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Abstract.    Higher-mode vertical vortex-induced vibrations (VIV) have been observed on several steel 
box-girder suspension bridges where different vertical modes are selectively excited in turn with wind 
velocity in accordance with the Strouhal law. Understanding the relationship of VIV amplitudes for different 
modes of vibration is very important for wind-resistant design of long-span box-girder suspension bridges. 
In this study, the basic rectangular cross-section with side ratio of B/D=6 is used to investigate the effect of 
different modes on VIV amplitudes by section model tests. The section model is flexibly mounted in wind 
tunnel with a variety of spring constants for simulating different modes of vibration and the non-dimensional 
vertical amplitudes are determined as a function of reduced velocity U/fD. Two ‘lock-in’ ranges are observed 
at the same onset reduced velocities of approximately 4.8 and 9.4 for all cases. The second ‘lock-in’ range, 
which is induced by the conventional vortex shedding, consistently gives larger responses than the first one 
and the Sc-normalized maximum non-dimensional responses are almost the same for different spring 
constants. The first ‘lock-in’ range where the vibration frequency is approximately two times the vortex 
shedding frequency is probably a result of super-harmonic resonance or the “frequency demultiplication”. 
The main conclusion drawn from the section model study, central to the higher-mode VIV of suspension 
bridges, is that the VIV amplitude for different modes is the same provided that the Sc number for these 
modes is identical. 
 

Keywords:    suspension bridges; bridge deck; vortex-induced vibrations; wind tunnel tests; section model 
tests 

 
 
1. Introduction 
 

When flow pasts over the bluff body, vortices with equal strength but opposite rotation are shed 
alternately at both sides of the body. The body is then subject to the transverse lift force with the 
same frequency with that of the vortex pairs. If the body is elastically mounted, transverse 
vibration may be caused, particularly if the vortex-shedding frequency coincides with a natural 

                                                       
Corresponding author, Professor, E-mail: cexghua@hotmail.com 
a Professor, E-mail: zqchen@hnu.edu.cn 
b Former graduate student, E-mail: chenwensunny@163.com 
c Senior Engineer, E-mail: niuhw_hd@126.com 
d Ph.D. Candidate, E-mail: zwhuang213112@gmail.com 



 
 
 
 
 
 

X.G. Hua, Z.Q. Chen, W. Chen, H.W. Niu and Z.W. Huang 

 

frequency of elastic body. The frequency of vortex-shedding depends on wind speed U, the 
cross-sectional shape and sometimes the Reynolds number, and is defined by the non-dimensional 
Strouhal number St=fD/U where D is the body dimension in transverse direction. For cross-section 
with sharps edges such as bridge decks, St is independent on Reynolds number. Structures 
specially liable to vortex-induced vibrations are transmission lines, chimney stackers, masts and 
towers, suspension bridges and pipelines (Scruton and Flint 1964, Simiu and Scanlan 1996). There 
have been numerous work carried out on vortex-induced vibration of circular cylinders, as well 
documented in several reviews (e.g., Bearman 1984, Sarpkaya 2004, Williamson and Govardhan 
2004).  

Bridge decks are typical bluff bodies and are therefore prone to vortex-induced vibrations when 
exposed to a natural wind. Wu and Kareem (2012) presented a state-of-the-art review on 
vortex-induced vibration of bridge decks. Due to the relatively high stiffness for beam bridges and 
cable-stayed bridges, the vortex-induced vibrations have been observed only for the fundamental 
vertical or torsional mode in practice. However, a long-span suspension bridge is very flexible 
such that its bridge deck/stiffening girder has a number of closely-spaced vertical modes of 
vibration. Many of them will be selectively excited in turn with wind velocity in accordance with 
the Strouhal law St=fD/U, with D being the depth of bridge decks in context of bridge VIV. 
Actually, higher-mode vertical vortex-induced vibrations have been observed on several steel 
box-girder suspension bridges under moderate wind (Larsen et al. 2000, Li et al. 2011). For 
example, as reported by Larsen et al. (2000), the third, the fifth and the sixth vertical modes of the 
stiffening girder developed vortex-induced vibrations at increasing wind velocity for the Great 
Belt Bridge. 

