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Multiple tuned mass dampers for controlling
coupled buffeting and flutter of
long-span bridges
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Abstract. Multiple tuned mass dampers are proposed to suppress the vertical and torsional buffeting
and to increase the aerodynamic stability of long-span bridges. Each damper has vertical and torsional
frequencies, which are tuned to the corresponding frequencies of the structural modes to suppress the
resonant effects. These proposed dampers maintain the advantages of traditional multiple mass dampers,
but have the added capability of simultaneously controlling vertical and torsional buffeting responses.
The aerodynamic coupling is incorporated into the formulations, allowing this model to effectively increase
the critical speed of a bridge for either single-degree-of-freedom flutter or coupled flutter. The reduction of
dynamic response and the increase of the critical speed through the attachment of the proposed dampers to
the bridge are also discussed. Through a parametric analysis, the characteristics of the multiple tuned mass
dampers are studied and the design parameters - including mass, damping, frequency bandwidth, and total
number of dampers - are proposed. The results indicate that the proposed dampers effectively suppress the
vertical and the torsional buffeting and increase the structural stability. Moreover, these tuned mass dampers,
designed within the recommended parameters, are not only more effective but also more robust than a
single TMD against wind-induced vibration.
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1. Introduction

Tuned mass dampers (TMDs) have been used in many structures to control wind-induced
vibrations. For long-span bridges, the aerodynamic response becomes even more significant due to
their large flexibilities. The effectiveness of the TMD used in a long-span bridge has been
demonstrated in analyses and experiments (Huffmann et al. 1987, Malhortra and Wieland 1987,
Nobuto et al. 1988, Honda et al. 1993, Gu et al. 1998). However, the error of estimating the
bridge's natural frequency or damping is inevitable in practice and this error may reduce the
effectiveness of the damper. Furthermore, the massive size of the damper may cause difficulties
with bridge construction and maintenance. To decrease the disadvantages of the TMD, the multiple
tuned mass dampers (MTMDs) were then proposed by Xu and Igusa (1992) and Igusa and Xu
(1994). Performance of the MTMDs was also extensively discussed by Yamaguchi and
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Fig. 1 Bridge - MTMDs system (a) arrangements of bridge and MTMDs (b) schematic diagram of ith
TMD and bridge(section A-A of (a))

Harnpornchai (1993), Abe and Fujino (1994), Abe and Igusa (1995), Kareem and Kline (1995)
and Jangrid and Datta (1997). Sun (1997) also examined the performance of the MTMDs in the
long-span bridges for suppressing the buffeting response. From these studies, it can be concluded
that the MTMDs are more effective and more robust than a single TMD, and the size of each
TMD can be decreased to fit the primary structure.

Of the aerodynamic problems of long-span bridges, the primary concerns of bridge
engineers are the vertical and torsional buffeting responses, and flutter. Huffmann et al. (1987)
and Malhortra and Wieland (1987) used separate bending and torsional dampers to respectively
reduce the flexural and torsional responses and to increase the critical speed of a cable-stayed
bridge. A TMD with vertical and torsional frequencies, having the capability of reducing the
vertical and torsional responses and increasing stability, was proposed by Lin e al. (1999). This
concept is extended to the MTMDs in this paper. In this model the dampers are positioned along
the bridge axis at the location where maximum response occurred (Fig. 1). Each damper is
supported by two identical springs and has the vertical and torsional frequencies, which are tuned
around the natural frequencies of the bridge's first vertical and first torsional modes. Since the
spans of modern bridges have become longer and the decks more slender, the bridge's response
and stability due to wind loads may be significantly influenced by the aerodynamic coupling.
This coupling, mainly contributed by the involvement of the first vertical and first torsional
modes of the bridge, is then taken into account in the formulations of the MTMD-bridge system.
Therefore, the proposed model can estimate the critical velocity of the bridge for either single-
degree-of-freedom flutter or coupled flutter.

