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Abstract.  In recent years, the Graphics Processing Unit (GPU) has become a competitive computing 
technology in comparison with the standard Central Processing Unit (CPU) technology due to reduced unit 
cost, energy and computing time. This paper describes the derivation and implementation of GPU-based 
algorithms for the analysis of wind loading uncertainty on high-rise systems, in line with the research field 
of probability-based wind engineering. The study begins by presenting an application of the GPU 
technology to basic linear algebra problems to demonstrate advantages and limitations. Subsequently, 
Monte-Carlo integration and synthetic generation of wind turbulence are examined. Finally, the GPU 
architecture is used for the dynamic analysis of three high-rise structural systems under uncertain wind loads. 
In the first example the fragility analysis of a single degree-of-freedom structure is illustrated. Since fragility 
analysis employs sampling-based Monte Carlo simulation, it is feasible to distribute the evaluation of 
different random parameters among different GPU threads and to compute the results in parallel. In the 
second case the fragility analysis is carried out on a continuum structure, i.e., a tall building, in which double 
integration is required to evaluate the generalized turbulent wind load and the dynamic response in the 
frequency domain. The third example examines the computation of the generalized coupled wind load and 
response on a tall building in both along-wind and cross-wind directions. It is concluded that the GPU can 
perform computational tasks on average 10 times faster than the CPU. 
 

Keywords:  wind engineering; parallel computing; GPU computing; uncertainty quantification; 

performance- based wind engineering; tall buildings 

 
 
1. Introduction 
 

1.1 Short review on computer architecture systems applied to engineering 
computations 

 
In recent years, due to the non-negligible “quantum effect” (quantum tunneling), the Central 

Processing Unit (CPU) architecture, which has rapidly evolved for almost 40 years, has reached a 

“bottleneck” according to Moore's law (Moore 1998). The Moore's law is consequently near its 

end. In contrast, the Graphics Processing Unit technology (GPU), originally designed to efficiently 
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manipulate the creation and alteration of computer images, has drawn the attention of engineers 

and scientists in various fields for its potential aptitude to perform fast numerical operations.  

The implementation of engineering computations on the GPU platform, using massive parallel 

processing, relies on the application and combination of basic numerical methods (“dwarfs”). In 

2004, seven numerical dwarfs were identified, which have been important in science and 

engineering for at least one decade (Colella 2004, Asanovic et al. 2006). Later in 2006, six more 

dwarfs were added among the basic parallel computing methods (Colella 2004). Table 1 

summarizes the total thirteen dwarfs. The thirteen parallel computing examples were initially 

developed for the multi-core computer and multi-node cluster technologies. It is, therefore, a 

natural and logical step to transfer the above-defined dwarfs from the multi-core or multi-node 

system to the GPU architecture.  

The basic difference between GPU and CPU is the architecture design due to a distinct purpose 

of each computing method. The CPU, as the center of the whole computer, is designed to control 

and analyze the data flow for the entire system. Therefore, apart from the Arithmetic Logical Units 

(ALUs), the Control Unit (CU) and the Cache are also important components in the CPU 

architecture. In contrast, GPU, which is originally designed for rendering graphics on each pixel of 

the display, requires many more but “smaller” ALUs for performing the rendering work at the 

same time. Thus, in the GPU, the CU and Cache become less relevant since the ALUs are all doing 

similar work (i.e., rendering graphics). The schematic comparison between GPU and CPU 

architecture is illustrated in Fig. 1. 

 

 

  
(a) CPU (b) GPU 

Fig. 1 Schematic comparison between GPU and CPU architecture (Nvidia 2014) 

 

 
Table 1 “Thirteen Dwarfs” of parallel computing (Asanovic et al. 2006) 

Dense linear algebra  Sparse linear algebra Spectral methods (FFT) 

N-body methods  Structured grids Unstructured grids (FEM) 

Monte Carlo methods  Combinational logic Graph traversal 

Dynamic programming Backtrack and Branch+Bound 

Finite state machine Construct graphic models 
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The main reasons why the GPU architecture has attracted much interest, are better performance, 

anticipated evolution, reduced cost and energy efficiency (Gaurav and Wojtkiewicz 2011). For 

scientific computing more specifically, the GPU architecture is best suited for solving problems 

that can be divided into “smaller jobs”, which can be computed in parallel. This means that the 

same program or routine can repeatedly be executed by using different data inputs and, 

consequently, generate different results. The current GPU architecture is always equipped with 

thousands of cores (ALU). For example, the NVIDIA
®
 Tesla K40 has 2280 cores. As a result, its 

theoretical peak floating point performance and theoretical data transfer bandwidth would be much 

higher than the latest CPU architecture, as illustrated in Figs. 2(a) and 2(b). 

 

 

 
(a) Floating-point operations per second 

 
(b) Memory bandwidth 

Fig. 2 Comparison of performance for the CPU and GPU, reproduced from Nvidia (2014) 
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Moreover, the GPU technology is also interesting in terms of cost efficiency and energy 

consumption. Comparison between the two main leading chip manufactures of CPU and GPU 

(Intel
®
 and NVIDIA

®
, respectively) suggests that NVIDIA Tesla K40 GPU's specifications are 

18.26 Gflop/s per watt and 1.03 Gflop/s per US dollar (Nvidia 2013b). In contrast, the 

specifications of Intel's Xeon E7-8893 v2 are 4.21 Gflop/s per watt and 0.095 Gflop/s per US 

dollar (Intel, 2014b).  

