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Abstract.    This paper presents a method of estimation of extreme wind. Assuming the extreme wind 
follows the Gumbel distribution, it is modeled through fitting an exponential function to the numbers of 
storms over different thresholds. The comparison between the estimated results with the Improved Method 
of Independent Storms (IMIS) shows that the proposed method gives reliable estimation of extreme wind.  
The proposed method also shows its advantage on the insensitiveness of estimated results to the precision of 
the data. The volume of extreme storms used in the estimation leads to more than 5% differences in the 
estimated wind speed with 50-year return period. The annual rate of independent storms is not a significant 
factor to the estimation. 
 

Keywords:    extreme wind speed; extreme value estimation; annual maximum; independent storms; 
weighted least-squares method 
 
 
1. Introduction 
 

A good estimation of extreme wind speed is essential for estimating the wind load effects on 
structures. It has been a long time since extreme value theory was introduced into the field of wind 
engineering. The extreme value theory states that sufficiently large values of independent and 
identically distributed variates can be described by one of extreme value distributions. 

In order to make good use of the extreme wind speed, researchers tried to analyze independent 
sub-annual maximum wind speed data for decades. Extreme wind speed estimation based on the 
independent maximum values was firstly described by Jensen and Franck (1970). The essence of 
this method is to obtain the maximum daily wind speed and then to inspect the maxima and select 
only those which apply to independent storms, so that the extremes are from meteorologically 
uncorrelated events. Cook (1982) derived the Method of Independent Storms (MIS) for this 
purpose; it was then improved (Harris 1999) by introducing the theoretically derived plotting 
position and the corresponding variance for each ranking position. This method was further 
improved in subsequent studies (Cook and Harris 2003, Harris 2009, 2014). Besides the use of 
maximum wind speeds to estimate extreme wind speed distribution, the peaks over threshold (POT) 
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method is another approach that leads to the Generalized Pareto Distribution (GPD) (Lechner et al. 
1993, Simu and Heckert 1996, Holmes and Moriaty 1999). An and Pandy (2007) provided another 
alternative method for the extreme wind speed estimation which is called the r-Largest Order 
Statistics(r-LOS) method. Karpa and Naess (2013) introduced the average conditional exceedence 
rate (ACER) method to estimate the extreme wind speed. Hong et al. (2013) discussed generalized 
least-squares method for the annual maximum wind speed estimation. 

 There have been discussions for a long time on which type of extreme distribution, 
Fisher-Tippett distribution type I, II or III, the extreme wind speed follows (Cheng and Yeung 
2002, Harris 2004, 2005, An and Pandey 2005). It is a crucial question for clarification of the 
underlying mechanism of wind. However, the estimated results from the two kinds of models do 
not have significant differences for the 50- or 100- years return period wind speed from an 
engineering point of view.  

 In this paper, an alternative estimation method based on the Poisson Process model for 
extreme wind speed is introduced and applied to analyze approximately 15 years consecutive 
10-min mean wind records from 5 stations in North America. The extreme wind speed is assumed 
to follow a Gumbel distribution. This method models the extreme wind speed by counting the 
number of storms over several thresholds. One thing that should be noted is that, although these 
places are not located in hurricane-prone regions, some other kinds of wind storms might occur at 
the stations, such as thunderstorms. Because of lack of detailed climate data, such storms cannot 
be specified and removed from the data. Thus, the estimated results might possibly be distorted in 
some level due to such unknown mixed climate. The idea of events over threshold has been used 
to estimate extreme rainfall (Buishand 1984) showing great advantage for the extreme value 
estimation of correlated sequence data. The feasibility of the method will be discussed below with 
analysis on the wind speed data. 

The paper is organized as follows. The theoretical background and the methodology are 
presented in Section 2. Estimated results from data recorded at 5 stations are compared with results 
from the IMIS and POT methods for validation in Section 3. The effects of threshold are discussed 
in Section 4. Section 5 discusses the data precision effects on the estimated results in this method. 
The effects of the annual rate of storms on the estimation results are checked in Section 6.  
Section 7 summarizes the finding of this paper. 