In this paper an analytical model is presented to examine the performance of the proposed
MTMDs used in the long-span bridge. The dynamic response reduction and the increase of
the critical velocity of the flexible bridge are discussed through a parametric study. A cable-
stayed bridge subjected to wind loads is chosen as the target for evaluating the performance
of the MTMDs in this analysis. The effects of the design parameters such as total mass,
damping, frequency range and total number of dampers on the response are studied, the
values of these design parameters are suggested.
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2. Formulations

The vertical or torsional motion of the long-span bridge is generally dominated by the
primary structure's fundamental mode in that direction. Hence, it is feasible to model the
bridge as a 2-DOF system. Each damper of the MTMDs is also modeled as a 2-DOF system.
Provided that there are N dampers used in the structure, the bridge-MTMDs system, shown in
Fig. 1, oscillates with 2N +2 DOF. The equations of motion of the interactions between the
bridge and the MTMDs can be expressed in the generalized coordinate system as

M,y+Cy+Kyy - ZZC (yr=y)- 2ZK; (yi-y)=®/L;+®/L, 1)
Mj, yr+2Cy, (yr=y)+2Ky, (yi-y)=0 (i=1,N) 2
Mi, oy +2Ci (0p—o)d +2K., (i —a)d*=0 (i=1,N) (3)

. . N ) . . N . .
My o+C,o+K,a-23 Ci, (o -a)d’ =2 Kj, (04— a)d’=®; Mo, +® Mo, (4)
i=1 i=1 .

where y, o are the generalized vertical and torsional displacements, respectively; M, C and K
are the generalized mass, damping and stiffness, respectively; the subscripts y, « indicate the
vertical and the torsional directions of the bridge, the subscript T represents the TMD; the
subscripts Ty and Ter stand for the vertical and the torsional directions of the TMD, respectively;
the superscript i designates the ith damper; @ is the matrix containing the first vertical or
torsional mode of the bridge; d is the distance from vertical spring to the center of TMD; L, Mo
are the lift force and pitching moment acting on the deck, respectively; the subscripts f, b
designate the self-excited and buffeting forces, respectively.

The self-excited forces acting on deck node j in vertical direction L; and in torsion
direction Mo; can be expressed in the following forms (Scanlan and Tomko 1971):

L, )=+ pU? (ZB)(K){H )20 3 ) ﬁ’()+KH ), (r)} ©)

Moy, (6)=3 PU* (2B°) (K) {Ar ) a5 1) PO s ea @) <r>} AL ()

where p is air density; U is wind velocity; B is deck width; K= {(Bw)/U} is the reduced
frequency; AL, is the tributary length of the node j (Fig. 2); v;, B are the vertical and torsional
displacements at node j, respectively; H,, A, (I=1, 3) are the flutter derivatives.

Then, substituting Egs. (5) and (6) into Egs. (1)~(4) and making some manipulations, we
can rewrite the equations of motion as follows:

N
i=1

N _ .
+3 1 (0}, (y =yt)-D,00~E, 0’ =P L, /M, 7
i=1
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where &,, @, (m=y, a, Ty, Tc) are the damping ratio and circular frequency, respectively; 1w,
U, are the generalized mass ratio of the ith TMD to the bridge in vertical and torsional

directions, respectively. The expressions of D;-D, and E-E, are in the following forms:

D1=MLB2HIZ yziALj
y j=1

D2=—MP—B3H; Y & ¢ AL;
y =

D3=MLB3AI > 6 e AL
o =

D4=

P pajsr~ 42
B*ALY 92 AL
Ma 2}; ] J

EFﬁfmz%%%
y j=1

E,=-2-B*A;¥ 92 AL,
o j=1

M

(11)

(12)

(13)

(14)

(15)

(16)

Since the torsional damping and stiffness of each TMD are provided by the corresponding
properties in vertical direction, the equivalent torsional frequency and damping can be expressed
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in the forms relating to the vertical properties as follows:

i i m;y
o}, =} d ‘\/ — 7)
Ta

Era= Sty o/ O, (18)
where mj, and mj, are the vertical mass and torsional mass inertia of the ith TMD, respectively.
To control both the vertical and the torsional response effectively, the frequencies of the central
TMD should be tuned around the frequencies of the first vertical and torsional modes of the
structure. After selecting these frequencies, the frequency bandwidth, which is the most important
parameter in the design, is determined. In this study, this frequency bandwidth is defined as the
difference between the maximum and the minimum frequencies of the dampers divided by the
effective frequency of the bridge at the design wind speed. If the vertical mass ratio of ith damper
is determined, one can obtain the vertical mass, and then evaluate the torsional mass inertia by
using Eq. (17). The equivalent damping is easily calculated with Eq. (18).
Using the complex forms of the generalized displacements and the external forces in Egs.
(7)~(10), one can obtain

G(w)A=F (19)
where G is a square matrix of the rank 2N+2; A is the amplitude matrix; F is the force

matrix.
Then, the transfer function can be stated as

H(w)=G™" () (20)
2.1. Buffeting response

As the buffeting response is considered, the buffeting forces acting on deck node j in vertical
direction L,; and in torsional direction Mo,; are well-known as (Simiu and Scanlan 1986).