Since GPUs are easily programmable and economically efficient, they have become a highly 

competitive alternative to CPU-based parallel computing (Gaurav and Wojtkiewicz 2011). For 

example, the GPU technology has been applied in many engineering disciplines, including 

computational fluid dynamics (Stantchev et al. 2009, Klöckner et al. 2009, Corrigan et al. 2011), 

computational structural mechanics (Krawezik and Poole, 2010; Georgescu et al., 2013), finite 

element methods (Cecka et al. 2011, Dziekonski et al. 2013), molecular dynamics (Bauer et al. 

2011), etc. Nevertheless, as a new computing technique, the GPU architecture still faces 

difficulties and challenges in four technological areas: (i) specialized tasks, (ii) difficulty in 

programming, (iii) bandwidth limitation and (iv) rapid evolution. 

 
1.2 Motivation: use of GPU architecture for wind engineering computations 

 
GPU is advantageous for programs that can be parallelized. For example, matrix addition and 

multiplication can be easily optimized for parallel computing because each element in the resultant 

matrix is independent of the computations for other elements. On the other hand, deriving the 

eigenvalues of a matrix is difficult for parallel computing since eigenvalues and eigenvectors are 

related to every element in the matrix. 

In comparison with the programming languages for CPU architecture, the programming 

language for GPU is still premature. First, versatility of features in GPU programming is inferior 

to current major programming languages, such as object oriented programming, which is not 

supported on GPU. Second, many current scientific computing libraries are only compiled and 

optimized for CPU architecture (Foundation 2014). For instance, on MATLAB platform, only few 

functions are supported for GPU computing (Matworks 2013). Third, as the GPU architecture 

differs from CPU, some current computing algorithms are not available or need further evolution. 

Therefore, as a novel programming platform, GPU programming requires more effort to overcome 

these difficulties. 

By exploiting GPU's thousands of cores, a much higher peak processing speed can be achieved. 

However, as with most GPU computing, the bottleneck is memory transfer bandwidth limitation.  

Also, both GPU hardware and software technologies are in fast evolution. The side effect is that 

the programming may result in an incompatibility with other hardware platforms. The two current 

major programming tools are CUDA
®
 (Compute Unified Device Architecture) and OpenCL

®
. The 

former is free but it is a proprietary software, which only works on NVIDIA
®
 graphic chips. The 

latter is open source; it is supported by many companies and organizations (e.g., AMD, NVIDIA, 

Apple, Intel and IBM) and it also allows parallel programming on heterogeneous systems, which 

utilize many processor types (CPUs and GPUs).  

Wind engineering, as an inter-disciplinary research field, involves structural dynamics, applied 

fluid mechanics, signal processing, stochastic analysis, data collection and reliability assessment. 

In particular, recent advances in the field of performance-based wind engineering for tall buildings, 

accounting for various sources of loading variability and estimation errors, require large computer 

resources (e.g., Smith and Caracoglia 2011, Spence and Gioffrè 2012, Barbato et al. 2013). Most 
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of these operations are suitable for parallel processing. In this paper, several case studies and 

algorithms, implemented for wind engineering, are demonstrated using both GPU and CPU 

architecture. Their computational speed is compared for various data sizes. The numerical 

computing examples are performed on CUDA
®  

and MATLAB
®  

since these two computing 

platforms are integrated. To the authors' knowledge, this is one of the first applications of this 

emerging computer technology in wind engineering. The aim of this study is to provide an 

efficient platform for computations in the context of performance-based wind engineering of tall 

buildings. 

 

 

2. NVIDIA GPU architecture and CUDA platform 
 

2.1 The NVIDIA GPU architecture 
 
The NVIDIA

®  
GPU architecture is composed of several streaming multi-processors (SMs), 

each having a number of streaming processor cores (SPs), which are also called CUDA
®
 cores, 

on-chip memory, off-chip memory and one instruction unit. Each thread running on a single SP has 

its own local memory. This memory is often stored on-chip, but may be stored off-chip if the 

on-chip memory space has been already allocated. The shared memory, assigned to each block, 

can be accessed by many threads inside the block. Although each thread or SP has access to 

different memories (Fig. 3), the computing speed for on-chip and off-chip memory significantly 

differs. The off-chip global memory has a latency of 400 to 800 clock cycles. On the contrary, the 

on-chip register and shared memory's latency is typically 22 clock cycles in hardware devices of 

first and second generation, and about 11 clock cycles in hardware devices of third generation. 

 

 

 

Fig. 3 Comparison of performance between CPU and GPU (Nvidia 2014) 

465



 

 

 

 

 

 

Wei Cui and Luca Caracoglia 

 

The graphic card used in this article is the NVIDIA Tesla K20, which has 13 SMs consisting of 

192 SPs each with a 706 MHz core clock. It has 5GB total board memory with a memory 

bandwidth of 208 GB/s. The CPU hardware information is composed of two Intel Xeon E5-2670, 

whose core clock is 2.60 GHz, and 128 GB RAM. 

 
2.2 The CUDA platform 
 
NVIDIA's CUDA parallel programming software provides a C/C++ language interface to 

control the hardware. Normally, a complete CUDA program consists of two parts: first there is a 

sequential host program running on CPU and, second, a kernel program controlled by GPU, which 

runs in parallel on massive GPU cores. The host program can use all C++ features, such as 

objective-oriented paradigm; on the contrary, the kernel programming methodology is exclusively 

restricted to C and the CUDA extension. A kernel is usually executed as Single Instruction 

Multiple Thread (SIMT) paradigm on a group of threads; this group is also called block. A kernel 

runs on a grid consisting of one or more blocks. Each thread has private but limited on-chip local 

memory. Different threads in the same block can communicate through on-chip Shared Memory. 