 
 

2. Method introduction 
 
2.1 Basic theory 
 
For a general random process with F(x) as the distribution function, “n” (x1, x2, x3 ,…,xn) values 

are obtained independently from this random process. The probability of the maxima Xn of all the 
n values smaller than a value z is expressed as 

)(),...,,()( 21 zFzxzxzxPzXP n
nn      (1) 

and if F(x) is close to unity, the following approximation exists as 

)](1[)(ln xFxF         (2) 

Therefore 
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)](1[)( xFnn exF               (3) 

where n[1-F(x)] is the expected number of xi (i=1, 2,…, n) that exceeds the threshold x. Let  

)](1[)( xFnxa                  (4) 

and if the function F(·) is assumed to be an exponential distribution as 

zezF 1)(                   (5) 

where z can be a function of a variable x, z=h(x), then two parameters related to x are the location 
parameter μ and scale parameter α. Let z be defined as 

   xz                (6) 

Parameter μ is called the “characteristic largest value” of z, expressed as z


 which satisfies 

1)](1[  zFn


                (7) 

This equation indicates that for a sample of data x with volume n, there is one value of x which 
is expected to be greater than μ, basing on Eq. (3). So that 

)ln(n               (8) 

The dimensions of α are the inverse of those of x, and α can be solved according to 
Harris(1982) 

1)](1/[)(  zFzf            (9) 

Therefore, z can be expressed as 

)ln(nxz           (10) 

and the following equation can be obtained for large n as 

))exp(exp()1()1()( )ln( x
n

e
exF n

x
nnxn 


    (11) 

This equation means that if F(x) follows an exponential type distribution in the tail with a large 

enough n, )(xF n  follows the Gumbel distribution. For a Gumbel distribution, the 
non-dimensional variable x on the right hand side of Eq. (11) can be replaced by a function

 vv V   , where μv is the location parameter and αv is the scale parameter related to a specific 

variable V. 
 

2.2 Application to extreme wind speed 
 
For extreme value analysis of long-term consecutive 10 min or 1 hour mean wind speed data, 

the formulas discussed in previous session 2.1 cannot be directly applied. This is because the 
consecutive wind speed data are highly correlated with each other. This means that data within a 
very long period are not independent with each other. Only storms that are separated for a time 
duration longer than a specific period can be treated as independent storms. a(u) is defined as the 
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number of independent storms whose wind speeds exceed a certain value u, which is expressed as 

)()( DQrua                (12) 

where r is the number of total independent wind storms within a certain time, normally taken as 
one year in wind engineering.  Therefore, r is also called as the annual rate of storms. Q(D) is the 
probability of event D occurring, where D indicates storms whose maximum wind speed are 
higher than u--expressed as 

},...,,{ 1 uUuUuUD miii          (13) 

and m is the least interval to separate independent storms.  If any niU   occurs with n<m, the iU  

and niU   are assumed to be from the same storm and are therefore not independent. 

If r is large, the probability of the maximum wind speed uU ˆ  during a period, e.g., one year, 

is 

)()()ˆ(P uaDrQ eeuU         (14) 

by assuming the wind speed distribution follows an exponential distribution at the upper tail region. 
Considering Eq. (11) 

)()( aa ueua          (15) 

where αa and μa are the scale parameter and location parameter of the Gumbel distribution. a(u) 
can be obtained directly from the wind speed data by counting the number of storms D for 
different threshold ui (i=1, 2,…, N) with u1, the lowest value of threshold and uN, the highest value 
of threshold. If the observation lasts for M years, and the total number of storms D during the M 
years are b(ui), a(ui) can be calculated by 

Mubua ii /)()(            (16) 

Consequently, parameters αa and μa can be estimated through the least mean squares method. 
 
