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Abstract.  In this paper, a refined shear deformation plate theory which eliminates the use of a shear 
correction factor was presented for FG sandwich plates composed of FG face sheets and an isotropic 
homogeneous core. The theory accounts for parabolic distribution of the transverse shear strains and satisfies 
the zero traction boundary conditions on the surfaces of the plate. The mechanical properties of the plate are 
assumed to vary continuously in the thickness direction by a simple power-law distribution in terms of the 
volume fractions of the constituents. Based on the present refined shear deformation plate theory, the 
governing equations of equilibrium are derived from the principle of virtual displacements. Numerical 
illustrations concern buckling behavior of FG sandwiches plates with Metal–Ceramic composition. 
Parametric studies are performed for varying ceramic volume fraction, volume fraction profiles, Boundary 
condition, and length to thickness ratios. The accuracy of the present solutions is verified by comparing the 
obtained results with the existing solutions. 
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1. Introduction 
 

The conventional sandwich structures are generally fabricated form three homogeneous layers, 

two face sheets adhesively bonded to the core. However, the sudden change in material properties 

across the interface between different materials can result in large interlaminar stresses. To 

overcome these adverse effects, a new class of advanced inhomogeneous composite materials, that 

compose of two or more phases with different material properties and continuously varying 

composition distribution (using a simple functional law or an exponential law), has been 

developed which is referred to as functionally graded materials (FGMs). Such materials were 

introduced as to take advantage of the desired material properties of each constituent material 

without interface problems. The sandwich plate faces are typically made from a mixture of two 

materials. While the core of this sandwich plate is fully homogeneous material. Studies related to 
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FGM sandwich structures are few in numbers. Zenkour and Sobhy (2010) investigated the thermal 

buckling of various types of FGM sandwich plate using sinusoidal shear deformation plate theory 

(SPT). Zenkour (2005) studied the mechanical bending response, buckling and free vibration of 

simply supported FGM sandwich plate in that paper. Three-dimensional finite element simulations 

for analyzing low velocity impact behavior of sandwich panels with a functionally graded core 

were conducted by Etemadi et al. (2009). An exact thermoelasticity solution for a two-dimensional 

sandwich structures with functionally graded coating was presented by Shodja et al. (2007). 

Tounsi and his co-workers (Hadji et al, 2011, Bachir Bouiadjra et al. 2012, Fekrar et al. 2012, 

Tounsi et al. (2013), Klouche Djedid et al. 2014, Ait Yahia et al. 2015) developed new shear 

deformation plates theories involving only four unknown functions. Wang and Shen. (2011) 

analyzed non-linear free vibration, non-linear bending and postbuckling of sandwich plates with 

FGM face sheets resting on an elastic foundation of Pasternak type. Kiani and Eslami (2012) 

presented a simple approximate closed-form expression to predict the postbuckling response of 

sandwich plates with FGM face sheets, which were subjected to uniform temperature rise loading. 

Recently Ait Amar Meziane et al. (2014) proposed an efficient and simple refined theory for 

buckling and free vibration of exponentially graded sandwich plates under various boundary 

conditions. Zidi et al. (2014) analyzed the bending analysis of FGM plates under 

hygro-thermo-mechanical loading using a four variable refined plate theory. Belabed et al. (2014) 

presented an efficient and simple higher order shear and normal deformation theory for 

functionally graded material (FGM) plates. Belabed et al. (2014) presented an efficient and simple 

higher order shear and normal deformation theory for functionally graded material (FGM) plates. 

Hebali et al. (2014) studied the static and free vibration analysis of functionally graded plates 

using a new quasi-3D hyperbolic shear deformation theory. Bourada et al. (2015) analyzed the 

thermomechanical bending response of FGM thick plates resting on Winkler–Pasternak elastic 

foundations. Mahi et al. (2015) studied the bending and free vibration analysis of isotropic, 

functionally graded, sandwich and laminated composite plates using a new hyperbolic shear 

deformation theory. Hamidi et al. (2015) investigated a sinusoidal plate theory with 5-unknowns 

and stretching effect for thermomechanical bending of functionally graded sandwich plates. Mahi 

et al. (2015) analyzed the bending and free vibration analysis of isotropic, functionally graded, 

sandwich and laminated composite plates using a new hyperbolic shear deformation theory. 

