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Abstract.    This study investigates the use of time-frequency coherence analysis for detecting and 
evaluating coherent “structures” of surface pressures and wind turbulence components, simultaneously on 
the time-frequency plane. The continuous wavelet transform-based coherence is employed in this 
time-frequency examination since it enables multi-resolution analysis of non-stationary signals. The wavelet 
coherence quantity is used to identify highly coherent “events” and the “coherent structure” of both wind 
turbulence components and surface pressures on rectangular prisms, which are measured experimentally. 
The study also examines, by proposing a “modified” complex Morlet wavelet function, the influence of the 
time-frequency resolution and wavelet parameters (i.e., central frequency and bandwidth) on the wavelet 
coherence of the surface pressures. It is found that the time-frequency resolution may significantly affect the 
accuracy of the time-frequency coherence; the selection of the central frequency in the modified complex 
Morlet wavelet is the key parameter for the time-frequency resolution analysis. Furthermore, the concepts of 
time-averaged wavelet coherence and wavelet coherence ridge are used to better investigate the 
time-frequency coherence, the coherently dominant events and the time-varying coherence distribution. 
Experimental data derived from physical measurements of turbulent flow and surface pressures on 
rectangular prisms with slenderness ratios B/D=1:1 and B/D=5:1, are analyzed. 
 

Keywords:  bluff body; time-frequency analysis; turbulence; pressure distribution; flow 
separation/attachment/reattachment 

 
 
1. Introduction 
 

Evaluation of the spatial correlation is crucial for an accurate modeling of random forces and 
buffeting response structural analysis under turbulent wind flows. Conventionally, a Fourier 
transform-based coherence function has been predominantly employed for representing and 
modeling the spatial correlation between two random processes (e.g., wind turbulence, pressures 
and forces) in spatially-correlated random fields. Physically-measured and empirically-based 
models of the Fourier coherence (e.g., Davenport 1962) have been utilized to adequately describe 

                                                       
Corresponding author, Associate Professor, E-mail: lucac@coe.neu.edu 
a Visiting Assistant Professor, E-mail: ho.le@neu.edu 



 

 

 

 

 

 

Thai-Hoa Le and Luca Caracoglia 

the effect of turbulence-induced buffeting loads. Classically, a series of empirical formulae have 

been directly interpolated from the measurements of wind turbulence, instead of pressures or force 

fields (more difficult to evaluate experimentally). In these formulae the coherence function is 

described as an exponential function depending on mean wind velocity, relative distance between 

the measurement points, frequency, and “gain” or decay factor. Some authors (e.g., Krenk 1996) 

have questioned the form of the coherence function for turbulence, which can lead to 

inconsistencies such as a full correlation at very low frequencies, irrespective of distance, and 

non-zero turbulence fluctuations on the plane transverse to the mean flow direction. The Fourier 

coherence of pressures has been experimentally studied by some authors (e.g., Larose 1996, 

Jakobsen 1997). It has also been pointed out (e.g., Matsumoto et al. 2003) that the parameters of 

the Fourier coherence, based on the measurements of pressures or forces, can be larger than the 

ones obtained from the wind turbulence, which are often employed in the empirical coherence 

models of the buffeting forces. Furthermore, the Fourier coherence, which indirectly implies 

averaging of the signals in time and frequency, is applicable to analyze linear and stationary 

turbulence or pressure “signals”. However, it cannot be used to investigate nonstationary and 

irregular signals, for example in cases of non-synoptic and extreme wind events (Bruns 2004, 

Zhan et al. 2006) or nonlinear fluid-structure interaction. More importantly, the Fourier coherence 

cannot reveal localized high coherence, time-varying and intermittent coherent flow and pressure 

“features”. Also no temporal information can be provided in the Fourier coherence. 

In order to overcome these limitations, a “wavelet transform-based coherence” analysis is 

considered in this study for investigating the correlation of both wind turbulence and surface 

pressures simultaneously on the time-frequency plane. The wavelet coherence can detect the 

localized high-coherence “events” and explore the time-frequency coherent structures in a non 

stationary random field. Torrence and Compo (1998) first introduced the use of the wavelet 

coherence for the correlation of meteorological data. Geurts et al. (1998) employed the concept of 

“cross” wavelet transform coefficients to detect the cross correlation between measured wind 

turbulence and pressures on full-scale low-rise buildings. The wavelet coherence analysis has been 

extensively used to examine the cross correlation and the time-frequency coherence of various 

kinds of measured stationary and nonstationary signals. Examples are: turbulence and pressure 

measurements (e.g., Kareem and Kijewski 2002, Gurley et al. 2003, Le et al. 2009); geophysical 

signals (Grinsted et al. 2004); meteorological signals (Torrence and Compo 1998); 

electrophysiological signals (e.g., Bruns 2004, Zhan et al. 2006). Le et al. (2009, 2011) examined 

the pressure coherence on rectangular prisms with different slenderness ratios B/D=1:1, B/D=5:1 

using the wavelet transform and a coherence analysis approach, based on the proper orthogonal 

decomposition. The same study also focused on the influence of the spanwise separation, the bluff 

body flows on the model’s surface, the Karman vortices in the wake, the intermittency features and 

the coherent “structures” of wind turbulences and surface pressures. The main findings of these 

studies can be summarized as (Le et al. 2009, 2011): (i) coherent pressure structures not only 

depend on the frequency, the distance, and the mean flow velocity (as in Davenport’s model), but 

also on the turbulent conditions and the bluff body flow; (ii) dominant physical phenomena 

originating from the model “signature” and in the wake can significantly influence the coherent 

structure; (iii) intermittent and locally-distributed high coherence is exhibited by the coherence 

structures on the time-frequency plane; and (iv) pressure coherence can be considerably larger than 

the turbulence coherence. In the case of wake structures around rectangular prisms, Bruno et al. 