2.3 Variance of number of storms over threshold 

 
Theoretically, the exact probability density for the number of storms D is given by 

kkr uFuF
k

r
u )](1[)()( 








            (17) 

where r is the annual rate of storms.  The expected value of occurrence time a(u) of storm D is 

)](1[))(( uFruaE                (18) 

and the variance of occurrence time a(u) of storm D is 

)](1[)())(( 2 uFuFrua            (19) 
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Fig. 1 Variance changes with probability 
 
 
From the equations above, it can be seen that the variance σ2 is a function of F(u) and r. The 

relation of σ2 and F(u) is shown in Fig. 1 when r equals 100. This number is generally agreed to be 
a typical annual rate of independent wind storms. 

If the threshold u is large, it will have F(u) close to unity. It can be seen from Fig. 1 that while 
F(u) approaches unity, the variance decreases sharply accordingly. This indicates that a lower 
threshold u is associated with larger variability of a(u).  

 

2.4 Fitting process 

The two parameters αa and μa can be directly obtained according to Eq. (15) by fitting the 

function 

)()(ln aa uua          (21) 

with a straight line (Buishand 1984). However, this curve fitting ignores the variance a(ui) 
associated with different thresholds. Therefore, the idea of weighted least-squares technique 
introduced by Harris (1996) is adopted in this process. Weights wi (i=1, 2,…, N) are introduced to 
compensate for the systematic change of variance of a(ui) corresponding to each threshold ui. The 
problem then becomes that of finding values αa and μa which minimize the value S; the smallest 
value of S indicates the best fit of the curve to the observed data.  
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and the weights need to satisfy 

0.1
1




N

i
iw         (23) 

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

F(u)

2

173



 
 
 
 
 
 

An alternative method for estimation of annual extreme wind speeds 

The choice of these weights is to make the variance of 2)( ])([ aia u
ii euaw    constant and 

independent of threshold ui. Therefore, the weight wi is expressed as 

 

 N

i i

i
iw

1

2

2

/1

/1




               (24) 

According to Eq. (11), the probability distribution of the independent wind speed in the tail part 
can be expressed as 

r

e
uF

aa u )(

1)(
 

              (25) 

Substitute F(u) in Eq. (19) with Eq. (25), we have 

)(
)(

2 1)( aa

aa
u

u

e
r

e
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       (26) 

The variance is noted to decrease with an increase in F(u). In other words, it will decrease 
while the wind speed u is increasing. Therefore, it is easy to know that the weight corresponds to 
the lower threshold is smaller. This can be explained further that a larger variance indicates a 
greater probability of errors. If a smaller weight is associated with this term, such errors will be 
reduced. 

It can also be seen that the variance is also a function of both parameters αa and μa in Eq. (26). 

Therefore, they cannot be estimated directly in explicit expression by solving 0



a

S


 and 

0



a

S


 of Eq. (22). A curve-fitting method is therefore performed with the help of the MATLAB 

toolbox with an iterative fitting process being adopted as follows  
1) Assuming all the weights are identical, Nwi /11  .  

2) Fit the exponential curve and get the initial estimates of αa1 and μa1.  
3) Calculate 2iw  based on αa1 and μa1.  

4) Repeat Steps 1 to 3 for an accurate estimation until  

)1()1( 01.0   iaiaai  , and )1()1( 01.0   iaiaai   

The estimations of the two parameters then become ˆ
a ai   and ˆa ai  . 

 
 

3. Results and discussion 
 

Harris(1999) proposed the well known Improved Method of Independent Storms(IMIS) for 
estimating extreme wind speeds. This method was improved by Harris (2009) to reduce the error 
introduced by the asymptotic convergence; it is still considered as a benchmark for the extreme 
wind speed estimation method. Many studies have been conducted on this method. The top U 
largest storms out of N independent wind storms in R years observations are selected for 
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estimation. The storm maxima(v) of these selected storms are pre-processed to v2 first. The reason 
for adopting v2 in estimation is that the probability distribution of square of the wind speed is 
assumed to follow more closely the exponential distribution in the upper tail region than wind 
speed itself. However, in this paper, for the sake of convenience, the pre-processing of wind speed 
is avoided. The scale and location parameters (αa and μa) are estimated based on the following 
equations 

2

11

2

1 11

)(

))((
ˆ


 



 






U

v v

U

v v

U

v

U

v v

U

v vvvv

a
vwvw

vwywvyw
     (27) 

a

U

v vv

U

v va ywvw  ˆ/)(ˆ
11  

 ,     (28) 

where wv is the weight, v is wind speed, and yv is the plotting position which is derived and 
introduced into the estimation procedure. 