Al-Basyouni et al. (2015) presented size dependent bending and vibration analysis of functionally 

graded micro beams based on modified couple stress theory and neutral surface position. Zemri et 

al. (2015) studied the mechanical response of functionally graded nanoscale beam: an assessment 

of a refined nonlocal shear deformation theory. Bennoun et al. (2016) analyzed the vibration of 

functionally graded sandwich plates using a novel five variable refined plate theory. Ait Atmane et 

al. (2016) studied the effect of thickness stretching and porosity on mechanical response of 

functionally graded beams resting on elastic foundations. 

In this paper, a refined shear deformation plate theory which eliminates the use of the shear 

correction factor is developed for FG sandwich plates composed of FG face sheets and an isotropic 

homogeneous core. Equations of motion and boundary conditions are derived from Hamilton’s 

principle. Analytical solutions for rectangular plates under various boundary conditions are 

obtained. Numerical examples are presented to verify the accuracy of the present theory in 

predicting the buckling responses of FG sandwich plates. 
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2. Theoretical formulations 
 

Consider a sandwich plate composed of three layers as shown in Fig. 1. Two FG face sheets are 

made from a mixture of a metal and a ceramic, while a core is made of an isotropic homogeneous 

material. The material properties of FG face sheets are assumed to vary continuously through the 

plate thickness by a power law distribution as 

  VPPPzP
k

mCM )(                           (1) 

where P  represents the effective material property such as Young’s modulus E , Poisson’s ratio 

 , and mass density  ; subscripts c  and m  denote the ceramic and metal phases, 

respectively; and V  is the volume fraction of the ceramic phase defined by 

k

hh

hz
V 
















01

0)1(       ],[ 10 hhz                (2a) 

1)2( V                ],[ 21 hhz                (2b)  

k

hh

hz
V 
















32

3)3(       ],[ 32 hhz                  (2c)    

where k  is the power law index that governs the volume fraction gradation. 

 

2.1 Kinematics and constitutive equations 
 
The displacement field of the present refined shear deformation plate theory is given by 
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Fig. 1 Geometry and coordinates of FG sandwich plates 
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where 

   2/2 hzzezzf                             (3b) 

The strains associated with the displacements in Eq. (3) are 
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For elastic and isotropic FGMs, the constitutive relations can be written as 
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2.2 Governing equations 
 

The governing equations of equilibrium can be derived by using the principle of virtual 
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displacements. The principle of virtual work in the present case yields 
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Substituting Eqs. (5) and (6) into Eq. (9) and integrating through the thickness of the plate, Eq. 

(9) can be rewritten as: 
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where 1nh and nh  are the top and bottom z coordinates of the nth layer. 

Substituting Eq. (6) into Eq. (11) and integrating through the thickness of the plate, the stress 

resultants are given as 
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and stiffness components and inertias are given as                         
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The governing equations of equilibrium can be derived from Eq. (16) by integrating the 

displacement gradients by parts and setting the coefficients zero 0 u , 0 v , bw  , and sw 

separately. Thus one can obtain the equilibrium equations associated with the present refined shear 

deformation plate theory 
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Eq. (15) can be expressed in terms of displacements  sbss wwvu ,,, by substituting for the 

stress resultants from Eq. (12). For FG sandwich plates, the equilibrium Eq. (15) take the form 

296



 

 

 

 

 

 

Analysis of buckling response of functionally graded sandwich plates… 

 

   

  0
²

2

²
2

²

²

²

²

²

3

66123

3

11

3

66123

3

1166126611




































yx

w
BB

x

w
B

yx

w
BB

x

w
B

yx

v
AA

y

u
A

x

u
A

sssss

bb

        (16a) 

   