(2014) recently discussed the status of an ongoing benchmark study on the aerodynamic behavior 

of a prism with slenderness B/D=5:1. A series of studies by five distinct research groups, including 
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wind tunnel experimental results and several investigations by computational simulations (CFD) 

were discussed. It is found that the magnitude of the spanwise pressure correlation coefficients for 

this prism can vary considerably from data set to data set, and that spanwise pressure correlation is 

usually stronger in the region of the separation “bubble”, immediately beyond the flow separation 

point. However, Bruno et al. (2014) remarked the inherent difficulty in identifying a reference 

experiment or simulation that enables efficient benchmark comparison for each designated flow 

configuration. Furthermore, high sensitivity of flow configurations (e.g., flow speed and 

turbulence intensity) on the spatial distribution of the spanwise pressure correlation magnitudes 

was also observed. In any case, information on chordwise pressure correlation and chordwise 

coherence has not been reported in Bruno et al. (2014). 

 It is generally agreed that computations of the wavelet transform and the wavelet coherence are 

actually complex and time-consuming. Basic parameters of the “mother” wavelet function can 

significantly affect the wavelet coherence analysis; in particular, scale normalization, time-scale 

smoothing and time-frequency resolution analysis are required in computing the wavelet transform 

and the wavelet coherence (Torrence and Compo 1998). However, rare comprehensive studies 

exist on the influence of time-frequency resolution and time-scale smoothing on the accuracy of 

the wavelet coherence estimation. In wind engineering, the continuous Morlet wavelet has been 

traditionally employed (e.g., Kareem and Kijewski 2002, Le et al. 2011). Moreover, the spanwise 

coherence of the surface pressures has been exclusively investigated (Le et al. 2009, 2011). The 

influence of the time-frequency resolution and adequate selection of a wavelet function, which is 

more adaptable to the needs of the multi-resolution analysis, still require examination. 

Furthermore, time-scale smoothing and scale normalization are needed for the 

wavelet-transform-based quantities; otherwise, the wavelet coherence can be incorrectly estimated 

as identically one (i.e., full correlation) on the time-scale plane (e.g., Li 2004, Kareem and 

Kijewski 2002). 

 This study builds on the existing literature results and systematically explores time-frequency 

continuous wavelet transform-based coherence function to examine the coherent structures of the 

surface pressures on rectangular prisms. The surface pressure data have been derived from a series 

of rigid section-model wind tunnel experiments (Matsumoto et al. 2003, Le et al. 2009) in the 

turbulent flows on rectangular prisms with various slenderness ratios B/D=1:1, B/D=1:1 with a 

splitter plate (SP) and B/D=5:1. The main objectives of the study are to: 

(1) Investigate the influence of time-frequency resolution on the estimation of time-frequency 

pressure coherence function; 

(2) Examine the use of a “modified” complex continuous Morlet wavelet, which can easily be 

adapted to various time-frequency resolution ranges and time-scale smoothing intervals;  

(3) Evaluate intermittency of surface pressures through the new concepts of time-averaged 

coherence and coherence ridge. 

 

 

2. Fourier coherence - definitions 
 

The Fourier coherence between two zero-mean random processes X(t) and Y(t) in a 

spatially-correlated random field can be determined by normalization of correlation coefficients of 

the two spectral quantities of vector signals X(t) and Y(t) in the frequency domain (Bendat and 

Piersol 2000)  
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  (1) 

where  denotes absolute operator; f: Fourier frequency variable; , : Fourier 

auto power spectra and Fourier cross power spectrum at/between two separated points, 

respectively as 

  (2) 

where E[] is the expectation operator; it is noted that the limit and time averaging operations 

(Bendat and Piersol 2000) have been omitted in the notation of Eqs. (2) for simplicity. Besides, the 

superscript symbols “*, T” denote complex conjugate and transpose operators;  are 

the Fourier transforms of X(t), Y(t) respectively with f frequency. The Fourier coherence is 

normalized between 0 and 1. It is known that if the random processes X(t) and Y(t) are 

fully-correlated, the Fourier coherence is one, whereas the Fourier coherence is zero if the two 

processes are uncorrelated. 

 

 

3. Wavelet coherence 
 

3.1 Definitions 
 
Continuous wavelet transform (CWT) of random process X(t) is defined as the convolution 

operation between X(t) and the “mother” wavelet function (Daubechies 1992) 

 

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where the quantity   
 (   ) contains the wavelet transform coefficients at translation index “ ” 

and scale index “s” on the time-frequency plane; the superscript “*” denotes complex conjugate; 

𝜓𝜏 𝑠(𝑡) is the dilated and translated wavelet function of the “mother” wavelet at translation 

 and scale s. The dilated and translated 𝜓𝜏 𝑠(𝑡) is estimated as 

 

                          (4) 

The wavelet transform coefficients   
 
(   ) can be considered as a correlation coefficient and 

a measure of similitude between the wavelet function and the original process in the time-scale 

plane. The CWT of a discrete series Xi (i=0,…,N-1) can be expressed as 
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( ) are the continuous wavelet coefficients at 

the discrete time point i and t is a time interval (depending on the digitalization of the signal). 
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3.2 From the complex Morlet wavelet to the modified Morlet wavelet 
 
The basic Morlet wavelet is predominantly used in the CWT since it contains a harmonic 

component, analogous to the Fourier transform, which is better suited to capture oscillatory 

behavior in a random process (Kareem and Kijewski 2002, Gurley et al. 2003)  

   (5) 

where fc denotes the wavelet central frequency, which can be taken as equal to one in many 

simplified cases. The basic Morlet wavelet is a complex harmonic function. 