Generally speaking, the steel box girders in suspension bridges may be considered as a shallow 
beam commonly with a height less than 4m, and its St number is about 0.1. Therefore, the onset 
‘lock-in’ velocities for vertical modes with a frequency less than 0.6 Hz are below 25 m/s, which is 
the upper limit wind velocity for bridges open to traffic. In particular, the vertical modes with a 
frequency following in the range of 0.2 Hz~0.4 Hz have onset velocity of about 6~12 m/s and are 
therefore most easily excited by vortex shedding than lower modes. On the other hand, at the same 
amplitude of vibration, vortex-induced vibration of higher modes produces larger acceleration. As 
a result, restricting the vibration amplitudes for higher vertical modes is more rigorous than that of 
lower modes, and worthy of more attention. Understanding and prediction of maximum VIV 
amplitudes for higher modes is essential for wind-resistant design of long-span suspension bridges.  

While both computational fluid dynamics and wind tunnel tests may be used to predict the 
amplitude of vortex-induced vibration (Barrero-Gil and Fernandez-Arroyo 2013, Borna et al. 
2013), the most reliable technique currently remains wind tunnel tests (Diana et al. 2006). Full 
aeroelastic model of a suspension bridge is most desirable as it directly provide the ‘lock-in’ 
velocities and vibration amplitudes for different vertical modes. However, due to the practical 
difficulty in reproducing bridge deck details in aeroelastic models as well as the large expense and 
time involved, section model tests are commonly used in practice. 

The higher-mode VIV amplitude is related to vortex-induced lift force, modal frequency, Sc 
number and span-wise correlation of lift forces under different modes of vibration. This paper 
describes the experimental investigation regarding the effect of different vibration modes on VIV 
amplitudes by using section model test in smooth flow. As the section model is used, the results 
confine themselves to the two-dimension flow conditions. The rectangular cross-section with side 
ratio of B/D=6 is adopted and the section model is flexibly mounted in wind tunnel with a variety 
of spring constants for simulating different modes of vibration and the non-dimensional vertical 
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amplitudes are obtained at increasing wind velocity. For each test, the mass-damping parameter, 
namely the Scruton (Sc) number, remains constant as much as possible. The St number as well as 
the maximum non-dimensional vertical amplitude of the section model obtained for each spring 
constants are compared. 

 
 

2. Existing method for hihger mode’s VIV 
 

2.1 Mathematical model for VIV 
 
Excessive vortex-induced vibration may cause structural fatigue and also discomfort users, and 

it is therefore necessary to limit the vibration amplitude. However, despite numerous research 
efforts, accurate prediction of VIV amplitudes of bridge decks remains a difficult problem; the 
existing mathematical models are mainly semi-analytical and semi-experimental. Some 
non-parametric models with powerful ability to model nonlinear features have been also applied to 
simulate the ‘lock-in’ phenomenon (Wu and Kareem 2012). In this study, the empirical linear 
model developed by Simiu and Scanlan in 1986 is chosen to discuss the higher-mode 
vortex-induced vibrations (Simiu and Scanlan 1996). The cross-wind dimension D of the cylinder 
(the box-girder depth in the context of suspension bridges), is taken as characteristics length. The 
equation of motion of the cylinder during lock-in can be written as 
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where m is the cylinder mass per unit length;  is the mass density of air; U is the wind velocity; 
K1, defined as Dn/U, is the reduced frequency with n being the natural frequency of cylinder; 
Y1(K1), Y2(K1) and CL(K1) describe the aerodynamic damping, aerodynamic stiffness and 
motion-independent vortex-shedding forces at lock-in, and they are functions of reduced frequency 
K1. By defining the non-dimensional amplitude =y/D, the steady solution for Eq. (1) can be 
expressed as 
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By analogy, Eq. (2) may be regarded as the response of single degree-of-freedom (SDOF) 
system with reduced frequency K0 and damping ratio of  under forced sinusoidal excitation with 
frequency K1; during lock-in, K1 decreases with wind velocity U and the maximum vibration 
amplitude  develops when K1= K0. One can identify the aerodynamic parameters Y1(K1), Y2(K1) 
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and CL(K1) from the experimental K1- curve obtained from section model wind tunnel tests. The 
Simiu-Scanlan model only predicts the maximum amplitude for K1=Dn/U, and it cannot also 
provide the range of wind velocity at lock-in.  

