyzed the vibration of
functionally graded sandwich plates using a novel five variable refined plate theory. Ait Atmane et
al. (2016) studied the effect of thickness stretching and porosity on mechanical response of
functionally graded beams resting on elastic foundations.

In this paper, a refined shear deformation plate theory which eliminates the use of the shear
correction factor is developed for FG sandwich plates composed of FG face sheets and an isotropic
homogeneous core. Equations of motion and boundary conditions are derived from Hamilton’s
principle. Analytical solutions for rectangular plates under various boundary conditions are
obtained. Numerical examples are presented to verify the accuracy of the present theory in
predicting the buckling responses of FG sandwich plates.
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2. Theoretical formulations

Consider a sandwich plate composed of three layers as shown in Fig. 1. Two FG face sheets are
made from a mixture of a metal and a ceramic, while a core is made of an isotropic homogeneous
material. The material properties of FG face sheets are assumed to vary continuously through the
plate thickness by a power law distribution as

P(z)=P, +(P. —P, )V (1)

where P represents the effective material property such as Young’s modulus E , Poisson’s ratio
v, and mass density p ; subscripts ¢ and m denote the ceramic and metal phases,

respectively; and V is the volume fraction of the ceramic phase defined by

k
_h
Vm:(é_&} 2 <[hy, ] (22)
V@ =1 ze[h,h,] (2b)
z—h, '
@ _| 23 h,,h 2c
v (hz_hj zelh, hy] (29

where k is the power law index that governs the volume fraction gradation.
2.1 Kinematics and constitutive equations

The displacement field of the present refined shear deformation plate theory is given by

ow, ow,
U(x,y,2)=u(x, y)—zg— f(z) >

_ Wy W, (32)
V(x,y,2)=v(x,y)-z Y f(z) %

W%y, 2)=w, (x, )+ w, (x,y)

Fig. 1 Geometry and coordinates of FG sandwich plates
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where
f(z)=z—ze 2" (3b)
The strains associated with the displacements in Eq. (3) are
g, =&l + 2K +f(z)kS

0

X
_ .0 b S
g, =& +2k; +T(z)k}

0 b S
Ve =V + 2K, +f(2)k
y ys y Xy (4)
}/yz =g7/yz
Y = 97n
g, =0
where
2 2
OX OX OX
2 2
g)(() =?’k5 =_aayV\2lb ,k; =_aayV\2IS
y
5)
o _Ou v, 0w, 00w,

Vo =t Xy — Ny —

Yooy ox Y oxoy ¥ OX0y

ow , df
(2) 1 (2)= 4@

7;z:aws’7>fz: s1g:1_f'z
oy OX dz

For elastic and isotropic FGMs, the constitutive relations can be written as
(n) (n) (n)

Oy Ch, C, O &y 2' (n) Q 0 (n) y (n)

o, =|C, Q,, O g, ¢ and { yz} :{ a4 } { yz} (6)
Tox 0 Qs Y xa

Txy 0 0 QGG j/xy

where

1-v ™

2.2 Governing equations

The governing equations of equilibrium can be derived by using the principle of virtual
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displacements. The principle of virtual work in the present case yields

hJ/g J[Jx§gx +0,08, + 7,07, + 7,07, +7,07, thZ — INéWdQ =0, 8)
Q

-h/2Q
with

Nz N)(()az(wb_'_ws)_i_NOa%Wb_i_Ws)_i_ZNS a%Wb_i_ws)
o e o ©)

Substituting Egs. (5) and (6) into Eg. (9) and integrating through the thickness of the plate, Eq.
(9) can be rewritten as:

0 0 0 b q,b bg,b b b sq,S
J{NX&X +N,Se) + N 57 + MPKD + MEKS +M Pk +M ok

sq,S s s s s s s dQ_JNMdQ :0’ (10)
Q + M yd(y + M Xyd(xy + Syz5yyz + szé‘}/xz Q

where
" (11)

where h,,,and h, are the top and bottom 2z — coordinates of the nth layer.

