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Abstract.  This study has developed an Enhanced Remote-Sensing (ERS) scale to improve the accuracy 
and efficiency of using remote-sensing images of residential building to predict their damage conditions. The 
new scale, by incorporating multiple damage states observable on remote-sensing imagery, substantially 
reduces measurement errors and increases the amount of information retained. A ground damage survey was 
conducted six days after the Joplin EF 5 tornado in 2011. A total of 1,400 one- and two-family residences 
(FR12) were selected and their damage states were evaluated based on Degree of Damage (DOD) in the 
Enhanced Fujita (EF) scale. A subsequent remote-sensing survey was performed to rate damages with the 
ERS scale using high-resolution aerial imagery. Results from Ordinary Least Square regression indicate that 
ERS-derived damage states could reliably predict the ground level damage with 94% of variance in DOD 
explained by ERS. The superior performance is mainly because ERS extracts more information. The 
regression model developed can be used for future rapid assessment of tornado damages. In addition, this 
study provides strong empirical evidence for the effectiveness of the ERS scale and remote-sensing 
technology for assessment of damages from tornadoes and other wind events. 
 

Keywords:  tornadoes; damage assessment; remote-sensing; enhanced remote-sensing scale; Enhanced 

Fujita scale; degree of damage 

 
 
1. Introduction 
 

Tornadoes can cause severe damage to buildings, and it is critical to assess damage and losses 

as quickly as possible to assist post-disaster response and reconstruction (Bunting and Smith 1993, 

Changnon 2001, Simmons and Sutter 2011). However, in most cases, estimating property damage 

is challenging, in part because of complex field situations and the lack of standard methods for 

data collection (Gall et al. 2009). Ground surveys have traditionally been regarded as the means 

for providing reliable information because when investigators have access to the actual situation 

they are often able to view damage to structures from different angles. However, ground surveys 

are time-consuming and costly. In addition, after a major disaster, many roads may be badly 
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damaged or blocked, preventing investigators from approaching objects of interest for close 

examination. In recent years, satellite and aerial imagery has been used to assess damage after 

natural disasters including tornadoes. Nevertheless, limitations exist because remote sensed 

imagery usually only provide information on building roofs, and often lack data on other key 

components, such as windows, doors, and connections. With continuous improvements in image 

resolutions and processing algorithms (e.g., the spatial resolution from Landset-1 launched in 1972 

is 80 m, that from IKONOS launched in 1999 is 1 m, that from QuickBird launched in 2001 is 

0.61m, and that from WorldView-2 launched in 2009 is further improved to 0.46 m), 

remote-sensing-based tools have a great potential for becoming the next generation solutions to 

rapid post-tornado damage assessment.   

This study proposes a new Enhanced Remote-Sensing scale (ERS scale) to better measure roof 

damage with remote-sensing imagery. Whether the new scale could improve the accuracy in 

predicting the overall degree of damage (DOD) of buildings is investigated with statistical model 

focused on future rapid and cost-effective assessment of windstorm damage to residential 

buildings. This study provides strong empirical evidence for the usefulness and effectiveness of the 

ERS scale in tornado and other wind hazard (e.g., straight-lines wind and hurricanes) applications. 

The remainder of the paper is organized as follows: Section 1 reviews previous literatures on 

damage estimates, advantages of remote-sensing technology, and past efforts in constructing 

remote-sensing scales. At the end of Section 1, an Enhanced Remote-Sensing scale is proposed. 

Section 2 introduces the methodology used in this study, with discussions in dataset, the Enhanced 

Remote-Sensing scale, and statistical methods. The results are presented in Section 3 and 

discussed in Section 4. Finally, conclusions and comments on future work are presented in Section 

5. 

 

1.1 Ground-based damage survey 
 

After significant disasters, ground-based survey teams are often deployed to collect detailed 

and perishable damage data. However, they are time-consuming, labor intensive, and resource 

demanding (Brown et al. 2012, Brown 2010, Speheger et al. 2002). It is also difficult to attain a 

comprehensive view of a large event without the help of remote-sensing images (Molthan et al. 

2011). Additionally, there are concerns about the quality and feasibility of ground-based efforts. 