The vibration amplitude described by Eqs. (2)-(4) are implicit functions of aerodynamic 
parameters Y1(K1), Y2(K1) and CL(K1). Substituting Eqs. (3) and (4) into Eq. (2) yields 

 22 2
2 1 12 + 2
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
                          (5) 

where Sc is the Scruton number defined as Sc=2m/D2. 
By letting Y1=Y2=0, Eq. (5) reduces to the case of the most simple linear model of 

vortex-shedding forces considering only the motion-independent term. In such case, the solution of 
VIV amplitude reduces to 
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                               (6) 

where ||L represents the solution of SDOF system for the simple linear model of vortex shedding. 
It is clear that the non-dimensional amplitude is in inverse proportion with St2 and Sc for the 
simple linear model 

 
2.1 Prediction for higher-mode’s VIV 
 
The existing method for predicting higher-mode vortex-induced vibration remains mainly the 

use of section model wind tunnel tests while some attempts have been made to use full aeroelastic 
models (Fujino and Yoshida 2002). In section model tests, the prediction of lock-in wind velocity 
as well as vertical vibration amplitude for every possibly-excited mode bases its theoretical 
foundation on Eq. (6). In more detail, section model wind tunnel tests are carried out for a 
particular vertical mode to obtain lock-in wind velocity and the maximum amplitudes, ‘lock-in’ 
velocity and maximum amplitudes for the remaining modes are derived from Eq. (6). The 
procedure is as follows.  

(1) Conduct section model wind tunnel tests for one particular mode P to determine the St 
number, lock-in range and maximum vibration amplitude P for that mode. 

(2) Assume St is constant for different vertical modes and calculate the wind velocity of 
vortex-induced vibration for remaining modes, for example the mode Q, as follows 

P
Q P

Q

f
V V

f
 

                                 (7) 

where VP may be the onset wind velocity of vortex-induced vibration, wind velocity interval of 
vortex-induced vibration and wind velocity of vortex-induced vibration with maximum vibration 
amplitude.  

(3) If the modal damping ratios are the same for all modes, it is obvious that  is in inverse 
proportion with the equivalent modal mass m. As such, the relationship of vibration amplitude 
between mode P and mode Q is given as 
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                                (8) 

where mP and mQ are the equivalent modal mass for the modes P and Q. Since the mode shape for 
different vertical modes is very close to a sinusoidal one for suspension bridges, in particular for 
single-span suspension bridges, it is worthy of noting that the equivalent modal masses for 
different vertical modes will essentially be the same. Eq. (8) is only valid for the simple linear 
model of vortex-shedding force, and may become invalid for the empirical linear model of 
Simiu-Scanlan type if Y1 and Y2 are non-trivial. 

 (4) Consider further correction of vibration amplitude given by Eq. (8) in consideration of the 
three-dimensional mode shape as well as the span-wise correlation of vortex-shedding forces. One 
noticeable example of this kind of correction is the correlation length method developed by 
Ruscheweyh which has been included in the Eurocode (Eurocode 2005). However, Ruscheweyh’s 
method is suitable for chimneys and other vertical structures. Chimneys may experience 
vortex-induced vibration for the first or second modes, which differs appreciably from higher 
modes of suspension bridges. Investigation on span-wise correlation of vortex-shedding forces 
under the higher modes vortex-induced vibration is very rare if not none.  