1 2u dcC w
Lbj:_ipUzB l:CL 7+(d_aL+CDJU:lALJ (21)
dc
Mo,,]:%pUsz[CMz—g+d—5 %]ALJ- (22)

where C,, C, and C,, are the lift, drag and moment coefficients, respectively; u, w are the
wind speed fluctuations in horizontal and vertical directions, respectively. The spectra and
cross-spectra of horizontal and vertical wind speed fluctuations used in this study are stated as
follows (Simiu and Scanlan 1986):

For the spectrum of horizontal wind speed fluctuations

200 2 u2
U

53
[1+50£J
U

S, (n)= (23)
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For the spectrum of vertical wind speed fluctuations

3.36 X u.?2
U

Sw(n)= = (24)
1+10 (E ]
U
For the cross-spectrum of horizontal and vertical wind speed fluctuations
Cr i T A
Srf,j<n)=sr(n>exp{— i "{J % | ];(r=u,w> (25)

where n is frequency; u. is the friction velocity; z is the height above ground; C, is the
empirical constants, 16 and 8 are used for the horizontal and vertical wind speed fluctuations,
respectively; x; and x; are the longitudinal coordinates of nodes i and j, respectively.

The buffeting force spectrum can be obtained by using Egs. (21)~(25) and the admittance
function X,,,, which is given by (Liepmann 1952).

1
14272 [ﬂg—)
U

Using the random theory and the generalized force spectrum Sy, we can obtain the
generalized displacement spectrum Sg

Sk =H(w) SiH (w)" 27)

in which H'(®) is the conjugate of H(®). Integrating Eq. (27) with the frequency @, we can
obtain the mean square of the generalized displacement o’

Xeero = (26)

o= Sedw (28)

The variance of the displacement in natural coordinate can be easily obtained by using the
modal matrix and Eq. (28). It should be noted that the response calculation is based on the
first vertical and the first torsional structural modes, and only these modes are taken into
account for the analysis.

2.2. Flutter

The use of TMD can not only reduce the buffeting response, it can increase the critical
velocity. The common types of flutter on long-span bridges are single-degree-of-freedom
flutter and coupled mode flutter. The latter results from the involvement of the vertical and
torsional modes that should be included in the formulations to precisely predict the critical
velocity of the bridge. In this proposed model, both the vertical and torsional modes are used
and the aerodynamic coupling between modes is considered. Therefore, it is capable of
raising the critical velocity for either type of flutter.

Since the external force is not relevant with the flutter analysis, the external force term in
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Eq. (19) is dropped. With some rearrangements, a complex eigen-value problem is yielded
and can be stated in a matrix form
(S-D)A=0 (29)

where D is a diagonal matrix = Diag[®’]; A is an amplitude matrix; S is a square matrix = G +D.

It is noted that Eq. (29) should be solved by iteration for each wind speed, because the
matrix S contains the unknown @. The flutter is identified as the imaginary part of @ is equal
to zero. Meanwhile, the corresponding wind speed is recognized as the critical velocity. The
iterative calculation can yield a convergent solution by using an appropriate initial value and
a reliable convergence criterion.

3. Examples

There are two examples presented to demonstrate the performance of the proposed MTMDs.
Example 1 is a cable-stayed bridge with a set of flutter derivatives in which the aerodynamic
coupling is significant. Example 2 is also a cable-stayed bridge but with a different set of
flutter derivatives in which aerodynamic coupling is not significant. The structures used in
these examples have the same geometry but different sectional properties. The bridges have a
total span of 1460 m and a width of 28 m for Example 1 and 21.5 m for Example 2. Two
200-m-high towers are supported by cables. The geometry of the bridges is shown in Fig. 3.
A finite element model, consisted of beam elements and cable elements, is used to calculate
the natural frequencies of the structure. Through the calculation, the natural frequencies of the
first vertical mode and the first torsion mode are 0.143 Hz and 0.2856 Hz, respectively for
Example 1, and 0.143 Hz and 0.354 Hz, respectively for Example 2. The two sets of flutter
derivatives H, and A, (i=1, 2, 3), adopted from Scanlan and Tomko (1971), are shown in Fig. 4.
The lift and torsion coefficients C; and C,, used for buffeting calculations, are adopted from
wind tunnel investigations of the Kao Ping Hsi bridge (1994) and shown in Fig. 5. The structural
damping is 1% and the air density is 1.22 kg/m’. To simplify the analysis, several assumptions
are made here. First, the frequency interval of the MTMDs is the same. Second, the mass and the
damping of each damper are also the same. Third, the dampers are connected to the bridge at the
middle point of the center span where the maximum response will occur.