For example, when verifying the documents from the survey of tornadoes of 3 May 1999 in central 

Oklahoma, Speheger et al. (2002) have found the data from ground surveys were not always the 

best record of the events; eyewitness descriptions, video evidence, and high-resolution 

remote-sensing data could provide more substantial evidence for tornado evolution and damage. 

With new technologies such as personal data assistants (PDA), GPS video camera survey 

system (Womble et al. 2006), damage assessment toolkit (DAT) (Camp et al. 2014), as well as 

appropriate sampling methods (Liang et al. 2012), ground surveys can be completed more 

efficiently. Nevertheless, response time and coverage could still pose challenges. Only after roads 

are cleared of debris and power lines could investigators be dispatched to the field for data 

collection and perishable damage data may have been lost to cleanups. Furthermore, there are 

always some areas which cannot be accessed on the ground due to natural or legal obstacles. 

Moreover, the subsequent data processing and analysis can consume substantial amounts of time 

and resources. Thus, alternative methods are needed to supplement or replace the ground-based 

approach.   
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1.2 Remote-sensing based damage assessment 
 

In recent years, remote-sensing techniques have advanced and start to play an increasingly 

important role in assessing damage after natural disasters (Dong and Shan 2013, Joyce et al. 2009, 

Voigt et al. 2007). Information with different levels of details can be collected rapidly, typically 

within 72 hours after the events, at a relatively low cost (Battersby et al. 2012). In the context of 

disaster assessment, remote-sensing usually refers to two specialized techniques, i.e., aerial and 

satellite remote-sensing, named after the platform from which data are acquired (Khorram et al. 

2012).  

There are many applications of remote-sensing and image processing techniques for prediction 

and assessment of natural hazards including earthquakes, hurricanes, wildfires, tornadoes etc., and 

a considerable amount of research has been taken (Davidson 2013, Geiß and Taubenböck 2013, 

Joyce et al. 2009). For example, Eguchi et al. (2001) have developed a change detection algorithm 

based on difference, correlation, and coherence from optical SPOT and SAR ERS satellite imagery 

before and after the 1999 Marmara earthquake. With certain critical characteristics (hue, saturation, 

brightness and edge intensity) of building damage, Hasegawa et al. (2000) have proposed an 

automated detection method of damaged buildings from aerial HDTV images taken after the 1995 

Kobe earthquake. Bertinelli and Strobl (2013) have studied the impacts of hurricanes on local 

economic activities by analyzing the relationship between hurricane destruction and local 

economic activities measured by satellite imagery of nightlights. 

There are two types of remote-sensing data commonly used in tornado damage assessment: 

pre-event and post-event datasets. Pre-event data refers to images taken before a tornado 

touchdown and can serve as the reference when “before” and “after” images are compared to 

detect changes. Those images indicate the geographic distribution of buildings, vehicles, trees and 

other objects, as well as dimension, orientation, and other factors of those objects (Davidson 2013). 

Post-event data refers to images collected after a tornado.  

Even though both of them are desirable, post-event data alone is more widely used when the 

pre-event data are unavailable, they fail to match, fast initial damage assessment and rapid 

responses are required, and/or human visual interpretation is adopted (Dong and Shan 2013). For 

example, with visual interpretation, Brown et al. (2012) have performed remote-sensing surveys 

on the 2008 “Super Tuesday” tornado from two sets of satellite images (one was taken 3 days after 

the event and the other 5 days after) and 2005 Hurricane Katrina from two sets of aerial images 

following the event. By tracking debris deposit, Radhika et al. (2012) have identified tornado 

damage paths using a texture-wavelet analysis method from post-storm aerial images of the 2006 

Saroma, Japan EF3 tornado.  

Nevertheless, the development of remote-sensing technology for rapidly assessing damage after 

windstorms is still in its infancy, slowed significantly by a fundamental limitation for satellite and 

aerial images: they primarily display the condition of roofs and not of walls, windows, and doors. 

Thus, it is important to examine how accurately damage ratings of roofs derived from such 

imagery could be related to the global condition of buildings.  