Nevertheless, the exclusive dependency on one parameter, i.e., the central frequency fc, does 

not seem to be sufficient for simultaneously analyzing multiple time-frequency resolution “scales”. 

Therefore, a modified form of the basic complex Morlet wavelet is applied in this study to enable a 

more “flexible” analysis of the time-frequency resolution 

 
                  (6) 

where fb is a bandwidth parameter (Yan et al. 2006). A fixed bandwidth parameter is often used, 

fb=2, in the traditional Morlet wavelet. The basic complex Morlet wavelet is only a special case of 

the modified complex Morlet wavelet with bandwidth parameter fb=2. The modified complex 

Morlet wavelet satisfies the admissibility condition and the convergence of the corresponding 

integral (Daubechies 1992). Similar to the basic Morlet wavelet, the modified complex Morlet 

wavelet possesses the features of non-orthogonality, complex harmonic-type function and 

multi-resolution adaptation. Generally, the central frequency is related to the number of 

waveforms in the wavelet window, whereas the bandwidth parameter regulates the width of the 

wavelet window. Time-frequency resolution of the Morlet wavelet in Eq. (6) is determined by the 

balance between the width of the window in the real time axis and the number of waveforms. For 

example, a narrow window in time has a good time resolution but poor frequency resolution, while 

a broad window has a poor time resolution but good frequency resolution. 
 

3.3 Wavelet coherence 

 
For two random processes X(t) and Y(t), wavelet transform-based auto spectrum, wavelet cross 

spectrum, wavelet cross spectrum at time shift of index “”and the scale “s” can be defined from 

the respective wavelet transform coefficients  and as (Bruns 2004, Zhan 2006) 

 (7) 

where , are wavelet auto spectra of X(t), Y(t); is the wavelet 

cross spectrum between X(t) and Y(t); the symbol   denotes “smoothing operator” on both time 

and scale axes. The time-scale smoothing is a local-averaging signal processing technique of the 

wavelet window in the time and the scale (frequency). 

Similar to the Fourier coherence, the squared wavelet coherence of X(t) and Y(t) can be defined 

as the squared value of the absolute smoothed wavelet cross spectrum, normalized by the 

smoothed wavelet auto spectra (Torrence and Compo 1998) 
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 (8) 

where  is the wavelet coherence of X(t) and Y(t). Normalization is used in the previous 

equation to satisfy the requirement of unitary energy density at any scale. Since the dilated wavelet 

is defined by the factor √  in Eq. (4), a term   1 has been added to the wavelet coherence in Eq. 

(8). The scale normalization ensures that the wavelet transforms of the process at each scale are 

compatible with transforms at another scale or those of other process. 

Furthermore, wavelet phase difference can be estimated from the wavelet cross spectrum as 
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Numerical estimation of wavelet transform and wavelet coherence can be inaccurate if the scale 

normalization and time-scale smoothing are not taken into account, as described in a later section 

of this study. 

 

3.4 Scale and frequency relationship  
 

The wavelet transform employs the scale parameters, which is the inverse of a frequency. A 

relationship between the wavelet scale and the Fourier frequency can be obtained 

 

                              (10) 

Eq. (10) is valid if a unit sampling frequency of the wavelet function is used. Practically, the 

sampling frequency of a random signal must be included in the scale-frequency relationship as 

(e.g., Staszewski 1998, Le et al. 2009) 

                              (11) 

in which f0 denotes the sampling frequency of the random process X(t). 

 

3.5 Time-scale smoothing  
 

Smoothing in both time and scale is necessary for estimating high-order wavelet 

transform-based quantities such as the wavelet auto spectra, the wavelet cross spectra, the wavelet 

coherence and the wavelet phase difference. The main purpose of the smoothing is to obtain a 

more accurate “estimator” of the wavelet transform by removing noise and by converting the 

estimated quantity from a “local” wavelet power spectrum to a “global” wavelet power spectrum. 

Similar to the Fourier transform-based power spectrum, in the case of a smoothing in time, the 

time-averaged wavelet power spectra can be computed either over a discrete time interval [i1,i2], 
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referenced to a time-shifted index i'=(i1+i2)/2, or over the entire time domain (Torrence and 

Compo 1998)   
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In the previous equations i1 and i2 are two indices used to designate the initial time and final 

time of the smoothing period; N is the number of sampled points in the entire time domain. In this 

study, the smoothing in time over the entire time domain in Eq. (12(b)) has been employed for 

comparison with the Fourier transform-based coherence. 

In the case of a smoothing in scale, a weighted scaled-averaged wavelet power spectrum over a 

scale range between s1 and s2 has been proposed by Torrence and Compo (1998)  
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where j is a scaling index between j1 and j2;t is the time interval; j is a scale interval; C is a 

constant empirical reconstruction factor of the Morlet wavelet, scale independent. The C  factor is 

determined (Torrence and Compo 1998) as    (    
   

𝜓 ( )⁄ )∑   [  (  )]   
   

⁄ 
   , 

where 𝜓 ( ) is the mother Morlet wavelet at the initial time t=0 at the initial scale s≈0;  (  ) is 

CWT coefficient of the delta function  ; Re denotes real part of the operator. Further information 

on the time-scale smoothing may be found in Torrence and Compo (1998). 

 

3.6 End-effect treatment 
 

Because the wavelet function with a finite window width is applied to a finite-duration random 

process, a loss of accuracy will occur at the beginning and the end of the wavelet spectrum. This is 

also known as the end effect or “cone of influence” or “padding effect” of the wavelet transform. 