Finally, every thread has access to “read from” and “write to'” global off-chip memory. The whole 

CUDA memory hierarchical scheme is illustrated in Fig. 3. The Constant Memory and Texture 

Memory features are not used in this article. 

 

 

3. Theoretical background: wind load and response analysis on tall slender 
systems 
 

3.1 Along-wind spectrum of wind turbulence 
 
Wind speed observation indicates that wind velocity varies very randomly with time; this 

randomness is due to the turbulence in the wind flow (Simiu and Scanlan 1996). One of most 

widely used turbulence one-sided power spectral density (PSD) expressions is Eq. (1), the Kaimal 

model 

         

  
  

 
    

          
                           (1) 

in which       ̅    is the Monin coordinate,    is the friction velocity related to terrain 

roughness   ; the mean wind speed  ̅    varies with elevation due to boundary layer profile 

effects.  

Performing time-domain structural analysis requires the synthetic generation of wind speed 

times series, unless real wind speed ambient records are available. A widely used method for 

generating time histories is described, for example, in Iannuzzi and Spinell (1987). This numerical 

method uses Fast Fourier Transform (FFT) to generate stationary random sequences that are 

compatible with a specified PSD function [Eq. (1)]. The basic idea is to generate a random 

complex number           , in which the modulus   is the square root of the PSD function 

(re-scaled),   is a random phase (uniformly distributed between   and   ) and      . The 

final step is performing inverse Fourier transformation on   to obtain the desired realization of a 

random time series. 
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3.2 Monte Carlo simulation methods for performance-based wind engineering 

 
The Monte Carlo method (e.g., Grigoriu 2002, Robert and Casella 2005) is a numerical 

algorithm, relying on the repeated random sampling to obtain numerical results for the analysis of 

stochastic systems, affected by various sources of uncertainty. One important application of the 

Monte Carlo method in mathematics is the Monte Carlo integration of a function      

   ∫       
 

  
 

 
∑      

 
    (2) 

In the previous equation    is a realization of random data set, uniformly distributed on the 

domain  ; V is the volume of  . Monte Carlo integration has been recently proposed for efficient 

numerical evaluation of the generalized modal wind loading for buffeting simulations on 

long-span bridges (Seo and Caracoglia 2012) and tall buildings (Smith and Caracoglia 2011). 

One of the main benefits of this numerical method is the high computing speed compared to 

numerical quadrature, such as Newton-Cotes formulas (Faires and Burden 2012). If the size of the 

sample being evaluated is fixed, the computing time required by Newton-Cotes method will 

increase exponentially but the time used by Monte Carlo method is constant. 

Another application of the Monte Carlo method is the “fragility analysis”, employed to quantify 

structural reliability due to wind hazards. This method can account for various sources of 

uncertainty, including error-contaminated aerodynamic parameters. Unavoidable experimental 

errors in a wind tunnel test, used to determine the loads on the full-scale structure, are in fact a 

relevant uncertainty source for structural reliability (Smith and Caracoglia 2011, Seo and 

Caracoglia 2013, Bernardini et al. 2012). 

Fragility analysis is based on the computation of the probability that a representative 

engineering parameter, corresponding to a specific feature of the dynamic response (maximum 

lateral drift, RMS acceleration, etc.) (Smith and Caracoglia 2011) can exceed a given limit-state 

threshold, conditional on the intensity of the hazard (i.e., reference mean wind speed and 

direction). More specifically, the Monte Carlo method involves the numerical evaluation of 

structural fragility (exceedance probability   ) as 

    
 

 
∑      

 
    (3) 

where    is the i-th realization of the random variable corresponding to a given engineering 

parameter,   is the total number of sets of random variables and       is an “indicator 

function” which assumes the value     if the structural response exceeds the threshold and 

    otherwise.  

In the Monte Carlo method, the evaluation of each random input is absolutely independent, 

such as with       in Eq. (2) and       in Eq. (3). Therefore, it is suitable to estimate each 

realization of the random input by parallelization, especially on a GPU architecture for many 

thousands of inputs. This paper will demonstrate this advantage by examining three numerical 

examples, employing the Monte Carlo method on GPU to evaluate fragility curves of two 

high-rise systems. 
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3.3 Single-degree-of-freedom high-rise system: description of the structure and 
aerodynamics 

 
The first simplified example of a structure under wind loads is a single Degree-of-Freedom 

(DOF) structure, for example a vertical structure with a large mass at the top of the system (e.g., 

cantilever lighting system, advertising board, etc.) This system can be modeled as a single DOF 

using classical dynamics approach composed of a mass, spring and damping system, as shown in 

Fig. 4. 