 

1.3 Remote-sensing damage scale  
 

Researchers have examined the relationship between damage ratings of roofs assessed based on 

remote-sensing imagery and damage ratings of overall buildings based on ground-based field 

surveys (Brown et al. 2012). Such a relationship is evident because roof damage has a strong 
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correlation with the overall building damage when the structure is subject to extreme wind loading 

(Minor 2005, Pinelli et al. 2004, Simiu and Scanlan 1996, Womble 2005). To aid such efforts, 

Womble (2005) developed a Remote-Sensing (RS) damage scale for residential structures. The 

four-level scale assigns a damage rating, i.e., A, B, C, and D, to the roof based on the most severe 

damage observed. Table 1 shows the description of each RS damage rating. 

Although Womble (2005) did not examine the relationship between the damage states of roofs 

observed by remote-sensing and those of overall buildings by ground surveys, inherent linkages 

between those two damage states is intuitive. Based on the definition given by the HAZUS-MH 

Hurricane (FEMA 2013, Vickery et al. 2006), the four states defined in the RS scale are 

comparable to the description of roof element of the damage states in HAZUS where RS-A 

corresponds to HAZUS-0 (No damage or very minor damage), RS-B corresponds to HAZUS-1 

(Minor damage), RS-C corresponds to the combined HAZUS-2 (Moderate damage) and HAZUS-3 

(Severe damage), and RS-D corresponds to HAZUS-4 (Destruction).  

To characterize the relationship between the damage states of roofs observed by remote-sensing 

and those of overall buildings by ground surveys, Brown et al. (2012) have used a dataset of 

damage states (both ground-based damage data and matched remote-sensing damage data from 

high resolution satellite imagery) of 271 one- and two-family residences (FR12) from the “Super 

Tuesday” tornado in 2008. Realizing that Womble’s four-level damage rating scale was often too 

coarse to describe damage states of the roof, they propose an alphanumeric scale by adding a 

parameter into the initial RS scale to specify the percentage of damaged area. Damage assessed 

based on this modified RS scale could explain 68.6% of variance in ground survey based damage 

in the best model presented in the study (R
2
=68.6%) (Brown et al. 2012). 

Notably, RS scales in Womble (2005) and Brown et al. (2012) are based on the most severe 

damage observed, and thus could not utilize potentially valuable information about the different 

states of damage at different parts of a roof. When the damage of a small part of the building, i.e., 

the roof, is used to predict the overall damage of the whole building, the adequacy of information 

is always in question. Additionally, previous damage descriptions of RS scale would not be well 

suited for automated image processing and damage detection. 

 

 
Table 1 Description of Womble’s Remote-Sensing (RS) damage scale for residential structures (Womble 

2005) 

Damage Rating Description of most severe physical damage 

RS-A No apparent damage 

RS-B Shingles/tiles removed, leaving decking exposed 

RS-C Decking removed, leaving roof structure exposed 

RS-D Roof structure collapsed or removed. Walls may have collapsed 

 

 

 

1.4 Enhanced remote-sensing scale and environmental factors 
 

This study proposes a new Enhanced Remote-Sensing scale (ERS) to rate building damages 

using remote-sensing images for improved prediction of ground damages. Consistent with the 
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scales developed by Womble (2005) and Brown et al. (2012), the ERS scale uses A, B, C, D 

classification and the percentage of damage observed. In addition, the ERS scale not only 

considers the most severe damage but also tries to include all the damage states observed. For 

example, the classification of D with 1-25% of damage is further augmented with information on 

how much B and C damage was observed. In doing so, the ERS scale has been expanded to 36 

levels of damage, as explained in the Subsection 2.2.2, whereas the previous RS scales have up to 

four levels of damage (Womble 2005) or 13 levels of damage (Brown et al. 2012). 

The ERS scale improves on previous scales by using not only the maximum damage state of 

roofs but incorporating all damage states extracted from remote-sensing imagery and thus 

substantially reduces errors in assessing damage states. Accordingly, it is expected that the new 

scale is able to more accurately predict ground damage than previous ones.  

Additionally, the information on surrounding damage and debris is included to strengthen 

ground level damage prediction. As certain aspects of wind damage are not commonly captured by 

overhead imagery, such as damages to doors, windows, and walls, debris field and surrounding 

damage defined as surrogate damage indicators by Womble (2005) could function as extra 

indicators for providing further information about the damage status of buildings of interest and 

reducing uncertainty in the damage prediction. 