3.1. Example 1

Due to the aerodynamic damping, the effective damping of the bridge will be altered. The

Iz"‘““ m
lOmv
A & S =

N
320m ‘ 820 m |

1460 m
Fig. 3 Geometry of the cable-stayed bridge

320m
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vertical and torsional damping of the bridge without using the MTMDs versus mean wind
speed are shown in Figs. 6-7, respectively. To examine the performance of the proposed
model, the MTMDs, designed with total vertical mass ratio f, = 2%, total torsional mass ratio
U, =0.716%, vertical damping ratio &, =1.5%, torsional damping ratio &, =2.6%, number of
TMDs N =9, frequency bandwidth B=0.2, central TMD's vertical frequency ngz =0.143 Hz
and torsional frequency n;,=0.252 Hz, are used in this analysis. The buffeting response reductions
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Fig. 6 Vertical damping ratio versus wind speed

of the bridge with using the MTMDs in vertical and torsional directions versus wind speed are
shown in Fig. 8. For comparison, the performance of the optimized single TMD (with 2 DOF) is
also shown in this figure. The results show that the proposed MTMDs do not only effectively
suppress buffeting in both directions, but are more effective than the single TMD. The critical
velocity of the bridge is increased by the MTMDs from 53.55 m/s to 65.72 m/s, compared to
the single TMD's, 64.56 m/s. It should be noted that the aerodynamic coupling is significant
in this bridge and this effect should be incorporated into the formulations to calculate the
response precisely. The influence of the aerodynamic coupling on torsional response can be
clearly identified in Fig. 9.
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Fig. 8 Performance versus wind speed of the proposed MTMDs (example 1)

3.2. Example 2

The vertical and torsional damping of the bridge without using the MTMDs versus mean
wind speed are also shown in Figs. 6~7, respectively. The vertical mass ratio and vertical
damping ratio of the MTMDs used in this bridge are the same as those in Example 1, but the
equivalent torsional mass ratio and damping ratio are 0.424% and 3.2% and the vertical and
torsional frequencies of the central TMD are 0.143 Hz and 0.328 Hz, respectively. The
buffeting response reductions of the bridge with using the MTMDs in vertical and torsional
directions versus wind speed are shown in Fig. 10. The results indicate that the proposed
dampers are effective for suppressing both the vertical and torsional responses and superior to
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Fig. 9 Comparisons of torsional performance between a single TMD and MTMDs
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Fig. 10 Performance versus wind speed of the proposed MTMDs (example 2)

the single TMD. The critical velocity of the bridge without using TMD is 68.3 m/s. This
critical velocity can be increased to 75.42 m/s by using the single TMD, and 88.7 m/s by
using the proposed MTMDs.

4, Effects of the MTMDs parameters on response

A parametric study, based on the bridge used in Example 1, is presented to investigate the
effects of the design parameters of the MTMDs. In this model, the torsional mass ratio and
the torsional damping ratio are dependent on the corresponding properties in the vertical
direction. Therefore, the design parameters to be studied only include the total vertical mass
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ratio, the vertical damping ratio, the number of dampers, the frequencies of the central damper
and the frequency bandwidth. To account for the mistuning problem, offset effect is also
considered. From Figs. 6~7, it can be seen that the vertical damping of the bridge in Example 1
increases with wind speed but the torsional damping decreases. Consequently, the performance of
the MTMDs decreases with the wind velocity on vertical response but increases with wind
velocity on torsional response. Hence, the following parameters are studied at the wind speed
10m/s for vertical response and 50m/s for torsional response only.