The cone of influence depends on the scale (the frequency). Concretely, the cone of influence is 

wider at low frequency and narrower at high frequency. One simple solution to deal with the end 

effects of the wavelet spectrum is to first pad the two ends of the random signal with zeroes before 

the wavelet spectrum is computed, and to subsequently remove the wavelet coefficients 

corresponding to the zero-padded time instants. Padding at the two ends of the wavelet spectrum 

has been proposed by applying a reduction factor e
-2  

to the scale values at the two ends of the 

spectrum (Torrence and Compo 1998, Grinsted et al. 2004). In this study, a simplified treatment of 

the end effects has been chosen, by eliminating 5-second intervals of the numerically estimated 

wavelet spectrum at the two ends. More sophisticated approaches (e.g., Simonovski and Boltežar 

2003, Kijewski and Kareem 2002) are available for managing the evaluation of the wavelet 

spectrum at two ends of a signal recorded over a finite time duration. 
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3.7 Time-frequency resolution 
 
The wavelet coherence is the basis of the multi-resolution analysis. Time-frequency resolution 

is examined by simultaneously considering the frequency and wavelet function parameters. 

However, the uncertainty principle of the wavelet analysis states that, since the product of  

frequency response scale and time resolution has a lower bound, it is not possible to 

simultaneously achieve optimal time and frequency resolutions (e.g., Ladies and Gouttebroze 

2002, Kijewski and Kareem 2002). A fine frequency resolution implies a coarse time resolution, 

and inversely coarse frequency resolution comes with a fine time resolution. Fortunately, in many 

practical signals the fine frequency resolution and the coarse time resolution are often employed 

for analyzing low frequency band. 

The time-frequency resolution for the wavelet coherence using the traditional Morlet wavelet 

function with the central frequency equal to one can be expressed, in the optimal relationship, as 

(Kijewski and Kareem 2003) 

 
22
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1
 t                         (14)  

where Δfψ and Δtψ are frequency resolution and time resolution of the Morlet wavelet. The optimal 

product between the frequency resolution and the time resolutions is .Normally, we 

have the relationship . The time-frequency resolution relationships of the traditional 

Morlet wavelet, with central frequency parameter fc≠1, at a given frequency f, become (Yan et al. 

2006) 
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In this study, the definition of time-frequency resolution can be further extended by accounting 

for the presence of the bandwidth parameter fb as follows  

 

bc ff

f
f

2
 ,   

b

c

ff

f
t                      (16)  

Table 1 illustrates the time-frequency resolution of the modified Morlet wavelet for various 

combinations of the central frequency (fc) and the bandwidth parameter (fb), as a function of the 

analyzed frequencies (f). As evident from Table 1, the complex Morlet wavelets possess the fine 

frequency resolution and the coarse time resolution at the lower analyzing frequencies, and 

inversely the coarse frequency resolution and the fine time resolution at the higher analyzing 

frequencies. This scenario is expected in the practical signals. According to Table 1, the frequency 

resolution is finer and the time resolution is coarser with the progressive increment of the central 

frequency fc and the bandwidth parameter fb. Therefore, one can adjust the wavelet central 

frequency fc and the bandwidth parameter fb to obtain both desired frequency and time resolutions, 

depending on the analyzed frequency. 

Fig. 1 indicates the real and imaginary parts of various examples of modified complex Morlet 

wavelets. It is observed that, at a constant fc and for an increasing fb, the time-window width is 

enlarged but the wavelet “shape” and the magnitude of the spectral peaks in the wavelets are 

 41 tf

 41 tf
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unchanged. In contrast, at a constant fb the number of waveforms considerably increases with the 

increment of fc. The efficient numerical computation of the wavelet coherence is, consequently, 

negatively affected by the increase in the number of waveforms. Therefore, it is desirable to keep 

the central frequency fc as low as possible (fc=1, 2) and increase the bandwidth parameter fb to fit 

with desired time-frequency resolution at the analyzing frequencies. 

 

3.8 Confidence intervals 
 

Confidence interval of a wavelet quantity is defined as the probability that the “true” value of 

the wavelet quantity, at a certain time and scale, lies within a certain interval of the estimated value 

of the quantity. Since the wavelet spectrum, the wavelet cross spectrum, the wavelet coherence and 

the wavelet phase difference are estimated from random pressure data by manipulating the signals 

the statistical confidence levels of the resulting wavelet quantities need to be assessed. As 

described by Torrence and Compo (1998), the confidence is examined by the “null hypothesis” on 

the statistical significance level, which requires the initial derivation of an appropriate background 

power spectrum. The simplest models of background power spectrum are the white noise and the 

“red noise” (Torrence and Compo 1998). These two spectral models are applied, as a first 

approximation, to investigate the wind-induced surface pressures in this study. In particular, the 

red noise of a random process X(t) is modelled as a first-order autoregressive process (AR1) to 

build up a suitable background Fourier power spectrum (Torrence and Compo 1988) 

   
  

    

           (     )
 (17)  

In the previous equation   
  denotes the power spectrum of X;   is the lag-1 autocorrelation 

of the AR1 model; k=0,1,…,N/2 is the frequency index. It is noted that the lag-1 autocorrelation   

can be determined from the measured pressures;    can used for white noise. 

The random normalized wavelet spectrum|       |   
 ⁄ , and the wavelet cross spectrum 

|       |     ⁄ of the pressure time series X and Y, with a background power spectrum as in Eq. 

(17), can be written as two standard distribution variables (Torrence and Compo 1998)       

 
|       

|

  
  

 

 
  

   
                           (18a) 

 
|       

|

    

 
  

 
√  

   
                         (18b) 

where   
 ,  

  are the variances of the original time series;   
  is the chi-square random variable 

distribution with   degrees of freedom (  
  for the complex wavelets,   );   

 ,  
  are the 

background power spectra;    is a random variable defined by the square root of the product 

between two chi-square distributions. The confidence intervals can be found from Eqs. (18) as 

indicated in Torrence and Compo (1998). 