 

 

2. Methodology 
 

2.1 Data collection and processing 
 

An EF 5 tornado occurred in Joplin, Missouri on May 22, 2011, which resulted in devastating 

building damages, 158 fatalities and over 1,000 injuries. The Joplin tornado was considered the 

costliest and the 7th deadliest tornado in U.S. history to date. The maximum estimated wind speed 

exceeded 322 km (200 mph). The track length and width were estimated at 35.6 km (22.1 miles) 

and 1.2 km to 1.6 km (3/4 to 1 miles) respectively (NWS 2011).  

Six days after the Joplin tornado, a damage assessment team from the National Wind Institute 

(NWI) of Texas Tech University (TTU) was deployed.  It spent four days travelling over 138 km 

within affected areas and recording 14 hours of high-definition ground level video for over 6,000 

buildings with two GPS-enabled video cameras. Later, 50,435 images were extracted and archived 

in an ArcGIS database. Fig. 1 shows the geographic distribution of 6,579 buildings observed in the 

survey, overlaid with storm intensities determined by the National Weather Service. Data acquired 

from other sources such as building and parcel information, fatalities, historical records of 

tornadoes in the study areas, census, as well as satellite and aerial images were also added to the 

ArcGIS database.  

Using the database, damage states of 6,579 buildings observed in the ground survey images 

were manually assessed according to the Degree of Damage (DOD) in the EF scale (WISE 2006). 

1,400 one-and two-family residences (FR12) were selected to be further rated using 

remote-sensing imagery. The ERS was assigned by visual interpretation, utilizing 0.1 m spatial 

resolution post-event aerial imagery taken approximately 10 days after the tornado (Source: the 

Geographic Information Services of Jasper County, Missouri). Pre-event aerial imagery with 

spatial resolution of 0.15 m taken in 2009 was also made available as the benchmark. 
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Fig. 1 Buildings included in the ground survey across the tornado path as determined by the National Weather 

Service (NWS) Source of the track shown in Fig. 1:NWS (2011)  

 

 

2.2 Measures of building damages 
 

2.2.1 Damage states of the overall building: Degree of Damage  

The overall damage state of a building is indicated by the numerical Degree of Damage (DOD). 

Table 2 shows the definition of each DOD as well as associated wind speeds according to WISE 

(2006). For example, Fig. 2 shows the ground imagery of two residential structures damaged by 

2011 Joplin tornado (the overhead imagery of these buildings are shown in Fig. 3). The building in 

Fig. 2(a) is rated as DOD 4 because more than 20% of the roof covering material was lost and the 

garage door collapsed inward. The building in Fig. 2(b) is rated as DOD 6 because large sections 

of the roof structure were removed, but most walls remained standing. 

 

 

  
(a) DOD = 4 (TTU #687) (b) DOD = 6 (TTU #254) 

Fig. 2 Ground imagery of two residential structures damaged by 2011 Joplin tornado (Source: Photographs 

taken with GPS video camera survey system by NWI of TTU) 
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Table 2 Description of Degree of Damage (DOD) for one-and two-family residences (FR12) (WISE 2006) 

DOD       Damage Description   Expected 

wind speed* 

(mph) 

Lower bound 

wind speed* 

(mph) 

Upper bound 

wind speed* 

(mph) 

1       Threshold of visible damage   65 53 80 

2   Loss of roof covering material (<20%), 

gutters and/or awning; loss of vinyl or 

metal siding 

79 63 97 

3       Broken glass in windows and doors   96 79 114 

4   Uplift of roof deck and loss of significant 

roof covering material (>20%); collapse 

of chimney; garage doors collapse inward 

or outward; failure of porch or carport 

97 81 116 

5       Entire house shifts of foundation   121 103 141 

6   Large sections of roof structure removed; 

most walls remain standing 

122 104 142 

7       Exterior walls collapse   132 113 153 

8   Most walls collapsed in bottom floor, 

except small interior rooms 

152 127 178 

9       All walls collapsed   170 142 198 

10      Destruction of engineered and/or 

well-constructed residence; slab swept 

clean 

200 165 220 

* The wind speeds shown in this table are 3-second gust speeds in mph (mile per hour) 

 

 

 

2.2.2 Damage states of the roof: the Enhanced Remote-Sensing scale 
Damage state of a building’s roof is measured with an Enhanced Remote-Sensing (ERS) scale. 