Some investigations are underway to develop method for predicting VIV vibration amplitudes 
for higher modes of suspension bridges. Some key issues needing further research are summarized 
as follows:  

(1) Variation of St number with vibration frequency for the same model; 
(2) Variation of VIV amplitude with vibration frequency for the same Sc number; 
(3) Effect of aerodynamic damping on VIV for different modes; 
(4) Span-wise correlation of vortex-shedding forces under different mode shapes. 
The first two issues will be investigated with the section models test as described in this study. 

The limitation of two-dimensional flow condition in section model tests excludes the 
three-dimensional effect of mode shapes and span-wise correction of vortex-induced lift forces, 
which need to be addressed with aeroelastic models (Chen et al. 2013). In the following, section 
model with the same side ratio of B/D=6 but two different length scales are used to investigate the 
characteristics of higher-mode vortex-induced vibration for long-span suspension bridges. The 
models are elastically mounted with a variety of spring constants to simulate different modes of 
vibration in a suspension bridge. 

 
 

3. Wind tunnel experiments 
 
As a first step for studying the higher-mode vortex-induced vibrations, two rectangular section 

models having the same side ratio of B/D=6 but different length scales are elastically mounted by 
springs with varying stiffness constants to simulate different vertical modes of vibration in 
suspension bridges. The wind tunnel tests are conducted in the high-speed test section of HD-2 
wind tunnel at the Hunan University, the dimension of the test section is 3 m(W)×2.5 m(H)×17 
m(L). 
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3.1 Sectional model and experimental setup 
 
The side ratio of both section models is 6, and the length of both the models is 1.54 m. The two 

section models are denoted as A and B. The model A has a height of 12 cm and a width of 72 cm 
while the model B has a height of 6.7 cm and a width of 40 cm. The inner part of the model is 
constructed with mental materials to have sufficient rigidity while the surface of the model is 
covered with ABS plates to ensure the smoothness of the surface. Large end plates are connected 
at both ends of model to assure the two-dimensionality of the flow condition or reduce the end 
effect. If allowed, the ratio of model length to its width should be as large as possible; a minimum 
value may be 2.5 in the case of limited size of wind tunnel and preferably exceeds 5. The flow 
around the both model ends may be largely three-dimensional for short section models. As shown 
in Fig. 1, the model is elastically mounted in wind tunnel by coil springs, and the model may move 
in vertical and torsional directions but the motion in along-wind direction is restrained by a long 
steel wire. The free-stream wind velocity is recorded by Cobra probe at 1.5 m ahead of the model. 
The model displacements at upstream and downstream locations are measured by two laser 
displacement transducers, the model accelerations at upstream and downstream locations are 
monitored by two micro-accelerometers. The test is conducted in smooth flow (Iu<1% for U>3 
m/s) and only zero wind attack angle is considered. 

 
3.2 Data processing 
 
The data are recorded after the model vibration become stable. The sampling frequency is 

100Hz and sample duration exceeds 45s for each record. For each test case, the wind velocity, two 
accelerations and two displacements are measured. The two displacements u1(t) and u2(t) (or 
accelerations) are used to calculate the vertical and torsional displacements, as follows. 

      tututh 212

1
            tutu

a
t 21

1
                (9) 

where a is the distance between two measurement points of laser transducers. 
 
 

Fig. 1 Elastically-mounted section model and its supporting frames  
 
 

Dispacement measurement locations

Incoming wind velocity

long steel wire
supporting arm

Acceleration measurement locations
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3.3 Experimental results 
 
A total of 11 cases are tested with different vibration frequencies of the section models, 8 of 

them for the model A and the remaining for the model B. The experimental parameters of each 
case for the model A and the model B are summarized in Tables 1 and 2. It is noted that each 
column in Table 1 are given in ascending manner of vertical frequency. Although attempts have 
been made to keep the total mass of the mass-spring system unchanged as much as possible for 
each test, the use of different springs inevitably introduces small changes of total mass. In order to 
eliminate this effect, the equivalent modal mass for each case are precisely calculated based on 
finite element modal analysis of the free vibration system consisting of rigid section model, 
springs, connecting arms and long steel-wire, as shown in Fig. 2. It should be pointed out that to 
have an observable VIV phenomenon, the Scruton number must be low, and the model natural 
frequency must be sufficiently high to reach the desired velocity conditions at a wind speed with 
small turbulence intensity. 
 