Since the probability distribution of the wavelet coherence is not usually available in closed 

form, confidence levels of the wavelet cross-coherence are typically estimated by Monte Carlo 

simulation (Grinsted et al. 2004) as follows: (i) estimate the wavelet coherence (and 

cross-coherence) of the measured pressures at X and Y; (ii) generate a suitable sample of red noise 

realizations based on the AR1 model parameters derived from the original pressures; (iii) compute 

the wavelet coherence from two pairs of simulated red noises with background Fourier spectrum 
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 ,  

 ; (iv) estimate the margins of error of the wavelet coherence corresponding to a pre-selected 

confidence interval from the red-noise population; (v) determine the confidence intervals of the 

true wavelet coherence based on the measured wavelet pressure coherence and the error margins in 

item (iv).        

 

 
Table 1 Time and frequency resolutions of wavelet parameters at selected frequencies 

Analyzed freq. (f) 5Hz 

 

10Hz 

 

20Hz 

 

30Hz 

 Time-frequency f t f t f t f t 

Resolution (Hz) (s) (Hz) (s) (Hz) (s) (Hz) (s) 

fc=1,fb=2 1.25 0.14 2.50 0.07 5.00 0.04 7.50 0.02 

fc=1,fb=5 0.79 0.22 1.58 0.11 3.16 0.06 4.74 0.04 

fc=5,fb=2 0.25 0.71 0.50 0.35 1.00 0.18 1.50 0.12 

fc=5,fb=5 0.16 1.12 0.32 0.56 0.63 0.28 0.95 0.19 

fc=10,fb=2  0.13 1.41 0.25 0.71 0.50 0.35 0.75 0.24 

fc=10,fb=5  0.08 2.24 0.16 1.12 0.32 0.56 0.47 0.37 

 

 

 

(a) fc=1, fb=2 (b) fc=1, fb=5 

(c) fc=2, fb=2 (d) fc=2, fb=5 

Fig. 1 Configuration of modified complex Morlet wavelets: (a) fc=1, fb=2, (b) fc=1, fb=5, (c) fc=2, fb=2, (d) 

fc=2, fb=5 
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Rectangular prism pressure coherence by modified Morlet continuous wavelet transform 

 

 

 

 
    (a) B/D=1:1                                  (b) B/D=5:1 

Fig. 2 Experimental prisms and surface pressure measurement: (a) B/D=1:1 and (b) B/D=5:1 

 
 
4. Surface pressures on prisms  
  

Surface pressure signals were derived from direct measurements on the rectangular prisms with 

the slenderness ratios of B/D=1:1, B/D=1:1 with SP and B/D=5:1 in the wind tunnel (Le et al. 

2009, 2011). Isotropic turbulent flows were generated artificially using grid devices, installed 

upstream of the prisms. The two-component fluctuating wind velocities (longitudinal u turbulence 

and vertical w turbulence) were also measured. Turbulence intensities of these two components 

were determined as Iu=11.56%, Iw=11.23%, respectively. Pressure taps were arranged on one 

surface of the prisms for the surface pressure measurements. There were 10 pressure tap “lines” on 

the prism with B/D=1:1 and 19 pressure taps on the prism with B/D=5:1 in the chordwise 

direction; the separations among pressure tap lines in the spanwise direction from the reference 

line at y=0 mm (central line) were selected at the positions y=25, 75, 125 and 225 mm (Fig. 2). 

 

 

5. Results and discussion 
 

Fig. 3 shows the spanwise wavelet coherences of the w-wind turbulence and the surface 

pressures on the prisms at the spanwise separations between the reference point at y=0 and 

y=25mm (y/B=0.27 in B/D=1:1, y/B=0.08 in B/D=5:1, see Fig. 2) in the frequency interval 

between 0 and 50 Hz and time interval between 5 and 95 seconds. In this study, normalization in 

scale and smoothing in time and scale have been applied for computation of the wavelet 

coherence. As outlined above, 5-second intervals at the beginning and the end of the computed 

wavelet coherence have been eliminated to deal with the loss of accuracy and the end effects. The 

wavelet coherence can be used to illustrate “coherent events” in both turbulence and surface 
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Thai-Hoa Le and Luca Caracoglia 

pressures at every point on the time-frequency plane. Different shades of color are used in the 

wavelet coherence maps: lighter colors indicate a coherence value close to the unit value, whereas 

darker colors are used for coherence close to zero.  

The wavelet coherence detects any localized high-coherence events at a specific frequency or 

bandwidth and at a given time or duration. Clearly, more information can be obtained from the 

wavelet coherence in comparison with the Fourier coherence. It is also observed that the pressure 

(auto) coherence gradually decreases as the slenderness ratio of the prisms increases, from 

B/D=1:1, the B/D=1:1 with SP to the B/D=5:1, respectively. The pressure coherence on the prisms 

is much larger than the vertical turbulence coherence. High-coherence events of the pressures are 

not coincident with wind turbulence coherence data on the time-frequency plane.  

For example, if one examines the time evolution of pressure coherence in Fig. 3(c) at a 

frequency close to 2 Hz, the pressure coherence is large and intermittent, also suggesting a 

temporal dependency of the unsteady pressure “features or structures”. In contrast, the same 

feature is not evident from the analysis of the wavelet spectrogram of the w turbulence component 

in Fig. 3(d) at the same frequency. The difference in the wavelet coherence, measured on the 

different prisms and a larger pressure coherence in comparison with flow turbulence confirm the 

effect of bluff body flow on the coherent structures of the pressures. 