The numerical values of the ERS range from 0 to 10, corresponding to 36 discrete damage states 

as shown in Table 3.  
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Table 3 The Enhanced Remote-Sensing scale for FR12 

State No. ERS Category Numerical Value 

1 A 0 

2 B 1-25% 1 

3 B 26-50% 2 

4 B 51%-75% 2.286 

5 B >75% 2.571 

6 C 1-25% B 1-25% 2.857 

7 C 1-25% B 26-50% 3.143 

8 C 1-25% B 51-75% 3.429 

9 C 1-25% B >75% 3.714 

10 C 26-50% B 26-50% 4 

11 C 26-50% B 51-75% 4.125 

12 C 26-50% B >75% 4.25 

13 C 51-75% B 51-75% 4.375 

14 C 51-75% B >75% 4.5 

15 C >75% B >75% 4.625 

16 D 1-25% C 1-25% B 1-25% 4.75 

17 D 1-25% C 1-25% B 26-50% 4.875 

18 D 1-25% C 1-25% B 51%-75% 5 

19 D 1-25% C 1-25% B >75% 5.125 

20 D 1-25% C 26-50% B 26-50 5.25 

21 D 1-25% C 26-50% B 51-75% 5.375 

22 D 1-25% C 26-50% B >75% 5.5 

23 D 1-25% C 51-75% B 51-75% 5.625 

24 D 1-25% C 51-75% B >75% 5.75 

25 D 1-25% C >75% B >75% 5.875 

26 D 26-50% C 26-50% B 26-50%  6 

27 D 26-50% C 26-50% B 51-75% 6.333 

28 D 26-50% C 26-50% B >75% 6.667 

29 D 26-50% C 51-75% B 51-75% 7 

30 D 26-50% C 51-75% B >75% 7.333 

31 D 26-50% C >75% B >75% 7.667 

32 D 51-75% C 51-75% B 51-75%  8 

33 D 51-75% C51-75% B >75% 8.333 

34 D 51-75% C >75% B >75% 8.667 

35 D >75% C >75% B >75% 9 

36 Slab swept clean 10 
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The ERS scale combines an alphabetic RS scale with an indicator of the percentage of damage 

area. It uses A, B, C, D to describe damage observed, following Womble (2005), and it also 

specifies the percentage of damage (1-25%, 26-50%, 51-75%, and >75%) related with each level 

of damage, following Brown et al. (2012).The ERS scale uses a more granular characterization of 

roof damage, taking into account a building might experience multiple levels of damage. 

Consequently, there were a total of 36 damage states defined in the scale. 

The numerical values of the ERS are determined according to intrinsic relationship with the 

DOD. First, six key damage states of ERS are identified, namely “A”, “B 26-50%”, “C 26-50% B 

26-50%”, “D 26-50% C 26-50% B 26-50%”, “D >75% C >75% B >75%”, and “Slab swept clean”. 

Those states are assigned numerical values of 0, 2, 4, 6, 9, and 10 to match the same numerical 

values as defined in the DOD. After that, linear interpolation is applied to calculate proper 

numerical values for the remaining 30 damage states.  

Fig. 3 shows the aerial imagery of the same two residential structures presented in Fig. 2. The 

roof damage states of these two buildings are rated with ERS, which is summarized in Table 4. In 

addition to the ERS rating, ratings based on RS scales from Womble and Brown et al. are also 

provided to highlight their differences. For Fig. 3(a), because the most severe damage located at 

the middle of the roof is “Decking removed, leaving roof structure exposed”, Womble would rate 

the roof as C level damage. Brown et al. would further consider the percentage of this most severe 

damage area in the roof, which is 1-25%, and rate the roof damage as “C 1-25%”. Using ERS scale, 

the building is rated as “C 1-25% B 51-75%” because about 51% to 75% of “the shingles removed 

and leaving decking exposed”. For Fig. 3(b), the building is rated as “D 1-25% C >75% B >75%” 

based on the ERS since there were less than 25% roof structure removed at the bottom left corner, 

almost all the roof structure exposed, and all the singles/tiles removed from the roof. In contrast, 

the building would be rated as D and “D 1-25%” based on Womble and Brown et al. respectively. 