4.1. Effects of damping ratio

When 2% total mass ratio is used, the relationships between the response reduction ratio and
the damping ratio for various frequency bandwidths in both vertical and torsional directions are
shown in Figs. 11~12, respectively. From these figures it is seen that the optimum damping ratio
of the MTMD:s is smaller than that of a single TMD. In addition, the MTMDs are less effective
for a higher damping ratio. As we would expect, these characteristics of the MTMDs are the
same as those in previous studies. The results in Fig. 11 also show that the vertical frequency
range 0.2 yields the best performance for any number of TMDs and the corresponding optimum
damping ratio is approximately 2%, except in the case of 3 TMDs. The results in Fig. 12 indicate
that the maximum torsional performance occurs with the frequency range 0.1 for each case and
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Fig. 11 Vertical response reduction ratio versus TMD damping (a; n=3, b; n=5, ¢; n=9, d; n=13)
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Fig. 12 Torsional response reduction ratio versus TMD damping (a; n=3, b; n=5, ¢; n=9, d; n=13)

the corresponding optimum torsional damping ratio is around 1.76%. This value corresponds to
1% vertical damping ratio. The smaller bandwidth in torsional direction is due to the smaller
torsional mass ratio which is 0.716% compared to the vertical mass ratio 2%. These results reveal
that the optimum values of frequency bandwidths and damping ratios in vertical and torsional
directions are not consistent. Since the torsional frequency is dependent upon the vertical frequency,
the vertical and torsional frequency bandwidths should be the same. Also, the optimum damping
ratios in both directions will not occur simultaneously, because the torsional damping is
related to the vertical damping. To ensure the performance of the MTMDs in both vertical
and torsional directions, we can suggest that 1%~2% vertical damping is appropriate for the
MTMDs with 2% total mass ratio. In this damping range, the higher value is better suited for
the smaller number of TMDs.

4.2. Effects of bandwidth

The bandwidth is one of the most important design parameters of the MTMDs. It
designates the range of the distributed frequencies of the TMDs and is defined here as the
ratio of the difference between the maximum and the minimum frequencies of the TMDs to the
effective structural frequency. Fig. 13 shows the response reduction ratio versus bandwidth for
different numbers of TMDs. It can be seen from Fig. 13a that the optimum bandwidth increases
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with the number of TMDs and tends to converge to a value of about 0.2 as the number is equal
to or larger than 9. In torsional direction, Fig. 13b indicates that the optimum bandwidth is
around 0.1 for any number of TMDs. These inconsistent results in both directions were stated
earlier. The sharp decrease of vertical response reduction ratio can be clearly seen when the
bandwidth is less than 0.2. On the other hand, the decrease of torsional performance is not so
obvious when the bandwidth is larger than 0.1. Therefore, it can be concluded that the effects of
the bandwidth are more significant for vertical performance than for torsional performance. In
practice, the design engineer first determines which direction of vibration is more important, and
then selects an appropriate value between 0.1 and 0.2, or just simply chooses 0.2 because of the
less sensitive torsional performance.

4.3. Effects of the number of TMDs

From Figs. 12~13, it is seen that the performance increases with the number of TMDs and
achieves the maximum as the number is 9. Although the differences of performance between
various numbers of TMDs are not so significant, the number of TMDs should be large
enough to maintain the advantages of the MTMDs. Conversely, the number of TMDs should
be limited, because too many dampers might induce the difficulties to tune the frequencies
precisely. For the above reasons, the suggested number is approximately 9.

4.4. Effects of mass ratio

It is known that the performance of the MTMDs increases with the mass ratio and the
optimum damping ratio also increases. To study this effect, we use 9 TMDs and bandwidth
of 0.15 for the analysis. The relationship between the response reduction ratio and the
damping ratio for different mass ratios is shown in Fig. 14. The results indicate that the
increase of vertical response reduction ratio is more significant when the mass ratio is raised
from 1% to 2% than 2% to 3%. The similar trend is also seen in torsional direction. For
design purpose, the appropriate value of total mass ratio is about 2%.
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4.5. Robustness

The natural frequency discrepancies between the real structure and the prototype are, in
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Table 1 Increase of the critical velocity of Example 1 and 2

Number of Total vertical Frequency Critical velocity(m/s)
dampers damping(%) bandwidth Example 1 Example 2
1 7.07 - 64.56 75.42
9 1.5 0.1 62.18 77.73
9 1.5 0.2 65.72 88.68

practice, inevitable. In addition, the effective torsional frequency of the bridge is affected by
the aeroelastic stiffness. For these reasons the offset problems should be taken into account
for determining the design parameters to guarantee the minimum performance. Because the
total number of TMDs and bandwidth will affect the robustness, these factors are studied in
the following analysis.