 

 

(a) Pressure, B/D=1:1 (b) Pressure, B/D=1:1 with SP 

(c) Pressure, B/D=5:1 (d) w-turbulence 

Fig. 3 Spanwise wavelet coherence: (a) B/D=1:1, (b) B/D=1:1 with SP, (c) B/D=5:1, (d) w-turbulence 
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Rectangular prism pressure coherence by modified Morlet continuous wavelet transform 

 

Similar to the spanwise coherence, the chordwise coherence of the surface pressure has been 

investigated. Fig. 4 illustrates the chordwise wavelet coherences of the pressures on the prisms at 

the chordwise separations between the reference point at x=0 and x=25 mm, measured at the 

bottom surface of the prism. The chordwise pressure coherence “structure” is also observed on the 

time-frequency plane, similar to the spanwise coherence structure. However, the chordwise 

pressure coherence seems to be stronger than the spanwise coherence (see Figs. 3 and 4). 

For more detailed investigation on the time-frequency coherence, the concepts of 

time-averaged wavelet coherence and wavelet coherence ridge are employed. Fig. 5 illustrates how 

to estimate these quantities from the wavelet coherence scalogram. The averaged wavelet 

coherence is obtained by averaging the wavelet coherence along the entire time axis (95-second 

signal duration). As a result, the averaged wavelet coherence can be approximately interpreted as a 

quantity similar to the Fourier coherence in the frequency domain. In addition, the wavelet 

coherence ridge can be found by inspection, using vertical-plane cross sections in the wavelet 

coherence scalogram along the time axis at constant frequency, which coincide with the peak value 

of the wavelet coherence. Thus, the wavelet coherence ridge provides further information about 

intermittent behavior of pressures or flow. In Fig. 5 the averaged wavelet coherence is a 

frequency-dependent function, whereas the wavelet coherence ridge is a time-dependent one. 

 

 

(a) Pressure, B/D=1:1 (b) Pressure, B/D=1:1 with SP 

(c) Pressure, B/D=5:1 (d) w-turbulence 

Fig. 4 Chordwise wavelet coherence: (a) B/D=1:1, (b) B/D=1:1 with SP, (c) B/D=5:1 
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(a) Original wavelet coherence 

 

 

 

 

 

 

 

 

 

 

 

 

(b) Coherence ridge and averaged coherence  

Fig. 5 Mapping of wavelet coherence function: (a) Original wavelet coherence, (b) Coherence ridge and 

averaged coherence  

 

(a) Averaged wavelet coherence (b) Wavelet coherence ridge 

Fig. 6 Wavelet coherence of pressures at various spanwise separations (B/D=1:1): (a) Averaged wavelet 

coherences, (b)Wavelet coherence ridges 

 

 

Fig. 6 shows the averaged wavelet coherence and the wavelet coherence ridges of the pressures 

on the B/D=1:1 prism at the spanwise separations between the reference point at y=0 and y=25, 75, 

125 and 225 mm. It is noted in Fig. 6(a) that the averaged wavelet coherence decreases with the 

increment of the spanwise separations. However, the averaged wavelet coherence of the pressures 

does not seem to exhibit fast decay at high frequency. High-coherence regions at about 5 Hz are 

also clearly observed in the averaged wavelet coherence diagrams, in correspondence with the 

frequency of Karman vortices in the wake of the prims with B/D=1:1. Locally, low and high 

coherence events in the pressures at the dominant frequency are investigated by the wavelet 

coherence ridge in the time domain. Fig. 6(b) shows that low coherence events and their durations 

increase with the increment of spanwise separation. Moreover, very low coherence events can be 

observed at approximately equidistant separations. Interestingly, the wavelet coherence ridges at 

various spanwise separations reveal a similar shape along the time axis. In other words, 
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Rectangular prism pressure coherence by modified Morlet continuous wavelet transform 

high-coherence events and low-coherence ones seem to occur in the case of pressures at the same 

times and at almost every spanwise separation (irrespective of the separation distance). For 

example, high-coherence events approximately occur at 28, 52, 71, 76 and 80 seconds, while 

low-coherence events are observed at 12, 34, 57, 62, 77 and 86 seconds in the wavelet coherence 

ridges of the pressure on the B/D=1:1 prism (see Fig. 6(b)). 

Fig. 7 illustrates the comparisons between averaged wavelet coherence and Fourier coherence 

for both wind turbulence and surface pressures at the spanwise and chordwise separations between 

the reference point at x=0, y=0 and x=25 mm, y=25 mm. There is adequate agreement between the 

wavelet coherence and the Fourier coherence in the low frequency band. However, difference is 

noted between the two curves in the high frequency band and for the spanwise direction (Fig. 

7(a)).  

A better agreement between wavelet coherence and Fourier coherence is found along the entire 

frequency axis in the chordwise direction (Fig. 7(b)). The Fourier coherence seems to decay faster 

than the wavelet coherence at high frequencies. A reason for this difference is still unknown and 

will require further investigation. Fig. 7 also examines the “intensity” of the coherent structures of 

both wind turbulence and pressures, derived from Figs. 3 and 4. The pressure coherence on the 

B/D=1:1 prism is larger than the one on the B/D=5:1 in both spanwise and chordwise directions. 

Pressure coherences on both the B/D=1:1 and B/D=5:1 prisms are larger than the vertical 

turbulence coherence. Furthermore, there is a difference in the pressure coherences between the 

B/D=1:1 prism and the B/D=1:1 prims with SP in both spanwise and chordwise directions. It 

seems that the pressure coherences on the B/D=1:1 prism with SP are slightly higher at very low 

frequencies (less than 5 Hz), whereas pressure coherences on the B/D=1:1 prism clearly become 

predominant around the Karman vortex frequency interval. Effect of a variation in the fundamental 

flow (e.g., separation and reattachment, vortex structure, bubble, etc.) on the surface of the bluff 

body prims explains the differences in the pressure coherences and the turbulence coherence. 