 

 

  

(a) ERS Rating: “C 1-25% B 51-75%” (TTU #687) 
(b) ERS Rating: “D 1-25% C >75% B >75%” (TTU 

#254) 

Fig. 3 Aerial imagery of two residential structures damaged by 2011 Joplin tornado (Source: the Geographic 

Information Services of Jasper County, Missouri) 
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Table 4 Results from three different damage rating systems 

Sample  RS (Womble) RS (Brown et al.) ERS  

(a) TTU #687 C C 1-25% C 1-25% B 51-75% 

(b) TTU #254 D D 1-25% D 1-25% C >75% B >75% 

 

 

 

2.3 Analysis and validation 
 

Ordinary Least Regression is used to estimate the relationship between ground-based damage 

rating characterized by DOD using EF Scale and remotely-sensed damage rating characterized by 

the newly developed ERS scale. Goodness-of-fit of the model is evaluated with coefficient of 

determination (R
2
).  

When ERS is 0 (i.e., no damage is visually detected from the remote sensed image), the actual 

condition of the building could fall into one of the following two possible cases: 

 The building sustains minor damage, but the roof shows no damage or minor damage that is 

difficult to detect with visual examination. In this case, even though ERS is 0, the actual DOD 

of the building should not be 0;  

 The building is not damaged by the tornado at all whether it is located outside or inside the 

tornado track. In this case, both ERS and DOD ought to be 0.  

As the purpose of this study is to evaluate the capability of the ERS scale to rapidly and reliably 

assess tornado damage of buildings using remote-sensing images, buildings located far outside the 

track are removed from the sample set. However, for buildings located near the boundary of the 

track, it is reasonable to assume that ones with ERS 0 and no surrounding debris or building 

damages are likely to sustain no wind damage. Here an indicator is used to record whether debris 

or damage observed within a 20 meter radius around the subject. As the result, additional 82 

buildings meeting such a criterion are removed from the sample set. The regression analysis is 

conducted on the constrained sample set of 1,318 FR12 buildings. 

The model is validated with splitting sample validation. The dataset is randomly divided into 

two parts, with one part used as the training set to train a model and the remaining part used as the 

test set to examine the accuracy of the model. Because single data splitting is not reliable, ten-fold 

cross-validation is often practiced (Harrell 2001). For the ten-fold cross-validation, the dataset is 

divided into 10 groups, with nine of them used to train a model and the remaining one used to 

validate the model. Furthermore, to reduce variability, validation is usually repeated multiple times 

and the indicators for the accuracy (e.g., R
2
 in OLS regression) are averaged (Cassell 2007, Harrell 

2001).  

In this study, ten-fold cross-validation is used and repeated 1,000 times for better precision. The 

R
2
 was averaged across all the 1,000 test sets. A minimum decrease of R

2
 from the best-fit-model 

would indicate robustness of the model. 
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3. Results 
 

Figs. 4(a)-4(c) presents the univariate and bivariate distribution of ERS numerical value 

(abbreviated subsequently as ERS) and DOD. ERS was concentrated on the lower levels of 

damage (0-2) while DOD was concentrated on the lower levels of damage (1-4). Correspondingly, 

the bivariate distribution was skewed toward the lowest levels of DOD and ERS.  

Table 5 presents regression results. The model could be written as  

DOD = 1.075 + 0.853ERS + ε       (1) 

where ε is a random error.  

The model had a high R
2
, which means the model could explain 94.3% of variance in DOD, 

suggesting ERS is a strong predictor for DOD with high accuracy. 

Fig. 5 presents the 95% confidence limits and the prediction limits of the DOD based on ERS 

along with the actual observation. It helps to visualize the accuracy of using ERS to predict DOD. 

The confidence limits show the interval estimate of the mean; these limits are very small, and thus 

are not visible in the plot. The prediction limits show the interval estimate of data observations. In 

the model, most observations of DOD fall within the prediction limits; furthermore, there is a 

strong linear trend between ERS and DOD. 