 

Fig. 2 Dynamic modal analysis of section model elastically mounted with test rig 
 

Table 1 Experimental parameters for the model A 

Test case 6 1 7 2 8 3 4 5 

Vertical frequency fV (Hz) 2.25 2.44 2.95 3.34 3.96 4.95 5.86 6.98 

Vertical damping ratio (%) 0.16 0.25 0.16 0.25 0.16 0.25 0.25 0.25 

Total physical mass (Kg) 21.0 19.4 22.3 20.6 21.5 19.9 23.0 22.2 

Equivalent modal mass (Kg) 18.9 17.7 18.8 18.0 18.3 17.7 18.6 18.1 

Sc number 1.32 1.63 1.31 1.66 1.28 1.63 1.71 1.67 

Torsional frequency fT (Hz) 5.27 4.54 7.03 6.10 10.55 9.16 10.4 12.6 

Torsional damping ratio (%) 0.31 0.43 0.30 0.42 -- -- -- -- 

fT/ fV 2.34 1.86 2.38 1.83 2.66 1.85 1.77 1.81 

1
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U
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Table 2 Experimental parameters for the model B 

Test case 9 10 11 

Vertical frequency fV (Hz) 2.42 3.54 5.03 

Vertical damping ratio (%) 0.19 0.25 0.25 

Total physical mass (Kg) 9.67 10.20 10.89 

Equivalent modal mass (Kg) 7.63 8.16 7.89 

Sc number 1.71 2.41 2.33 

Torsional frequency fT (Hz) 5.08 7.52 9.57 

Torsional damping ratio (%) 0.26 0.29 0.26 

fT/ fV 2.10 2.12 1.90 
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Fig. 3 Typical vertical vortex-induced vibration at reduced velocity Ur=U/fD=6.58 
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Fig. 4 Typical vertical vortex-induced vibration at reduced velocity Ur=U/fD=14.43 
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Wind tunnel experiments for the 1st~5th cases of the model A are first carried out and the 
damping in vertical direction is 0.25%. Figs. 3 and 4 illustrate the typical near-resonance vertical 
vortex-induced vibration at the reduced wind velocity of 6.58 and 14.43 respectively, for the case 
3. It is seen that the amplitude-frequency diagram is characterized by a peak frequency close to 
natural vertical frequency of the model. 

Two vertical ‘lock-in’ ranges and two torsional ‘lock-in’ ranges are observed with increasing 
wind velocity. The torsional ‘lock-in’ ranges tend to diminish or become insignificant for large 
spring constants, which may be attributed to excessive damping in torsional direction. Fig. 5 
shows the variation of the non-dimensional vertical displacement y/D with reduced velocities. As 
seen in Fig. 5, the first vertical ‘lock-in’ range for the five cases are very similar; the second 
vertical ‘lock-in’ range for the 3rd~5th cases are very similar but differs from those for the first 
two cases. The anomaly in the second vertical ‘lock-in’ for the first two cases is probably caused 
by the simultaneous occurrence of vertical and torsional vibration such that vertical responses 
transits into torsional responses. In order to validate this assumption, three additional cases with 
larger torsional-to-vertical frequency ratios are tested. It is observed that the second vertical 
‘lock-in’ range for the 6th~8th cases is very similar to those of the 3rd~5th cases, as will be shown 
later. Therefore the experimental results from the first two cases are excluded from further 
analysis. 

 

 

Fig. 5 Variation of the non-dimension vertical amplitude for the model A 

 

Fig. 6 Variation of the non-dimension vertical amplitude for the model B 
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Fig. 7 Variation of St number with different frequency 
 
 
Wind tunnel experiments for the model B are conducted for the 9th~11th cases. Due to the 

large torsional-to-vertical frequency ratio, vertical ‘lock-in’ range and torsional ‘lock-in’ range are 
well separated. The results of vertical ‘lock-in’ range for model B are shown in Fig. 6. 