Fundamental (related to fluid-structure interaction) and secondary flows (related to convection 

flow mechanisms) on the model surface may enhance or suppress the pressure coherences in the 

spanwise and chordwise directions (e.g., Matsumoto et al. 2003, Le et al. 2009). Furthermore, it is 

observed that the chordwise pressure coherences seem larger than the spanwise pressure 

coherences on the surface of the same prisms. 

 

 
(a) Spanwise coherence 

 
(b) Chordwise coherence 

Fig. 7 Comparison between wavelet and Fourier coherences of pressure and turbulence components (u, w): 

(a) Spanwise coherence, (b) Chordwise coherence 
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(a) Averaged wavelet coherence (b) Wavelet coherence ridges 

Fig. 8 Effect of time-frequency resolution: (a)Averaged wavelet coherence, (b)Wavelet coherence ridges 

 

 

The influence of the time-frequency resolution on the time-frequency coherence and, in 

particular, on the averaged wavelet coherence and the wavelet coherence ridges of the pressures, 

has been investigated in Fig. 8 for the B/D=1:1 prism at the spanwise separation distance equal to 

25 mm. An illustration of time-frequency resolution in the case of the modified Morlet wavelet 

parameters, depending on central frequency fc and bandwidth parameter fb, has been provided in 

Table 1. The time-frequency resolution considerably affects both the averaged wavelet coherence 

and the wavelet coherence ridges. The averaged wavelet coherence of the pressures on the 

B/D=1:1 prism reduces with an increase of the central frequency fc, while it does not vary with the 

bandwidth parameter fb (Fig. 8(a)). Similar observation on the wavelet coherence ridges can be 

drawn from Fig. 8(b) by modifying the central frequency fc and the bandwidth parameter fb. 

Identification of intermittent behavior in the wavelet coherence ridges, depending on the selection 

of the wavelet function parameters, has been examined in Fig. 8(b). Higher intermittency rate with 

sudden low coherence events is frequently observed if the central frequency fc is high. It also 

seems that low- and high-coherence events occur at approximately the same time instants along 

the time axis if the same central frequency is used. 

The main remarks of this examination are: (i) wavelet central frequency fc is the key parameter 

for adequate time-frequency analysis; (ii) time resolution decreases but frequency resolution 

increases with the increase of the wavelet central frequency fc; (iii) the bandwidth parameter fb is a 

correction parameter in the time-frequency resolution analysis; and (iv) frequency resolution 

increases but time resolution decreases with the increase of the bandwidth parameter fb. It is 

advised to select a low wavelet central frequency fc, whereas the bandwidth parameter fb value can 

be selected either small in the case of a low analyzed frequency interval or large for high analyzed 

frequencies. 

Fig. 9 shows the averaged wavelet coherence and wavelet coherence ridges of the pressures at 

the chordwise pressure tap positions Nos. 3, 5, 7, 9 on the B/D=1:1 prism, the B/D=1 prism with 

SP and Nos. 3, 7, 11, 15 on the B/D=5:1 prism, at the spanwise positions y=0 and y=25 mm.  

It is observed on the B/D=1:1 that the averaged wavelet coherences, by varying chord-wise 

pressure separation, tend to exclusively differ at very low frequencies, whereas the curves do not 

significantly change at higher frequencies (see Fig. 9(a)). Similar tendency can be seen in the 
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Rectangular prism pressure coherence by modified Morlet continuous wavelet transform 

averaged wavelet coherences among the various chordwise pressure positions on the B/D=1:1 

prism with SP (Fig. 9(b)).  

 

 

(a.1) B/D=1:1- averaged wavelet coherence  (a.2) B/D=1:1 - wavelet coherence ridges 

(b.1) B/D=1:1 with SP - averaged wavelet coherence (b.2) B/D=1:1 with SP: Wavelet coherence ridges 

(c.1) B/D=5:1 - averaged wavelet coherence (c.2) B/D=5:1- wavelet coherence ridges 

Fig. 9 Averaged wavelet coherence and wavelet coherence ridge of the pressure coefficients at various 

chordwise positions with y=25mm: (a) B/D=1:1, (b) B/D=1:1 with SP, (c) B/D=5:1 
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(a) Averaged wavelet coherence  (b) Wavelet coherence ridges  

Fig. 10 Effect of time-scale smoothing (B/D=1:1, y=25mm) on: (a) Averaged wavelet coherence, 

(b)Wavelet coherence ridge 

 

 

In the prism with B/D=5:1, there is significant difference in the wavelet coherences at the 

various chord-wise pressure positions (or separations), noticeable along the entire frequency axis. 

Generally, the averaged wavelet coherences of the pressures are high at the tap positions near the 

leading edge (positions Nos. 3, 5). The coherence reduces when the position indices move 

downstream, from the leading edge to the trailing edge (positions Nos. 7, 9 on the B/D=1 and Nos. 

11, 15 on the B/D=5). This tendency is especially clear in the case of the B/D=1:1 prism and the 

B/D=1:1 prism with SP (see Fig. 11).This aspect may be explained due to a more uniform flow 

around the bluff body on the entire surface of the prism with B/D=1:1. In the prism with B/D=5:1, 

large averaged wavelet coherences are predominantly observed at the leading edge position No.3; 

they vary in a more complicated manner at the position No.7, near the reattachment region of the 

flow; also, a sudden reduction is also noted towards the trailing edge taps Nos. 11, 15 (Fig. 9(c)).  