The dynamic equilibrium of the system in Fig. 4, for example illustrating the lateral vibration of 

the top node (Cui and Caracoglia 2015), can be written as 

   ̈    ̇         ̅[      ̇]                       (4) 

in which    is the drag coefficient, normalized to the “projected area”   of the wind load,  ̅ is 

the reference mean wind speed at the top of the structure,      is the time-dependent random 

turbulence and   is the air density. The power spectral density (PSD) of the structural response 

(displacement   at the top of the structure) can be estimated as (Simiu and Scanlan 1996) 

        
[    ̅]       

      {(  
    )

 
 [           ]

 }
 (5) 

in which   is a generic frequency,    is the natural structural frequency,        is the PSD of 

the along-wind turbulence [Eq. (1)],    is the structural damping ratio and    is the 

aero-dynamic damping. The standard derivation of the   response is the integral of the PSD 

(Simiu and Scanlan 1996) 

    √∫         
 

 
 (6) 

 

3.4 Continuum high-rise structure: description of the model and aerodynamics 
 
In a continuum tall structure, if linear response is postulated or if the lateral deflection shape is 

assumed, an infinite DOF system can be simplified to a finite DOF generalized system. The tall 

building, illustrated in Fig. 5, is a typical continuum tall structure.  

In this paper, the main objective is to demonstrate the advantage of GPU for wind engineering 

uncertainty analysis. Therefore, turbulent wind loading, which mainly consists of low-frequency 

quasi-steady forces, has been exclusively simulated. 

Vortex-shedding effects, although very important for the structural dynamics, are not 

considered. In addition, for simplicity, only vibration occurring in the first fundamental mode 

[with shape       and     indicating along-wind direction] is used to analyze the building 

aerodynamics and dynamics. Even though the contribution of higher modes to the structural 

motion has been recognized (Kareem 1981, Melbourne and Cheung 1988, Feng et al. 2012, Aly 

2013), it has not been included in the formulation. Under these assumptions, a continuum tall 

prismatic structure can be reduced to a single-DOF equivalent system in generalized coordinates, 

if the shape functions in the along-wind direction     and cross-wind direction     are 

planar, lying on the two orthogonal vertical principal planes of deflection and independent of each 

other. 
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Fig. 4 Simplified single-DOF structure under wind load effect 
 

 

 
(a) Lateral view of a tall building 

 
(b) Horizontal-plane view with main wind load directions 

Fig. 5 Schematics of a tall building under wind load effect (α: relative wind direction) 
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The PSD of the along-wind generalized force (   ), taking into account the shape function 

and partial correlation of along-wind turbulence speed along the vertical coordinate   by means 

of the cross-PSD function             , is (Simiu and Scanlan 1996) 

      
    ∬   

                  ̅     ̅                        
 (7) 

In the cross-wind direction (   ), the generalized aerodynamic force (Simiu and Scanlan 

1996; Piccardo and Solari 2000) is: 

      
    ∬ [  

              (         ⁄    )
 
             ] 

 (8) 

                  ̅     ̅           

In the previous equation              is the cross-PSD function of the cross-wind turbulence 

 . The drag     and lift    (transverse force) aerodynamic coefficients are evaluated per unit 

height and normalized with respect to dimension   in Fig. 5. The previous equations are derived 

for incident mean wind direction corresponding to the   direction in Fig. 5, as an example. These 

equations could be easily extended to a generic incident mean wind angle. The PSD of the 

generalized displacement (    or    ) and its standard derivation can also be derived, similar 

to Eqs. (5) and (6). 

In some circumstances, the along-wind force and cross-wind force may affect each other, and 

the coupling effect should be considered into the analysis. For example, Smith (2009) provides a 

simplified simulation method to consider the coupling effect in a tall building, which neglects 

cross-correlation between turbulence velocity components   and  . For a more general 

formulation, the interested reader may refer to Piccardo and Solari (2000). In the simplified 

method, the cross-PSD matrix of the generalized response in the generalized coordinates    and 

  ,       , can be written as 

         [    ]  [
     

    

      
   

] {[    ]  }    (9a) 

      [
 ̅ [(    

    )         (         )]   ∫    ̅    (
   

  
   )            

 

 

  ∫    ̅                  
 

 
 ̅ [(    

    )         (         )]
] 

  (9b) 

In the previous equation  ̅  and  ̅  are generalized masses associated with mode shapes 

     and       respectively,     ,     ,      and      are generalized structural and 

aerodynamic damping ratios in the along-wind and cross-wind directions,  ̅    is the mean wind 

speed at the elevation   due to boundary layer effects (Simiu and Scanlan 1996). The symbol 

{ }    denotes complex conjugate transpose operator. 
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4. Parallelization paradigms in numerical computing 
 

One of the difficulties of parallel computing design is how to distribute sub-tasks among 

various computing units (Kepner 2009). The two most popular forms of parallel computing are 

data-level parallelization and task-level parallelization (Culler et al. 1999). In data parallelization 

the same calculation procedure is performed on the different data sets. In contrast, the 

parallelization tasks perform entirely different calculation procedures on the same data set. 

For parallel computing in wind engineering, the parallelization paradigms are more flexible and 

depend on the size of the parallel system. If the size of the system is small, for example the current 

Intel CPU with 4 to 12 cores and a computer cluster with several nodes, the structural response can 

be evaluated for different wind loads (mean wind velocities) concurrently on different cores or 

nodes. If the size of the system is very large, the sampling-based method, for example the Monte 

Carlo method described in previous sections, can be parallelized on the GPU with many cores and 

a supercomputer. Even more, the numerical computing procedure itself can be parallelized 

(Gaurav and Wojtkiewicz 2011). For example, in a matrix multiplication, the evaluation of each 

element is independent and can be easily parallelized. Other numerical analysis applications, such 

as FFT and numerical integration, can also make use of this parallelization. These two types of 

data parallelization paradigms will be considered in this study: small-scale data parallelization and 

large-scale data parallelization. 