Substituting Eq. (6) into Eq. (11) and integrating through the thickness of the plate, the stress
resultants are given as

N A B B°|le g Al 0 s
M°t=| B D D°]k° ’{s?}{ 84 H“} (12)
Ms Bs Ds Hs ks Xz A55 7/xz

t
1

N={N, N NS M =M 2 M oM M =i M e | )

in which
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e=16%,6%70 k" =, Kk2 K2 ke = ke ke Lk, | (13b)
i All A12 O Bll BlZ 0 Dll D12 0
A=|A, A, 0 |B=|B, B, 0 |D=D, D, 0 (13¢)
0 0 A, 0 0 0 0 D
B, B, 0 D), Dp Hi Hp
B>=|B, B 0 |[D°=|D; D H* = Hlsz stz (13d)
0 0 B 0 0 Dg6 Hg6

and stiffness components and inertias are given as

A11 Bn D11 . Blsl Dlsl Hlsl 3 et (M 1
A, B, Dy By D Hip=) [Q (Lz2?f(2),7(2)1?2) 1v(”)(n) 0z (14a)
A66 BBG D66 Bgﬁ Dgﬁ HSG mohou _;/
S S S S S n E(Z)
(A22’ BZZ’ D22’ BZZ’ D22’ H 22) (All’ Bll’ Dll’ Bll' Dll' H ) l(l) = 1 V2 (14b)
s n 1 E Z
Auy = Ags = z I ( ) g( )] z (14c)

S5 20+v

The governing equations of equilibrium can be derived from Eq. (16) by integrating the
displacement gradients by parts and setting the coefficients zero o u,, oV,, OW,, and S W,

separately. Thus one can obtain the equilibrium equations associated with the present refined shear
deformation plate theory

U=—">+—"2=0
OX oy
oN,, oN,
6\/:a + =0
X bayasz b (15)
2M vy OM, —
oy = S o7 o My § oo

Ox2 X0y oy2
AL M V s 0SS
&Nb=82MX+2 vy Oy B | P
0X2 oxoy oy2 OX oy

Eq. (15) can be expressed in terms of displacements (us,vs,wb,ws)by substituting for the
stress resultants from Eq. (12). For FG sandwich plates, the equilibrium Eq. (15) take the form

+N=0
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0 GEY 0 o°w 0w
A11_2+A66 52*'('6‘12+Aee)_8y_511?:_(812+2866)%9;2
(16a)
. 0°w, . .\ 0w,
-Bi— ox° (B12 2866)8 xoy2 =0
o o°w, o°w,
(A + A s Ay Ty, T (B, + 2B ) o, O
6/ 6y 55 8y2 12 66 ox20y 22 oy° (16b)
GAA . .\ 0w,
-By— (Blz 2866) =0
ay° Ox=0y
3 3 3 3 4
Blla_l:+(Blz +2866)8—u+(812 +2866) ov +B,, 0 Z -Dy ° VZb
OX Oxoy2 ox2y oy OoX
4 4 4
~2(D,, +2D,;) ailov;z_ 2 8avab D, aa;N ~2(p;, +2D§6)£(2—V(;/;2 (16¢)
4 —
_D;, iy—wj+ N =0
, 0u o%u Bs o3v , 0%v . 0'wb
811_3+(B 2866) (B 66)T+822_3_ 11 A 4
OX oxoy*® ox“oy oy oX
4 4
~2(Df, +2D5) o ‘g; DS, aay"Zb—Hflaa—W;—z(H +2H2) a‘gy (16d)
X
, 0w, , 0w, —
_sz Assaz + A, ayz +N=0

3. Analytical solution

Consider a rectangular plate with length a and width b under in-plane forces in two
directions (N)iJ =7 Ng, NJ =7,N. N, _0) The analytical solution of Eq. (16) can be

cr? cr
obtained for rectangular plates under various boundary conditions by using the following
expansions of generalized displacements

u U, X (Y, ()
V] ea | VX, 00, ()

= 17
W[ T2 X (Y (9) 4

Wy Wonn X (X)Y5 ()
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where U \ W,,, and W

given in Table 1 are suggested by Sobhy (2013) to satisfy various boundary conditions

mn / mn /

Clamped edge
ow, ow, oW
UsV=w,=—2=—L=w =—2= =0 at x=0 and y=0,b
OX oy OX
Simply supported edge
ow,
v=w, =—2=w,=—=N, =M’ =M =0 at x=0, a
oy
a\Nb
"X X Y Y y

with A=mzx/a, u=nxlb.
Substituting Eq. (17) into Eq. (16), the analytical solutions can be obtained from