  0
²

2

²
2

²

²

²

²²

3

66123

3

22

3

3

22

3

661222666612





































yx

w
BB

y

w
B

y

w
B

yx

w
BB

y

v
A

x

v
A

yx

u
AA

sssss

bb

  
(16b) 

   

   

0

²
22

²²
22

²
2

²
2

4

4

22

2

4

66124

4

114

4

22

4

6612

4

4

113

3

22

3

6612

3

66123

3

11



















































N
y

w
D

yx

w
DD

x

w
D

y

w
D

yx

w
DD

x

w
D

y

v
B

yx

v
BB

yx

u
BB

x

u
B

ss

sssssbb

b

  

(16c) 

0

)2(2)2(2

)()2(

2

2

442

2

554

4

22

22

4

66124

4

114

4

2222

4

6612

4

4

113

3

222

3

66122

3

66123

3

11





























































N
y

w
A

x

w
A

x

w
H

yx

w
HH

x

w
H

y

wb
D

yx

wb
DD

x

wb
D

y

v
B

yx

v
BB

yx

u
BB

x

u
B

ssssss

ssssssss

sssssss

  

(16d) 

 

 

3. Analytical solution 
 

Consider a rectangular plate with length a  and width b  under in-plane forces in two 

directions  0,, 0

2

0

1

0  xycrycrx NNNNN  . The analytical solution of Eq. (16) can be 

obtained for rectangular plates under various boundary conditions by using the following 

expansions of generalized displacements 
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where mnU , mnV  , bmnW  and smnW  are coefficients. The functions  xX m  and  yYn  

given in Table 1 are suggested by Sobhy (2013) to satisfy various boundary conditions 
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with ,/ am   bn /  .    

Substituting Eq. (17) into Eq. (16), the analytical solutions can be obtained from 
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Table 1 The admissible functions  xX m  and  yYn  

Boundary conditions The fonctions  xX m  and  yYn  

Notation 0x  0y
 

ax   by 
  xX m  

 yYn  

SSSS S S S S  xsin
 

 xsin
 

CSCS C S C S 
 x2sin

 

 xsin
 

CCCC C C C C 
 x2sin

 
 x2sin

 

FCFC F C F C 
    1sincos 22 xx 

 
 x2sin
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4. Numerical results and discussion 
 
In this section, a number of numerical examples is presented and discussed to verify the 

accuracy of the present theory and investigate the effects of the power law index, thickness ratio of 

layers, i.e., scheme, and transverse shear deformation on critical buckling load of FG sandwich 

plates. 

A simply supported Al/Al2O3 sandwich plate composed of aluminum face sheets (as metal) and 

an alumina core (as ceramic) is considered. Young’s modulus, Poisson’s ratio and density of 

aluminum are ,70GPaEm  ,3.0m respectively, and those of alumina are ,380GPaEC   

3.0C . Five different schemes of sandwich plate are considered. A four-letter notation as 

shown in Table 1 is used to describe the boundary conditions of the plate. The ratio of the 

thickness of each layer from bottom to top is denoted by the combination of three numbers, i.e., 

(1-0-1), (2-1-2) and so on. The following dimensionless form is used 

,
100 0

3

2

Eh

Na
N  GPaE 10 

                       
(21) 

The critical buckling loads of the system are calculated by the stability Eq. (20) as an 

eigenvalue problem. The critical buckling loads of FG sandwich plates are presented here to 

estimate the accuracy of the present refined shear deformable plate theory. A moderately thick 

square plate with the thickness ratio equal to 10 and the power law index varied from 0 to 10 is 

analyzed. Dimensionless critical buckling loads N  of square plates under uniaxial and biaxial 

compressions are presented in Tables 2 and 3, respectively. The obtained results are compared with 

those generated by El Meiche et al. (2011) based on the HSDT and Tai et al. (2014) based on the 

NFSDPT. An excellent agreement between the results is obtained for all schemes and values of 

power law index. Thus, it can be stated that the present model is not only accurate but also simple 

in predicting the critical buckling load of FG sandwich plates. 