Besides data parallelization, the task parallelization strategy can also be employed and applied 

to the study of wind effects on structures, and even for other structural loads. For example, the 

wind effect in the along-wind direction, Eq. (7), and in the cross-wind direction, Eq. (8), can be 

evaluated simultaneously and combined later to obtain the resultant response. Theoretically, the 

entire structural analysis, analysis of dead loads, live loads, seismic loads and wind loads could be 

performed in parallel. 

 

 

5. Numerical examples 
 

5.1 GPU speed-up for basic mathematical computations 
 
In the field of numerical simulation, complex algorithm and simulation methods are composed 

of either sequential or parallel basic mathematical operations, such as linear algebra, random 

number generation and numerical integration. The application of these basic calculations is an 

effective demonstration of the advantage of GPU computing. 

Fig. 6 compares the computing time of four basic mathematical operations: dense matrix 

algebra (addition, multiplication, division) and FFT. Various computational sizes (number of 

operations to be performed) are considered. All the operations are carried out on MATLAB 

platform by both CPU and GPU. All the input data for matrix algebra and FFT are randomly 

generated. Machine times, needed for number generation and data transfer, are not included in the 

computing time. The GPU speed-up depends on data type, the size of processed data and the type 

of operation. For matrix multiplication with dimension 8192 by 8192 and single float data type, 

the computation time on the CPU is 3.34 s but computation time on the GPU is only 0.469 s, 

which is 7.2 times faster than CPU. For double float data type, the difference is similar to single 

float data type. 
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However, for matrix division, the GPU computing time is not as small as in the two previous 

examples. When the matrix size is 2
13

, the GPU is only 4.34 times faster than the CPU. The reason 

is that matrix addition and multiplication are feasible for parallelization since the calculation for 

each element is independent. On the contrary, for matrix division using the current numerical 

methods (such as Gauss-Jordan Elimination or Gauss-Seidel Iteration), the computation result of 

the elements is inter-dependent. Therefore, most numerical operations must be sequential. For the 

double precision float data, recommended to ensure accuracy in the computation, the time 

difference is very small compared to single-precision float data. 

Besides the comparison using elapsed time, another way to evaluate the efficiency of GPU 

computing vs. CPU is the computing performance based on hardware theoretical peak 

performance. From the Intel’s specification (Intel, 2014a), the Xeon E5 2670 has maximum 

performance at 166.4 Gflop/s and maximum memory bandwidth 51.2 GB/s. For GPU Nvidia Tesla 

K20 (Nvidia, 2013a), the maximum performance is 3.52 Tflop/s for single precision floating point, 

1.17 Tflop/s for double precision floating point and 208 GB/s memory bandwidth. 

 

 

 

Fig. 6 Basic mathematics: computing time comparison between CPU and GPU 
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Fig. 7 Gflop/s in matrix operation compared to hardware peak performance 
 

 

For the matrix addition, both CPU and GPU cannot make full use of their power on MATLAB 

platform, especially for GPU with only approximately 105 Gflop/s performance, which is only 

0.3% of the hardware peak performance. However, for matrix multiplication, about 90% hardware 

peak performance can be achieved with both CPU and GPU when the matrix size is beyond 1024 

(2
10

) as in Fig. 7. 

Therefore, it is plausible to conclude that both multiplication algorithms are well tuned and 

optimized for both CPU and GPU. Since the base GPU hardware performance is superior to CPU, 

computing speed on GPU is faster than CPU especially for a large size matrix. 

FFT is another basic numerical procedure, widely used in signal processing, image processing 

and Fourier analysis in wind engineering. More importantly, the CUDA platform provides an 

FFT–GPU library (cuFFT). For FFT, the computational efficiency gain is 26.34 times, if GPU is 

compared to CPU when the data size is 2
24

. In any case, it must be noted that in all the four 

operations analyzed, when data size or problem dimension is small, for example 2
6
 = 64, the GPU 

computation does not exhibit a reduction in time, or it is even slower than the CPU. 

 

5.2 GPU speed-up for advanced mathematical computations 
 

Commonly, the complete solution to a numerical problem consists of more than one sequential 

mathematical operation; therefore, the GPU computing efficiency for an advanced mathematical 

calculation depends on the slowest operation in the whole process (Liebig’s barrel law). This 

section uses two examples to illustrate this phenomenon. 

The first example shown in Fig. 8 is the application of Monte-Carlo integration of a function 

with singularity (but still integrable). The function is 

   ∫
  

√   |     |
  

 

 
 (10) 

This Monte-Carlo integration procedure was run on MATLAB. The random 
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uniformly-distributed points        have been generated directly on the GPU global memory 

and the evaluation of       (with    being the i-th realization of the random set) has been run in 

parallel on various threads on the GPU. Finally, the summation operation (average) of all       is 

carried out using a binary summation algorithm, illustrated in Fig. 9. 

Fig. 8 shows the computing time comparison between GPU and CPU with different float type. 

When the size of the sample xi is 221 and with double-precision float number, the computing time 

spent on the CPU is about 40 s and the time on GPU is only 0.002 s, which is approximately 

20000 times faster. This results, which may appear surprising from the point of view of computer 

performance, could also be related to the software that is used for the comparisons. Even though 

the source codes (scripts) are almost identical, it is possible that the software platform may process 

information differently. Investigation on this particular result would require full access to the 

software core, which is not available. Therefore, more investigation, beyond the scope of this 

study, is needed in future research. 