S Sp S Sy 00 0 0 U 0
Sy Sw Sm Sw| |0 0 0 Of[|V,, | o
Sz Sz S Sy 0 0 k kil Wy, o
S41 S42 S43 S44 0 0 k k Wsmn 0
where
ab
S = | [(ALXRY, + AgX oY, XY, dxdy
00
ab o
Sy, = II(AM + Ase)x Vo XY, 0xdy
00
ab
= [ [[BuX,Y, +(By, + 2B )XY, K.Y dxdy
00
b
S, = [[Bi. XY, + (B3, + 2B )XY, K.Y, dxdy
0

Ot O

Sy (A11 + Ags )X nYm X mYn'dXdy

(.D
I|

(A, XY, + A XY, X Y, dxdy

Ot T O T o'—.m

.o are coefficients. The functions Xm(x) and Y, (y)

(18a)

(19a)

(19a)

(20)

(20a)

(20D)
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ab
Sy =] [[Bu XY +(By, + 2By )X, Y, K.,Y, dxdy
00
ab
Sy = [[B3X,Y, + (B +2B5 )XY, K,.Y,dxdy (20c)
-
S5 = [ [[BuXY, +(By, +2B )XY, X,Y, dxdy
00
S, =ﬁ[B XY, +(By, +2Bgs )X Y, X Y, dxdy
00
S, :ﬁ [B,, XY, +2(D, + 2Dy )XY, + D, X, Y, XY, dxdly (20d)
00
sg4zﬁ [D3X Y, +2(D;, +2Dg )XY, + D5, X, Y. X .Y, dxdy
00
ab
Sa = | [[BXY, + (B3, + 2B )XY, K.Y, dxdy
00
ab
Sio = | [[BuX, Y+ (B3, + 285 )X, ¥, ), V,dxdy (20€)
00
ab
Sis = | [~ [DEX1Y, +2(Df, + 2D )X,Y, + D5 X .Y, K.Y, dxdy
00
Table 1 The admissible functions Xm(X) and Yn(Y)
Boundary conditions The fonctions Xm(X) and Y, (y)
Notation x=0 Yy=0 X=a y=Db
Xn(x) Y. (y)
$SSS S S S S sin (Ax) sin ()
Ccscs C s C sin(2x) sin (1)
ccee C C C C sin*(2x) (4
Fere " ¢ " ¢ cos? (Ax)[sin * (Ax) +1 sin ? (1)
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=@

k=N

C(HEXEY, + 2(Hg + 2H2 XY+ HEX Y T+ ALY, + A XY K. Y. dxdly
(20f)

cr

o t— O'—;U

f (XY, + 72X,y XY,y
0

4. Numerical results and discussion

In this section, a number of numerical examples is presented and discussed to verify the
accuracy of the present theory and investigate the effects of the power law index, thickness ratio of
layers, i.e., scheme, and transverse shear deformation on critical buckling load of FG sandwich
plates.

A simply supported Al/Al,O3 sandwich plate composed of aluminum face sheets (as metal) and
an alumina core (as ceramic) is considered. Young’s modulus, Poisson’s ratio and density of

aluminum are E_ =70GPa, v, = 0.3, respectively, and those of alumina are E. =380GPa,

ve. =0.3. Five different schemes of sandwich plate are considered. A four-letter notation as

shown in Table 1 is used to describe the boundary conditions of the plate. The ratio of the
thickness of each layer from bottom to top is denoted by the combination of three numbers, i.e.,
(1-0-1), (2-1-2) and so on. The following dimensionless form is used

—  Na’
N=—"—,E,=1GPa 21
100h°E, " ° )

The critical buckling loads of the system are calculated by the stability Eq. (20) as an
eigenvalue problem. The critical buckling loads of FG sandwich plates are presented here to
estimate the accuracy of the present refined shear deformable plate theory. A moderately thick
square plate with the thickness ratio equal to 10 and the power law index varied from 0 to 10 is

analyzed. Dimensionless critical buckling loads N of square plates under uniaxial and biaxial
compressions are presented in Tables 2 and 3, respectively. The obtained results are compared with
those generated by EI Meiche et al. (2011) based on the HSDT and Tai et al. (2014) based on the
NFSDPT. An excellent agreement between the results is obtained for all schemes and values of
power law index. Thus, it can be stated that the present model is not only accurate but also simple
in predicting the critical buckling load of FG sandwich plates.