Holmes and Moriarty (1999) applied the POT method to estimate the annual extreme wind 
speed distribution and the GPD was used for the modeling. The estimation function for the scale 
parameter αa and shape parameter k  are related basing on the following equation 

)1()](
1

[)( 0 kuukuYuYE
a




            (29) 

where u0 is the lowest threshold, and E(·) is the expectation operation. This equation indicates that 
if the mean of observed excess value over u is plotted against (u-u0), the plot should follow a 
straight line with slope k/(1+k) and an intercept 1/[αa·(1+k)] from which αa and k can be 
determined. The parameters of GEV distribution can then be obtained. However, we just assume 
the annual extreme wind speed follows the Type I (Gumbel) distribution in this study as discussed 
above, so the shape parameter k is set to be zero. The R-year return period wind speed VR can then 
be obtained as 

)ln(0 RuVR                 (30) 

where λ is the annual exceedence rate of the threshold u0. Consequently, the location parameter μa 
can be obtained as 

 lnˆ 0 a                (31) 

The results estimated by the proposed method were compared to the results from the IMIS 
method and POT methods. Approximately 15 years consecutive 10 min mean wind speeds 
recorded at 5 sites in the United States, in areas not subjected to mature hurricane winds, are used 
for the analysis. These data were published by the National Oceanic and Atmospheric 
Administration’s National Data Buoy Center. T able 1 also shows the estimated scale and location 
parameters based on the three methods for the station at Sheboygan, Wisconsin. From the 
estimated 50-year return period wind speed V50 shown in the last column of Table 1, it can be seen 
that the estimated results of IMIS method and the proposed method are the same, but the POT 
method gives somewhat different results. There are, in total, 1006 independent storm maxima 
counted at this station and the top 26 of them are used. Table 2 gives details of the estimation at the 
Sheboygan city by IMIS method. The plotting position and weight was obtained by adopting 
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Cook’s bootstrapping method (Cook 2004). For the POT method, the lowest threshold u0 was set 
to 19.0 m/s, and the interval of each threshold was 0.5 m/s. The value λ was 2.29 (32 events in 14 
years). Fig. 2 shows the observed average storm numbers above each threshold per year as well as 
the fitted line of the proposed method. The distance between each threshold is also 0.5 m/s. 

 
 

Table 1 Estimated results at Sheboygan, Wisconsin (1996-1999 and 2001-2010) 

Method αa(s/m) μa(m/s) V50(m/s) 
IMIS 0.54 20.2 27.4 
POT 0.64 20.3 26.4 

Proposed 0.55 20.2 27.4 
Note: U is 26 for IMIS method; The lowest threshold is 19 m/s for POT and Proposed method 

 
 

Table 2 Details of analysis at Sheboygan by IMIS method 

Rank Wind speed (m/s) Plotting position Weight 
1 25.4 3.275 0.0018 
2 24.6 2.278 0.0045 
3 23.8 1.782 0.0073 
4 22.8 1.444 0.0103 
5 22.5 1.193 0.0133 
6 22.4 0.994 0.0165 
7 21.6 0.827 0.0196 
8 21.2 0.686 0.0223 
9 20.8 0.560 0.0255 