 

 

 

Fig. 8 Monte Carlo integral computation: time comparison between CPU and GPU platforms 
 

 

Fig. 9 Array summation algorithm on GPU platform 
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Random wind speed in time domain is also another application (Huang et al. 2010). The 

procedure is based on the synthetic generation of random wind speed records, according to a 

pre-selected PSD model and boundary layer profile. The main steps for simulating the random 

turbulence component   are derived from Iannuzzi and Spinelli (1987); they can be summarized 

as follows: 

1) Computation of PSD         at various equally-spaced frequencies   , with step    

2) Generation of independent random virtual phase realizations    between   and    

3) Evaluation of (√         )        , 

4) Inverse FFT of all (√         )        . 
 

 
(a) Time series of random wind speed ( ̅   ) 

 
(b) PSD of random turbulence   

Fig. 10 Synthetic generation of random wind speed ( ̅   ) 
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Fig. 11 Random wind speed time series generation: computing time comparison between CPU and GPU 

platforms 
 

 

The step-by-step procedure, described above, is an approximate method for generating wind 

turbulence fluctuations, which is used to test the speed-up effect in FFT calculations by GPU. 

More accurate methods for the generation of turbulence time histories are, for example, discussed 

in Iannuzzi and Spinelli (1987).  

An example of simulated wind speed record ( ̅   , with mean speed  ̅         and 

random turbulence  ) in both time domain and frequency domain is presented in Fig. 10. 

From step 1 to step 4, the procedure can be fully parallelized. Nevertheless, the inverse FFT in 

the last step combines both a parallel process and a sequential process. This operation is much 

slower than the previous steps even though the cuFFT library has been optimized. Fig. 11 

illustrates the computing time of the random wind speed time series generation on both CPU and 

GPU. When the generation size is 3
15

, the speed-up of the GPU is about 40 times. The speed-up 

effect is considerable but it may also be affected by the choice of the MATLAB software platform. 

Even though similar speed-ups have been reported in the literature for similar problems in 

stochastic mechanics (Gaurav and Wojtkiewicz 2011), this results requires careful consideration 

and further investigation. 

The comparison between the two examples above demonstrates that computing efficiency of 

advanced mathematical procedures is determined by the slowest operation, such as step 4 in the 

second case, which is similar to the “time complexity theory” (Sipser 2012) in computer science. 

 

5.3 Fragility analysis of a single-DOF structure induced by uncertain wind load effect 
 
The modeling of wind load effects on a single-DOF structure has been illustrated in Section 

3.3; the governing equation for frequency domain analysis is Eq. (5). As also outlined in the 

previous sections, construction variability and experimental-error contamination may induce 
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uncertainty in the structural response PSD and variance. As a result, fragility analysis in Eq. (3) of 

the structure (probability of “failure”) can be used to quantify the uncertainty. 

In this section, a simple high-rise vertical “point-like” structure, i.e., a large advertising board 

(Fig. 12), is used as an example to demonstrate the numerical analysis process. 

As shown in Fig. 12, the advertising board can be approximately modeled by splitting the 

system in two parts: board and support column (tower or mast). The mean wind direction is 

orthogonal to the surface of the board. Because most wind force is carried by the board and 

flexibility is concentrated in the support, the dynamics of the structure can be simplified as a 

single-DOF generalized structure as in Fig. 4. The structural properties and parameters of the 

equivalent SDOF system are summarized in Table 2. In Eq. (5), CD can be determined indirectly 

by wind tunnel test or by CFD simulation.  

 

 

 

Fig. 12 Schematics of a large advertising board 

 

 

 
Table 2 Main properties of the simulated SDOF structure – advertising board 

Quantity Value assigned 

Area ( ) 8 m
2
 

Elevation of board’s centroid ( ) 30 m 

Mass ( ) 20 kg 

Stiffness ( ) 1 kN/m 

Structural damping ratio (  ) 0.005 

Air density ( ) 1.0 kg/m
3
 

Drag coeff. (  , average value) 1.54 

Terrain roughness (  ) 0.5 m 
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Fig. 13 Computing time gains in the fragility analysis of a single-DOF structure, induced by uncertain 

aerodynamic drag 

 

 

Errors can therefore arise from measurement fidelity, variable laboratory and environmental 

conditions, test procedures, etc. The relevance of uncertainty, involved in Eq. (5), can be analyzed 

by fragility analysis in Eq. (3). The (scalar) random number   in Eq. (3) is the uncertain 

aerodynamic drag coefficient CD. In this simulation CD is assumed to be a Gamma random 

variable with mean of 1.54 and standard deviation 0.5 (Smith and Caracoglia 2011). As a 

consequence, the standard deviation of the along-wind dynamic response (  , Root-Mean-Square 

or RMS) also becomes a random variable. Hence, the evaluation of    and its variability can be 

carried out in a Monte-Carlo setting for the various uncertain parameters CD. This operation can 

easily be distributed and performed on different GPU threads simultaneously. The computing 

speed can be greatly improved if a large set of uncertain parameters, such as CD, is needed.  