 

   

(a) Univariate distribution of ERS (b) Univariate distribution of DOD (c) Bivariate distribution of 

ERS and DOD 

Fig. 4 Univariate and bivariate distribution of ERS and DOD 

 

 
Table 5 Regression of DOD on ERS damage state 

 
Coefficient Standard Error p Value 

ERS 0.853 0.006 <0.0001 

Constant 1.075 0.026 <0.0001 

  
  

N 1318   

F (DF) 21693.1 (1)  <0.001 

R
2
 0.943   
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Fig. 5 Statistical relationships between ERS damage state and DOD in windstorm with 95% confidence 

interval and prediction interval 

 

 

The model is validated with the ten-fold cross-validation repeated 1,000 times. The validation 

results in an average R
2
 of 0.942 across all the 1,000 test sets, which is almost identical to R

2
 of the 

model. Furthermore, of all those R
2
 values generated, the minimum is 0.904, the maximum is 

0.970, and the standard deviation is 0.010. Thus, the validation result demonstrates a strong 

evidence of the model’s robustness.   

 

 

4. Discussion 
 

In this study, an enhanced remote-sensing damage scale (ERS) is proposed to rate residential 

building damages solely based on remote-sensing imagery. A statistical model is developed to 

examine the relationships between the roof damage rated by the ERS and the ground truth 

provided by the EF scale.   

The model performs very well. The ERS explained about 94% of the variance in DOD based on 

ground survey of the damage states of buildings. Especially when the objective is not to assess 

each individual building’s damage but to quantify area wide impact, ERS would be an excellent 

tool for emergency managers during disaster relief efforts.  

The ERS is believed to outperform previous remote-sensing scales for several reasons. First, 

the ERS is designed to preserve and use additional information extracted from remote sensed 

imagery by reporting on the damage states of multiple components of a single building. In contrast, 

RS scales (Brown et al. 2012, Womble 2005) only consider the most severe damage observed and 

lead to the loss of valuable information on lesser damages. As remote-sensing imagery has already 

been constrained in term of its ability to detect building conditions from the above, extra 

information provides by the ERS proves intrinsically advantageous.  
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In addition, the imagery spatial resolution used in this study is higher than that in previous 

studies using RS scales (Brown et al. 2012, Womble 2005). Generally speaking, finer spatial 

resolution offers more details and greater capability to detect damages. Jensen and Cowen (1999) 

studied the temporal and spatial resolution requirements for remote-sensing of urban/suburban 

infrastructure. They recommended a minimum resolution for building and property infrastructure 

of 0.25 m - 0.5 m. Bolus and Bruzewicz (2002) examined the optimal resolution for differentiating 

roof structures. They suggested that the resolution of 0.2 m (8 inch) was needed for the 

differentiation of individual roof rafters. However, Womble (2005) and Brown (2012) only have 

access to satellite remote-sensing images with limited resolution available at the time when they 

conducted their studies. Brown et al. (2012) uses the remote-sensing imagery with spatial 

resolutions of 0.5 m and 0.61 m in their study on the 2008 Super Tuesday tornado, less than the 

suggested resolution. In contrast, the aerial remote-sensing imagery used in this study has a 

resolution of 0.1 m, well suited for the detailed classification in the ERS.  

Furthermore, the dataset used in Brown et al. (2012) doesn’t contain sufficient numbers of 

buildings with high levels of damage and most of the data used for the model fitting were at low 

and moderate damage states (i.e., DOD 4 or lower, and RS-B or lower) with very few buildings 

(2%) rated DOD 7 or above, which limited the power of the models. In contrast, this study 

includes 262 (18.7%) buildings rated as DOD 7 or above, increasing the power of the model in 

predicting higher levels of damage.  

This study also highlights the necessity to include surrounding environment as a sampling 

technique for delineating the boundary of tornado track. By focusing only on buildings located 

within the track, the uncertainty in model prediction due to differences in sampling methods is 

reduced. The model intercept suggests that the expected ground level damage was close to 1 (i.e., 

threshold of visible damage) even when ERS was 0. This is consistent with field observations as 

the majority of buildings sustained debris damages to walls or openings not shown on 

remote-sensing imagery. Thus, the inclusion of the surrounding environment helps increase the 

performance of the model. 

Another advantage of ERS is the clear and simple description of roof damage to minimize 

human biases. In contrast, DOD has a more complex syntax in which different building 

components and their damage levels are considered. From our own experience, rating with ERS 

could approximately be accomplished ten times faster than rating with DOD for a trained evaluator. 

Furthermore, the inconsistency of the subjective assessment of DOD is always of concern, and 

often experts do not agree with each other on the level of DOD for same buildings (Edwards et al. 

2013, NIST 2013).   