The effects of the power law index k  on critical buckling load of FG sandwich square plates 

is illustrated in Fig. 2. The thickness ratio of the plate is taken equal to 10. It can be seen that 

increasing the power law index k  result in a reduction of buckling load. This is due to the fact 

that higher power law index k  corresponds to lower volume fraction of the ceramic phase V . In 

other word, increasing the power law index will reduce the stiffness of the plate due to high 

portion of metal in comparison with the ceramic part, and consequently, lead to a reduction of both 

buckling load. 
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Table 2 Dimensionless buckling load N of square plates under uniaxial compression

)10=/ ,0= ,1-=( 11 haγγ  

k  
 

Theory 
Scheme 

1-0-1 2-1-2 1-1-1 2-2-1 1-2-1 

 

0 

HSDT (El Meiche et al. 2011) 13.0055 13.0055 13.0055 13.0055 13.0055 

NFSDT (Tai 2014) 13.0045 13.0045 13.0045 13.0045 13.0045 

Present 13.0093 13.0093 13.0093 13.0093 13.0093 

 

0.5 

HSDT (El Meiche et al. 2011) 7.3638 7.9405 8.4365 8.8103 9.2176 

NFSDT (Tai 2014) 7.3634 7.9403 8.4361 8.8095 9.2162 

Present 7.3677 7.9438 8.4386 8.8253 9.2175 

 

1 

HSDT (El Meiche et al. 2011) 5.1663  5.8394 6.4645 6.9495 7.5072 

NFSDT (Tai 2014) 5.1648 5.8387 6.4641 6.9485 7.5056 

Present 5.1702 5.8427 6.4665 6.9809 7.5066 

 

5 

HSDT (El Meiche et al. 2011) 2.6568  3.0414 3.5787 4.1116 4.7346 

NFSDT (Tai 2014) 2.6415  3.0282 3.5710 4.1024 4.7305 

Present 2.6621 3.0456 3.5818 4.1856 4.7352 

 

10 

HSDT (El Meiche et al. 2011) 2.4857  2.7450 3.1937 3.7069 4.2796 

NFSDT (Tai 2014) 2.4666 2.7223 3.1795 3.6901 4.2728 

Present 2.4916 2.7498 3.1973 3.78793 4.2808 

 

 

Table 3 Dimensionless buckling load N of square plates under biaxial compression 

)10=/ ,1-= ,1-=( 21 haγγ  

 

k  

 

Theory 

Scheme 

1-0-1 2-1-2 1-1-1 2-2-1 1-2-1 

 

0 

HSDT (El Meiche et al. 2011) 6.5028 6.5028 6.5028 6.5028 6.5028 

NFSDT (Tai 2014) 6.5022 6.5022 6.5022 6.5022 6.5022 

Present 6.5046 6.5046 6.5046 6.5046 6.5046 

 

0.5 

HSDT (El Meiche et al. 2011) 3.6819 3.9702 4.2182 4.4051 4.6088 

NFSDT (Tai 2014) 3.6817 3.9702 4.2181 4.4047 4.6081 

Present 3.6839 3.9719 4.2193 4.4126 4.6088 

 

1 

HSDT (El Meiche et al. 2011) 2.5832 2.9197 3.2323 3.4748 3.7536 

NFSDT (Tai 2014) 2.5824 2.9193 3.2320 3.4742 3.7528 

Present 2.5851 2.9214 3.2332 3.4904 3.7533 

 

5 

HSDT (El Meiche et al. 2011) 1.3284 1.5207 1.7894 2.0558 2.3673 

NFSDT (Tai 2014) 1.3208 1.5141 1.7855 2.0512 2.3652 

Present 1.3310 1.5228 1.7909 2.0928 2.3676 

 

10 

HSDT (El Meiche et al. 2011) 1.2429 1.3725 1.5969 1.8534 2.1398 

NFSDT (Tai 2014) 1.2333 1.3612 1.5897 1.8450 2.1364 

Present 1.2458 1.3749 1.5986 1.8939 2.1404 

 

 