The effects of the power law index K on critical buckling load of FG sandwich square plates
is illustrated in Fig. 2. The thickness ratio of the plate is taken equal to 10. It can be seen that
increasing the power law index K result in a reduction of buckling load. This is due to the fact
that higher power law index K corresponds to lower volume fraction of the ceramic phase V . In
other word, increasing the power law index will reduce the stiffness of the plate due to high
portion of metal in comparison with the ceramic part, and consequently, lead to a reduction of both
buckling load.
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Table 2 Dimensionless buckling load N of square plates under uniaxial compression

(,=-1Ly =0,a/h=10)

K Scheme
Theory 101 212 111 221 121
HSDT (EI Meiche et al. 2011) 13.0055 13.0055 13.0055 13.0055 13.0055
0  NFSDT (Tai 2014) 13.0045 13.0045 13.0045 13.0045 13.0045
Present 13.0093 13.0093 13.0093 13.0093 13.0093
HSDT (El Meiche et al. 2011) 7.3638 7.9405 8.4365 8.8103 9.2176
0.5 NFSDT (Tai 2014) 7.3634 7.9403 8.4361 8.8095 9.2162
Present 7.3677 7.9438 8.4386 8.8253 9.2175
HSDT (El Meiche et al. 2011) 5.1663 5.8394 6.4645 6.9495 75072
1 NFSDT (Tai 2014) 5.1648 5.8387 6.4641 6.9485 7.5056
Present 5.1702 5.8427 6.4665 6.9809 7.5066
HSDT (El Meiche et al. 2011) 2.6568 3.0414 35787 41116 47346
5  NFSDT (Tai 2014) 26415 3.0282 35710 41024 47305
Present 26621 3.0456 35818 4.1856 47352
HSDT (El Meiche et al. 2011) 2.4857 2.7450 3.1037 3.7069 4279
10 NFSDT (Tai 2014) 2.4666 27223 3.1795 3.6901 42728
Present 24916 2.7498 3.1973 3.78793 4.2808

Table 3 Dimensionless buckling load N of square plates under biaxial compression

(n=-Ly,=-La/h=10)

Scheme
k Theory 1-0-1 2-1-2 1-1-1 2-2-1 1-2-1
HSDT (EI Meiche et al. 2011) 6.5028 6.5028 6.5028 6.5028 6.5028
0  NFSDT (Tai 2014) 6.5022 6.5022 6.5022 6.5022 6.5022
Present 6.5046 6.5046 6.5046 6.5046 6.5046
HSDT (EI Meiche et al. 2011) 3.6819 3.9702 42182 4.4051 4.6088
05 NFSDT (Tai 2014) 3.6817 3.9702 4.2181 4.4047 4.6081
Present 3.6839 3.9719 42193 4.4126 4.6088
HSDT (EI Meiche et al. 2011) 2.5832 2.9197 3.2323 3.4748 3.7536
1 NFSDT (Tai 2014) 2.5824 2.9193 3.2320 3.4742 3.7528
Present 25851 2.9214 3.2332 3.4904 37533
HSDT (EI Meiche et al. 2011) 1.3284 15207 1.7894 2.0558 2.3673
5 NFSDT (Tai 2014) 1.3208 15141 1.7855 2.0512 2.3652
Present 1.3310 15228 1.7909 2.0928 2.3676
HSDT (EI Meiche et al. 2011) 1.2429 1.3725 1.5969 1.8534 2.1398
10 NFSDT (Tai 2014) 1.2333 1.3612 15897 1.8450 2.1364
Present 1.2458 1.3749 15986 1.8939 2.1404

In order to investigate the effect of shear deformation on buckling load of FG sandwich plates,
Fig. 3 display the variation of critical buckling load, with respect to thickness ratio a/h. The
power law index is taken equal to 1. The dimensionless buckling load is obtained using the present
theory and CPT. Since the CPT neglects the shear deformation, it overestimates buckling load (see
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Fig. 3). The difference between the present theory and CPT is significant for thick to moderately

thick FG sandwich plates, but it is negligible for thin plates with a/h > 20. This means that the
inclusion of shear deformation results in an reduction of buckling load, and the effect of shear
deformation is considerable for thick plates, but negligible for thin plates.