In the pressure coherence on the B/D=5:1, the wavelet coherence is relatively dominant around 

the leading edge positions within “the separation bubble” and progressively reduces at the 

reattachment region positions towards the trailing edge. Furthermore, the time-dependent 

coherence at the various chordwise pressure positions has been investigated by the wavelet 

coherence ridges. With the pressure positions moving downwind from the leading edge to the 

trailing edge of the prisms, the study of the wavelet coherence ridges suggests that low coherence 

events are characterized by an increment of their drops and an expansion of their duration along 

the time axis (see Fig. 9). 

Fig. 10 illustrates the effect of the time-scale smoothing on the wavelet coherence of pressure 

on B/D=1:1 at the spanwise separation y=25 mm. Three cases of time-scale smoothing have been 

investigated: (i) time-averaged and weighted scale-averaged smoothing as presented in Section 3.5 

(smoothing 1); (ii) localized time-averaged and scale-averaged smoothing (smoothing 2) and (iii) 

no smoothing on the time-scale plane. It is noted that the scale normalization has been used in all 

three cases. Furthermore, a localized 10-point adjacent region measured from each point on the 

time-scale plane has been employed for time-scale smoothing in the smoothing 2. In Fig. 10, there 

is a good agreement in the wavelet coherences between the smoothing 1 and the smoothing 2 at 
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low frequencies. However, non-negligible differences are observed with the increase of the 

frequencies in the high-frequency range. It is noted that the localized time-averaged and 

scale-averaged smoothing technique does not work well in estimating the wavelet coherence at 

high frequencies. If no smoothing is applied, the wavelet coherences are identically one on the 

whole time-scale plane. The effect of the time-scale smoothing on the time-dependent coherence 

ridge is depicted in Fig. 10(b). Influence of the time-scale smoothing on the corresponding 

confidence levels of the estimated wavelet coherence is beyond the scope of this study and will be 

considered in a future investigation. 

Fig. 11 illustrates the results of a preliminary investigation on the confidence intervals of the 

estimated wavelet spectrum and wavelet coherence. First, lag-1 autocorrelations of the AR1 model 

describing the original pressure signals have been estimated to obtain the background power 

spectra of the simulated red noises. Second, a total of 1000 Monte-Carlo realizations (pairs) of the 

red noises have been synthetically generated to compute the wavelet coherence and the confidence 

intervals (Grinsted et al. 2004). Figs. 11(a) and 11(b) illustrate examples of the simulated red 

noises and verification of the assumption of red-noise by comparing the AR1 model spectrum with 

the average power spectrum of the original pressures. 

 

 

(a) Simulated red noises  (b) PSD verification of simulated red noises  

(c) Averaged wavelet power spectrum (WPS) (d) Averaged wavelet coherence (WCO) 

Fig. 11 Analysis of confidence intervals for wavelet spectrum and wavelet coherence (B/D=1:1, y=25 

mm): (a) Simulated red noises, (b) PSD verification of the simulated red noises, (c) Averaged 

wavelet power spectrum (WPS), (d) Averaged wavelet coherence (WCO) 
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The wavelet coherences of the two synthetically generated pairs of red noises are finally 

employed to determine the confidence intervals (Figs. 11(c) and 11(d)). The selection of the 

confidence level (90% and 95%) and its effect on the estimation of the wavelet power spectrum 

and wavelet coherence are respectively illustrated in Figs. 11(c) and 11(d). As expected, the choice 

of significance level influences the confidence regions of the estimated wavelet spectra and 

wavelet coherences. The investigation suggests that any measured wavelet spectrum and wavelet 

coherence should be carefully interpreted and that analysis of confidence intervals should possibly 

be considered. 

 

 

5. Conclusions 
 

Wavelet coherence analysis has been employed to investigate the time-frequency coherence of 

wind turbulence and surface pressures, experimentally measured on the rectangular prisms in both 

spanwise and chordwise directions. The properties of modified complex Morlet wavelet function, 

normalization in scale, smoothing in time/scale and time-frequency resolution analysis have been 

considered in estimating the wavelet coherence. The averaged wavelet coherence and the wavelet 

coherence ridge have been proposed for better investigating the coherent structures of the wind 

turbulence and the surface pressures. The averaged wavelet coherence has also been verified with 

the Fourier coherence for the same sets of pressure data. The study has also examined the effects 

of fundamental flows, convection flows and turbulent conditions on the time-frequency coherence. 

The main remarks can be summarized as: 

(1) Scale normalization and time-scaling smoothing should be employed for the accurate 

estimation of the time-frequency coherence.  

(2) Time-frequency resolution significantly influences the wavelet pressure coherence; thus 

time-frequency resolution analysis must be carefully considered in computing the wavelet 

pressure coherence. It is suggested to select a low wavelet central frequency and adjustable 

bandwidth parameter in the modified Morlet wavelet function to obtain the desired 

resolution analysis. 

(3) Time-frequency coherence of the surface pressures depends on the flows in the proximity 

of the surface and in the wake of the prisms. The coherent structures of the pressures are 

strongly influenced by the dominant physical phenomena on the prisms (e.g., vortex 

shedding, separation bubble and flow reattachment). 

(4) Wavelet coherence ridge can be used to investigate the intermittent pressure features and 

intermittent rate of the time-frequency coherence in the time domain. Intermittent pressure 

features seem to exhibit a very similar behavior in the time domain at various spanwise 

separations.  

(5) Averaged wavelet coherence of the pressures generally agrees with the conventional 

Fourier coherence. 

(6) Coherent structures of the pressures are approximately similar in both spanwise and 

chordwise directions.  

(7) Time-scale smoothing, scale normalization and confidence interval analysis can 

significantly influence the numerical estimation and the interpretation of the estimated 

wavelet quantities. 
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