 
3.4 Analysis and discussion 
 
(1) There are two obvious vertical ‘lock-in’ ranges for all the cases of the model A and the 

model B. The St number for all the 11 cases are calculated from onset velocity for the two vertical 
‘lock-in’ ranges. The average value of St number for the first and the second ‘lock-in’ ranges are 
0.208 and 0.106, respectively, and their stand deviation is 0.01 and 0.003. It is concluded that St 
numbers of the first and second vertical ‘lock-in’ ranges are almost the same for all the cases. 
Vibration frequency and length scale of the model have neglectible effects on St number. 
Therefore it is reasonable and of sufficient accuracy to derive the onset wind velocity of VIV for 
different modes by taking St as constant. The second vertical ‘lock-in’ range gives larger 
amplitude, and is therefore regarded as the excitation due to the main vortex shedding frequency. 
Thus the St number is 0.106 which is the same as the value given in Eurocode 1 (2005). 

(2) The phenomenon of two vertical ‘lock-in’ ranges have been reported and discussed widely 
in the literature (e.g., Bishop and Hassan 1964, Durgin et al. 1980, Diana et al. 2006, Wu and 
Kareem 2012), which is mainly attributed to nonlinear nature of vortex-induced lift forces. For the 
present study, the second ‘lock-in’ range at higher reduced velocity is induced by the conventional 
vortex shedding, and the proximity of the vortex shedding frequency to model vibration frequency 
leads to vortex-induced resonance. The first ‘lock-in’ range may be caused by super-harmonic 
resonance as the vortex shedding frequency is about half of the model frequency. 

(3) The mass m and damping ratio  vary slightly for all the cases, and therefore the 
corresponding Sc number will be slightly different, as shown in Tables 1 and 2. In order to 
eliminate the effect of Sc number on vibration amplitude, the Sc number for the 6th case is taken as 
reference value, and vibration amplitude for other cases of the model A are normalized with 
respect to the 6th case. As the vibration amplitude is inversely proportional to Sc number, the 
Sc-corrected non-dimensional vibration amplitude for all other cases is calculated as 
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cn
n n

c

S

S
                                (10) 

where the subscript n represent the case n; ||n' is the Sc-corrected vibration amplitude. The 
variations of Sc-corrected vibration amplitude for the model A are show in Fig. 8. After correction, 
the discrepancy in vibration amplitude is further reduced for the model A. Fig. 9 shows the 
Sc-corrected vibration amplitude for the model B where the 9th case is taken as reference. Both 
Figs. 8 and 9 imply that vibration frequency does not have important effects on vibration 
amplitude. It may be concluded the assumption that the non-dimensional vibration amplitudes for 
different vertical modes is the same is valid provided that the Sc number is the same for different 
modes. 

 
 

Fig. 8 Sc-corrected amplitude for model A 

 

Fig. 9 Sc-corrected amplitude for model B  
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4. Conclusions 
 
Two rectangular section models with the same side ratio of B/D=6 but different length scales 

have been used to investigate the variation of St number and VIV amplitude with modal frequency. 
It is shown that (1) two vertical ‘lock-in’ ranges develop for all the cases and St number in each 
vertical VIV remains constant for different vibration frequencies, implying St does not rely on the 
model frequency or Re number, at least for the studied rectangular section; (2) more importantly 
the VIV amplitude at different vibration frequencies are almost the same for the same model scale 
provided that the Sc number is the same; (3) the second ‘lock-in’ ranges is induced by the 
conventional vortex shedding, while the first ‘lock-in’ may be caused by the super-harmonic 
resonance. 

As the section model is used in this study, the presented results confine themselves to the 
two-dimensional flow conditions. A novel aeroelastic model has been developed to study the 
three-dimensional effect of both mode shape and flow conditions for higher mode vortex-induced 
vibrations, and some of these investigation are underway (Chen et al. 2013). 
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