For demonstrating the efficiency of the GPU platform, the fragility analysis results are 

exclusively compared for wind mean velocity at the top of the structure  ̅   ̅          , 

measured at the centroid of the board, using both double-precision float number and 

single-precision float number. The same comparison will also be used in the last two numerical 

examples. The speed gains for different sample size is demonstrated in Fig. 13. The computing 

time on GPU with sample size from 2
9
 to 2

15
 is roughly constant and equal to around 0.03 s. Most 

time is still spent by the algorithm to transfer data between GPU and CPU memory. The relative 

duration of the actual computations on GPU is relatively small. For computing time on CPU, on 

the contrary, the time increases linearly with the sample size. When the size of the input sequence 

is 32768, the CPU computing time on the selected software platform (MATLAB) is 33.6 s, 

whereas the GPU computing time is only 0.03 s. Both double float and single float computing 

times are very similar for the same input sample size. It is believed that this good performance 

may be influenced by the choice of the software platform and that, if a different platform is used or 

the problem to be solved becomes larger, the “scale” effect could significantly reduce the 
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speed-up. A reduction of speed-up effect has in fact been observed in the following case study, 

which is presented in the next sub-section. 

It must be noted that, if the probability to be sought is of the order of 10
-3

, at least 11000 

samples would be needed to ensure that the coefficient of variation of the estimation error in Eq. 

(3) is less than or equal to 30%. If the two above procedures are repeated at various speeds from 5 

m/s to 60 m/s, the fragility curve against unacceptable sway of the advertising board can be 

constructed, with the threshold defined as          at    . The fragility curve is shown in 

Fig. 14. The two curves in Fig. 14 are quantitatively very similar. This observation confirms that 

the GPU computing is fast and accurate compared to the reference CPU calculations. 

 

5.4 Dynamic fragility analysis of a continuum high-rise building structure in the 
along-wind direction, induced by random wind load effect 

 
For the continuum tall structure, such as the tall building shown in Fig. 15, a single-DOF 

simplified model is not adequate to simulate the structural response because the mean wind speed 

increases with the elevation z in the boundary layer (Simiu and Scanlan 1996). In addition, the 

correlation of wind turbulence at various   should be included into the simulation. In its simplest 

form, the response of a slender tall building with mean wind orthogonal to the face of dimension D 

in Fig. 15 can be simplified to a single-DOF model in generalized coordinates, using the 

prescribed shape function       in Eq. (7). Therefore, Eq. (7), which requires a double 

integration to derive the generalized wind load, is used to compute the along-wind response of the 

structure. The evaluation of this double integral is usually the “bottleneck” of a dynamic buffeting 

analysis (Smith and Caracoglia 2011, Seo and Caracoglia 2012), since it must be repeated for all 

frequencies  . Therefore, it requires a large number of numerical computations. 

 

 

 

Fig. 14 Fragility curve for advertising board model in Fig. 12 (RMS vibration) 
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Fig. 15 Schematic view of the CAARC tall building 

 

 

 

Fig. 16 Computing time gains in the fragility analysis of the CAARC tall building, examining the 

generalized response in the along-wind direction 

 

 

In this paper, the evaluation of the double integral is carried out by “composite” Simpson’s rule 

with 100 by 100 integration points. The same fragility analysis, employing the Commonwealth 

Advisory Aeronautical Research Council (CAARC) benchmark tall building (Melbourne 1980) in 

Fig. 15 is performed on both CPU and GPU platforms for comparison purposes. 
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Fig. 17 Fragility curve of the CAARC tall building, corresponding to the threshold σx (h) = 0.5 m for 

along-wind response (RMS vibration at the roof-top) 

 

 
Table 3 Structural and wind filed parameters of the CAARC tall building (Cui and Caracoglia 2015) 

Quantity Value assigned 

Air density ( ) 1.25 kg/m
3
 

Drag coeff. (  , per unit height) 1.54 

Lift coeff.    , per unit height) 0 

     ⁄  (per unit height) -3.50 

Terrain roughness (  ) 0.5 m 

Turbulence decay coeff. (   )    

Turbulence decay coeff. (   )          

Wind speed profile [ ̅   , m/s]  ̅          
     

Roof-top mean wind speed [ ̅   ] 5 – 60 m/s 

Roughness velocity (  )  ̅                 

 

 

The main structural and aerodynamic parameters of the CAARC building model are listed in 

Table 3; other parameters needed in the simulations can be found in Cui and Caracoglia (2015) 

and Melbourne (1980). Fig. 16 shows the comparison between CPU and GPU computing time 

with random aerodynamic force parameter CD. In this example the estimation of the dynamic wind 

load is based, for illustration purposes, on the mean wind speed at the roof-top  ̅          . 

The computing time gain with GPU is approximately the same as the one observed for the 

single-DOF structure in Fig. 13. This result is due to the fact that both examples employ the same 
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parallel computing algorithm. When the random sample size is 4096 (2
12

), the GPU is roughly 100 

times faster than the CPU. Similar to the SDOF structure in the previous section, fragility analysis 

is performed for  ̅    from 5 m/s to 60 m/s, when the RMS lateral-sway serviceability threshold 

at the roof-top is defined as                     (Smith 2009). The results are illustrated 

in Fig. 17. As before, the GPU results are very accurate. 

 

5.5 Dynamic fragility analysis of a continuum high-rise building structure in both 
along-wind and cross-wind directions, induced by random wind load effect 

 
Apart from the effect of the wind force in the along-wind direction, the cross-wind load is also 

considerable on tall buildings. As the last case study in this paper, the GPU parallel computing 

algorithm is applied to the analysis of the CAARC tall building affected by uncertainty in 

aerodynamic static drag coefficient   , already discussed in the previous sub-section. 