With a detailed classification structure, the development of ERS is continuing to lay the 

foundation for automated damage detection. The potential benefit of using remote-sensing to 

collect information declines with time following a disaster because other methods of collecting 

information become available (Hodgson et al. 2010). The timely analysis of remote-sensing data 

can be enhanced with automated image processing. But these methods have not yet been fully 

developed and tested, leaving analyses heavily relying on visual and manual interpretation for the 

immediate impacts of disasters (Battersby et al. 2012, Joyce et al. 2009). Lack of robust damage 

detection algorithms and tools substantially limits the application of remote-sensing technology in 

hazard monitoring, detection, and evaluation (Joyce et al. 2009). 

As the aerial damage survey used in the study was conducted 10 days after the tornado, some 

debris had been removed and minor damage had been repaired, possibly affecting the accuracy of 

damage assessment for buildings - especially those with low levels of damage. This problem could 
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be mitigated with using earlier imagery from other sources such as FEMA. In general, aerial 

surveys, that are able to obtain high-resolution imagery, often lag considerably the actual events or 

are unavailable due to technical and financial challenges. In contrast, satellite-based surveys can 

cost less and have greater area coverage, although spatial resolution is coarser. Nevertheless, as the 

technology improves, higher resolution satellite imagery is expected to become available. In 

addition, other emerging technologies such as unmanned aerial vehicles (UAV) have the potential 

to become a preferred method for rapid damage survey (Adams et al. 2010, Adams et al. 2013, 

Adams and Friedland 2011, DeBusk 2010). These advancements in technology will further 

strengthen the use of remote-sensing imagery for the rapid assessment of damage.  

 

 

5. Conclusions 
 

This study proposes an Enhanced Remote-Sensing scale and examines the relationships 

between roof damage rated with the ERS and the overall condition of the buildings rated with the 

DOD. The model demonstrates a high capability to predict overall damage of buildings because 

the ERS scale utilizes more information available in high resolution aerial remote-sensing imagery 

and thus describes the roof damage with more accuracy.  

The study has developed methods and tools that can promote the application of remote-sensing 

in practice. Remote-sensing has been proposed by researchers as a timely and cost-effective way to 

assess ground level damage. It is known that roof damage has a strong correlation with overall 

building damage due to wind; thus it is reasonable to use remote-sensing imagery of roofs to 

estimate overall building damage. However, broader use of remote-sensing technology in post 

windstorm damage assessment would call for more robust methods and tools. This study provides 

strong empirical evidence that remote-sensing can be used to reliably assess building damage 

states, and the consideration of the surrounding environment substantially increases the accuracy.  

One topic of interest is to examine the effectiveness of ERS when applied to other occupancy 

types (e.g., apartments, motels, malls, mobile home) and construction classes (e.g., wood frame, 

masonry veneer, concrete, metal). As there are 28 damage indicators (DIs) adopted in the EF scale 

(WISE 2006), additional datasets could be collected and analyzed, resulting in different models for 

different types of DIs. In addition, advanced technologies such as oblique imagery heavily used in 

a recent 2013 Moore, OK tornado are able to identify damage to windows, roof undersides, siding, 

etc, providing extra pieces of information for the future improvement to ERS  

Another topic involves the applicability of ERS in hurricanes and straight-line winds. As failure 

mechanisms differ, the correlation between RS-derived damage rating and ground truth may vary 

(Haan et al. 2010, Marshall 2008, Simiu and Scanlan 1996). Following similar methodology, 

datasets collected from events such as Hurricane Katrina and Hurricane Ike could be analyzed. The 

result may then shed light on transferability of models and parameters across hazard types.  

Furthermore, the potential use of ERS to estimate insured loss could be explored. In loss 

models, insured loss is not linearly correlated with the severity of damage. In the Florida public 

hurricane loss model, when damage on a residential building exceeds 50%, the total loss will be 

set to 100% (Hamid 2007). In HAZUS-MH Hurricane, replacement thresholds are defined as the 

levels beyond which building components should be completely replaced. For example, the 

replacement thresholds were set at 2.5% for roof covering and at 5% for roof sheathing (FEMA 

2013). With a better capability in detecting and classifying minor to moderate damages, the ERS 

could be well suited to quickly assess the economic losses after a major windstorm.  
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