The effect of boundary conditions on buckling load is shown in Fig. 4 and Table 4. It is
observed that the hardest and softest plates correspond to the FCFC and SSSS ones, respectively.

3,8
36 %
344
3,2 4 '_'.-__
304 ¢
28 ik
2,6 4
2,4 4
2,2 4
2,0 4
1,8
1,6
1,4

Z|

1,2 4
1,0

Fig. 2 Effect of power law index k on dimensionless critical buckling load N of square plates under
biaxial compression (, =y, =—1,a =10h)

4.0 1 1-2-1
3,8 4
] 2-2-1
3,6
3,4 1-1-1
32
1 2-1-2
3,0 4
- 28 1-0-1
N 26]
2,4 —-
2,2 4
2,0 —-
1,84
1,6 —-
1,4 T T T T
0 10 20 30 40 50

a/h

Fig. 3 Effect of shear deformation on dimensionless critical buckling load N of square plates under biaxial
compression (y, =y, =—1,k =1)
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Table 4 Dimensionless buckling load N of square plates (y, =y, =-1,a/h =10)

Scheme
Boundary conditions k
1-0-1 2-1-2 1-1-1 2-2-1 1-2-1
0 6.5046 6.5046 6.5046 6.5046 6.5046
0.5 3.6839 3.9719 42193 4.4126 4.6088
SSSS 1 2.5851 2.9214 3.2332 3.4904 3.7533
2 1.7797 2.0833 2.4052 2.6995 2.9935
5 1.3310 1.5228 1.7909 2.0928 2.3676
10 1.2458 1.3749 1.5986 1.8939 2.1404
0 11.9569 11.9569 11.9569 11.9569 11.9569
0.5 6.8664 7.4006 7.8535 8.2187 8.5600
1 4.8486 5.4784 6.0548 6.5607 7.0068
CSCS 2 3.3539 3.9294 45298 5.1349 5.6160
5 2.5085 2.8840 3.3889 4.0383 4.4621
10 2.3367 2.6054 3.0297 3.6764 4.0412
0 15.9404 15.9404 15.9404 15.9404 15.9404
0.5 9.2481 9.9649 10.5667 11.0326 11.4988
1 6.5612 7.4124 8.1837 8.8220 9.4482
CCCC 2 45549 5.3400 6.1489 6.9016 7.6011
5 3.4068 3.9315 4.6170 5.4105 6.0602
10 3.1619 3.5533 41323 49161 5.4961
0 18.6306 18.6306 18.6306 18.6306 18.6306
05 10.8843 11.7258 12.4273 12.9730 13.5088
FCFC 1 7.7469 8.7513 9.6548 10.4128 11.1287
2 5.3917 6.3238 7.2760 8.1828 8.9761
5 4.0326 4.6659 54771 6.4469 7.1736
10 3.7335 4.2184 4.9061 5.8695 6.5120
14 4 FCFC
12 4 cccce
10 4
CSCs
— 5
N
6 -
SSSS
4
2
0 1I0 2I0 3I0 4I0 50

a/h

Fig. 4 Effect of boundary conditions on dimensionless critical buckling load N of (1-3-1) FG sandwich
square plates under biaxial compression (k=1).
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5. Conclusions

In the present study, a refined shear deformation plate theory which eliminates the use of a
shear correction factor was presented for FG sandwich plates composed of FG face sheets and an
isotropic homogeneous core. Governing equations and boundary conditions are derived from
principle of virtual displacements. Analytical solutions for buckling analysis of simply supported
plates are presented. Numerical examples show that the proposed theory gives solutions which are
almost identical with those obtained using other shear deformation theories.
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