In order to investigate the effect of shear deformation on buckling load of FG sandwich plates, 

Fig. 3 display the variation of critical buckling load, with respect to thickness ratio ha / . The 

power law index is taken equal to 1. The dimensionless buckling load is obtained using the present 

theory and CPT. Since the CPT neglects the shear deformation, it overestimates buckling load (see 
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Fig. 3). The difference between the present theory and CPT is significant for thick to moderately 

thick FG sandwich plates, but it is negligible for thin plates with 20/ ha . This means that the 

inclusion of shear deformation results in an reduction of buckling load, and the effect of shear 

deformation is considerable for thick plates, but negligible for thin plates. 

The effect of boundary conditions on buckling load is shown in Fig. 4 and Table 4. It is 

observed that the hardest and softest plates correspond to the FCFC and SSSS ones, respectively. 
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Fig. 2 Effect of power law index k  on dimensionless critical buckling load N of square plates under 

biaxial compression  ha 10,121    

 

 

0 10 20 30 40 50

1,4

1,6

1,8

2,0

2,2

2,4

2,6

2,8

3,0

3,2

3,4

3,6

3,8

4,0 1-2-1

1-1-1

2-2-1

2-1-2

1-0-1

 

Fig. 3 Effect of shear deformation on dimensionless critical buckling load N of square plates under biaxial 

compression  1,121  k  
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Table 4 Dimensionless buckling load N of square plates ( )10=/ -1,== 21 haγγ  

 

Boundary conditions 

 

k  

Scheme 

1-0-1 2-1-2 1-1-1 2-2-1 1-2-1 

 

 

SSSS 

0 6.5046 6.5046 6.5046 6.5046 6.5046 

0.5 3.6839 3.9719 4.2193 4.4126 4.6088 

1 2.5851 2.9214 3.2332 3.4904 3.7533 

2 1.7797 2.0833 2.4052 2.6995 2.9935 

5 1.3310 1.5228 1.7909 2.0928 2.3676 

10 1.2458 1.3749 1.5986 1.8939 2.1404 

 

 

 

CSCS 

0 11.9569 11.9569 11.9569 11.9569 11.9569 

0.5 6.8664 7.4006 7.8535 8.2187 8.5600 

1 4.8486 5.4784 6.0548 6.5607 7.0068 

2 3.3539 3.9294 4.5298 5.1349 5.6160 

5 2.5085 2.8840 3.3889 4.0383 4.4621 

10 2.3367 2.6054 3.0297 3.6764 4.0412 

 

 

 

CCCC 

0 15.9404 15.9404 15.9404 15.9404 15.9404 

0.5 9.2481 9.9649 10.5667 11.0326 11.4988 

1 6.5612 7.4124 8.1837 8.8220 9.4482 

2 4.5549 5.3400 6.1489 6.9016 7.6011 

5 3.4068 3.9315 4.6170 5.4105 6.0602 

10 3.1619 3.5533 4.1323 4.9161 5.4961 

 

 

FCFC 

0 18.6306 18.6306 18.6306 18.6306 18.6306 

0.5 10.8843 11.7258 12.4273 12.9730 13.5088 

1 7.7469 8.7513 9.6548 10.4128 11.1287 

2 5.3917 6.3238 7.2760 8.1828 8.9761 

5 4.0326 4.6659 5.4771 6.4469 7.1736 

10 3.7335 4.2184 4.9061 5.8695 6.5120 
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Fig. 4 Effect of boundary conditions on dimensionless critical buckling load N of (1-3-1) FG sandwich 

square plates under biaxial compression (k=1). 
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5. Conclusions 
 
In the present study, a refined shear deformation plate theory which eliminates the use of a 

shear correction factor was presented for FG sandwich plates composed of FG face sheets and an 

isotropic homogeneous core. Governing equations and boundary conditions are derived from 

principle of virtual displacements. Analytical solutions for buckling analysis of simply supported 

plates are presented. Numerical examples show that the proposed theory gives solutions which are 

almost identical with those obtained using other shear deformation theories. 
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