At 50 m/s wind speed, the torsional response reduction ratio against offset for 3, 5, 9 and 13
TMDs are plotted in Fig. 15. In these figures, the total vertical mass ratio is 2% and the
vertical damping ratio is 1.5%. From these results, it is seen that the robustness increases with
the bandwidth but the performance decreases. To satisfy both robustness and performance
requirements, a bandwidth of 0.2 appears to be a best value for any number of TMDs. This value
is also suggested in earlier sections. It is also seen that, for a given bandwidth, more TMDs are
more robust and produce better performance. Therefore, 9 or 13 TMDs are better than 3 and 5
TMDs. However, the comparisoa of the results between 9 and 13 TMDs indicates that the
performance of 13 TMDs is almost the same as that of 9 TMDs. The conclusion can be drawn,
suggested earlier, that the best number of TMDs is approximately 9.

4.6. Increase of critical velocity

Without using dampers, the critical velocities of the bridges in Example 1 and 2 are 53.55 and
68.33 m/s, respectively. The types of flutter in Example 1 and 2 designate coupled flutter and
single-degree-of-freedom flutter, respectively. An optimized single TMD and 9 TMDs with
different bandwidths are analyzed to study the increase of the critical velocity by the addition of
the tuned mass dampers. The total generalized mass ratio of 2% is used. With the addition of the
MTMDs to the bridge, the maximum increase of the cable tension is less than 1%. The frequency
of the dampers is taken as the effective frequency at the design wind speed, although this
frequency can be tuned less for achieving the maximum stability. The results of Example 1 and 2,
illustrated in Table 1, indicate that the critical velocity of the bridge with using TMDs is 16~23%
higher than that of the bridge without using TMDs in the case of coupled flutter and 10-30%
higher in the case of single-degree-of-freedom flutter. It is also found that the bandwidth 0.2 is
better than 0.1 for the 9 dampers. Comparison of a single TMD and the MTMDs indicates that
the MTMDs are more effective for increasing the structure's stability.

5. Design procedures of the proposed MTMDs

From the results discussed above, the design procedures of the proposed MTMDs can be
summarized as follows:
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1. Choose the frequencies of the central TMD. One can just simply take the natural
frequency of the first vertical mode and the effective frequency of the first torsional
mode at the design wind speed as the ones of the central TMD. If the bridge's stability
is the major concern, then choose the flutter frequency of the bridge, without using the
TMD, as the frequency in torsional direction.

2. Choose the number of dampers and determine the frequency bandwidth. The suggested
number is approximately 9, and the bandwidth is 0.2.

3. Select the total vertical mass ratio and evaluate its corresponding damping ratio. To
ensure the performance in vertical direction, the total vertical mass ratio is suggested to
be 2% and the corresponding damping ratio is 2%.

4. Calculate the equivalent torsional mass ratio and damping ratio by using Eqgs. (17)~(18).

6. Conclusions

The MTMDs are proposed for suppressing both the vertical and the torsional buffeting
responses and for increasing the structural stability of long-span bridges. A parametric analysis is
performed to examine the validity and applicability of the proposed MTMDs. Through this
analysis, the suggested design parameters including damping, mass, number, and bandwidth of
the MTMDs are recommended and the design procedures are provided. Based on these results,
the following conclusions are made:

1. The proposed MTMDs not only maintain the characteristics of the conventional MTMDs
but also have the capability of controlling vertical and torsional responses simultaneously. In
example 1, the case with significant aerodynamic coupling, the maximum vertical and
torsional responses are reduced by 13% and 55%, respectively. In example 2, the case with
minor aerodynamic coupling, the maximum vertical and torsional responses are reduced by
27% and 43%, respectively. In addition, these MTMDs are slightly more effective than an
optimized single TMD.

2. The MTMDs are able to increase the critical speed of a bridge for either single-degree-
of-freedom flutter or coupled flutter. The critical speed is increased by 23% in example 1
and increased by 30% in example 2. For increasing the aerodynamic stability of a bridge,
the MTMDs are also more effective than an optimized single TMD. )

3. For effectively suppressing the buffeting responses and increasing the critical speed, the
suggested tuning frequencies of the central damper are the effective frequencies of the
first flexural and torsional modes at the design wind speed.

4. The suggested number of dampers is 9 or more, and the corresponding frequency
bandwidth is 0.2.

5. The total vertical mass is suggested to be 2% or more to ensure the vertical performance,
and the corresponding damping ratio is 2%. The torsional mass and damping in this
model are dependent on those in vertical direction, these parameters can be calculated
after the vertical properties have been determined.
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