The two-mode generalized model, described in Eq. (9), provides a simple simulation method to 

compute the wind load and the dynamic response of the CAARC tall building in both along-wind 

and cross-wind directions, by including the coupling between the fundamental building modes in 

the two primary vibration planes. The mean wind direction is again coincident with the orientation 

of the   axis in Fig. 15. 

In the case of the coupled-mode generalized dynamic model, the parallelization paradigm has 

two levels (or stages). The first stage consists in distributing the evaluation of the random 

parameters for fragility analysis in GPU blocks. In the second stage the along-wind generalized 

force and crosswind generalized force are separately computed in two GPU threads for each GPU 

block, previously allocated. This parallelization paradigm involves both task parallelization and 

data parallelization. It can therefore be labeled as a hybrid parallelization strategy. This strategy is 

demonstrated in Fig. 18. 

 

 

 

Fig. 18 Flow-chart of the two-level parallelization paradigm for dynamic analysis of a continuum 

high-rise structure, subjected to both along-wind and cross-wind loads 
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The computation of the generalized-force PSD functions,      
    and      

   , still 

employs the composite Simpson’s rule. The evaluation of the complex matrices      and        

uses “cuComplex” library on GPU and C++ “complex” library on CPU. The computing time for 

various sample sizes of the random variable    is presented in Fig. 19. Unlike the previous 

example, this last case study is much slower on the GPU because the parallel computing algorithm 

is more articulated and data transfer is more frequent. Nevertheless, the GPU speed is still roughly 

10 times larger than the CPU time. 

 

 

Fig. 19 Computing time gains in the fragility analysis of the CAARC building, examining two-direction 

coupled modal response 

 

 

 

Fig. 20 Fragility curve of the CAARC tall building, corresponding to the threshold σx (h) = 0.5 m for 

coupled along-wind and cross-wind response (RMS vibration at the roof-top) 
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The complete fragility analysis, performed from  ̅          to  ̅   =60 m/s and using 

the same threshold              as before, is shown in Fig. 20. In this example, the fragility 

curve “translates leftward” and becomes “sharper”. When the coupling effect between along-wind 

and cross-wind force is examined, the along-wind dynamic effect       becomes more 

dangerous compared to the previous case, in which along-wind force and response are exclusively 

considered. Therefore, lower wind speed  ̅    has larger probability of exceedance values when 

dynamic coupling is considered. A more detailed investigation on fragility for the CAARC tall 

building may be found in Cui and Caracoglia (2015). 

 

 

6. Conclusions 

 
Graphics Processing Unit (GPU) is an efficient massive parallel computing platform. In 

comparison with the CPU platform GPU is a highly competitive alternative architecture in terms 

of computing time, energy consumption and cost. As a result, applications of the GPU technology 

in various scientific fields have been rapidly increasing in recent years. 

This paper explored, for the first time in wind engineering, the use of the GPU platform for 

simulating the dynamic response of high-rise systems. The study began by analyzing a series of 

simplified basic mathematical tasks on GPU architecture (e.g., matrix addition, multiplication, 

Monte-Carlo sampling, etc.). The same operations were later combined and employed in the 

subsequent implementation of parallel algorithms for wind engineering computations. 

Subsequently, the GPU methodology was applied to the synthetic generation of wind 

turbulence. In this case the study concluded that, since the computing procedure is more 

articulated, sequential and complex, the overall speed of the GPU technology decreases and it is 

influenced by the slowest step in the sequential algorithm. 

Next, the GPU technology was examined in the context of structural uncertainty and fragility 

analysis of high-rise systems under wind loads. Since the fragility analysis employs Monte Carlo 

sampling, it is advantageous to distribute the evaluation of the random inputs among different 

GPU threads and to estimate the response results by parallel computations. 

The first example illustrated the fragility analysis of a single degree-of-freedom structure. The 

second case investigated a continuum high-rise structure, in which double integration is needed to 

compute the generalized buffeting force for structural dynamic response in the frequency domain. 

In both cases the GPU algorithm distributes the evaluation of the various random parameters 

among different computing threads. In the second example the computing time is larger, since the 

double integral requires more computing resources. However, the GPU technology is still 

advantageous in comparison with CPU. 

The third example examined the simulation of wind force and modal coupling effects on a 

high-rise structure in both along-wind and cross-wind directions. The study proposed a two-layer 

distribution strategy on the GPU platform. This is believed to be a novel programming application 

of the GPU technology in wind engineering. From the comparison between the computing time on 

CPU and GPU, it was concluded that the GPU can perform distributed computing tasks faster than 

the CPU, on average 10 times faster. In any case, the GPU performance also depends on algorithm 

design and memory control strategies. 

Finally, it must be noted that the simulations of the dynamic response were based on the 

quasi-steady formulation of the wind forces. This approach is often not suitable in the case of 

high-rise buildings since the cross-wind response may be influenced by wake-induced loading. 
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Nevertheless the main purpose of this study was the feasibility of GPU architecture for wind 

engineering computations; therefore, a more accurate simulation of the wind load was not 

considered necessary for the scope of the work. The interested reader may however refer to a 

recent study (Cui and Caracoglia 2015), in which it is shown that wake-induced and 

vortex-shedding effects can be readily included in the numerical formulation for fragility analysis 

with minimum additional effort. It is however anticipated that a similar performance gain would 

be obtained if vortex-shedding loads were included in the simulations. 
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