10 20.6 0.450 0.0283 
11 20.6 0.350 0.0311 
12 20.5 0.258 0.0338 
13 20.3 0.174 0.0367 
14 20.1 0.096 0.0396 
15 20.0 0.025 0.0421 
16 19.8 -0.042 0.0451 
17 19.8 -0.105 0.0480 
18 19.7 -0.164 0.0516 
19 19.6 -0.220 0.0550 
20 19.5 -0.272 0.0578 
21 19.5 -0.322 0.0610 
22 19.5 -0.370 0.0642 
23 19.4 -0.417 0.0669 
24 19.4 -0.461 0.0694 
25 19.3 -0.504 0.0725 
26 19.3 -0.545 0.0756 

 
 
Tables 3 to 6 give the estimated V50 and model parameters based on records from the other four 

stations. Comparing the two parameters extreme wind speed models for the five stations, the 
location parameter μ is relatively insensitive to the methods. The estimated μa from all the three 
methods have similar values, but the scale parameter αa has a relatively larger variation. It can also 
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be seen from the tables that the proposed method has much closer results to the IMIS method, but 
the results from the POT method have larger differences. The largest difference between results 
from the proposed method and the IMIS method is: 6.8% for αa at Dunkirk station, 0.5% for μa at 
Sheboygan station, and 1.8% for V50 at Dunkirk station. The largest difference between results 
from the POT method and the IMIS method is: 51.6% for αa at South Bass Island, 1.7% for μa at 
South Bass Island, and 8.9% for V50 at Dunkirk station. Therefore, it is concluded that the 
proposed method is a suitable one to estimate the extreme wind speed based on the Gumbel model. 
 

Fig. 2 Storms above each threshold and the fitted exponential function 
 
 

Table 3 Estimated results at Passage Island, MI (1997-2012) 

Method αa(s/m) μa(m/s) V50(m/s) 
IMIS 0.61 23.7 30.1 
POT 0.64 23.8 29.9 

Proposed 0.56 23.5 30.5 

Note: U is 26 for IMIS method; The lowest threshold is 23m/s for POT and Proposed method 
 
 
Table 4 Estimated results at South Bass Island, OH (1996-2012) 

Method αa(s/m) μa(m/s) V50(m/s) 
IMIS 0.60 23.4 29.9 
POT 0.91 23.0 27.3 

Proposed 0.59 23.4 30.0 

Note: U is 26 for IMIS method; The lowest threshold is 22.5m/s for POT and Proposed method 
 
 

Table 5 Estimated results at Dunkirk, New York (1996-2012) 

Method αa(s/m) μa(m/s) V50(m/s) 
IMIS 0.44 24.7 33.6 
POT 0.65 24.5 30.5 

Proposed 0.47 24.7 33.0 

Note: U is 26 for IMIS method; The lowest threshold is 23.5m/s for POT and Proposed method 
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Table 6 Estimated results at Potato Point, Alaska (1996-2012) 

Method αa(s/m) μa(m/s) V50(m/s) 
IMIS 0.55 22.8 29.9 
POT 0.64 22.6 28.7 

Proposed 0.56 22.8 29.8 

Note: U is 26 for IMIS method; The lowest threshold is 22m/s for POT and Proposed method 
 
 

4. Effects of lowest threshold to the estimation results 
 
There is always a contradiction between the limited observation data and the desire of 

researchers to have as much as possible data for the estimation. Many methods have been 
developed to improve the traditional Gumbel method using one maximum from each sample for 
the estimation for this purpose, like MIS, IMIS, POT, et al. However, all these methods share a 
common question, that is, how much data should be selected from a fixed volume of parent data 
for the estimation? A small data size cannot provide a solid base for estimation. However, if too 
much data are selected from the limited observations, the estimated model might be unsuitable as a 
representation of the real extreme value distribution, as the selected data are not really “extreme 
values”. In this section, the effects of the lowest threshold are discussed and the effect of the 
amount of data is also checked.  

The average number of storms selected for estimation varies from less than 1 storm in a year to 
around 10 storms/year. The variation of estimated results with different average number of storms 
per year was studied. Fig. 3 shows that the estimated parameter αa changes with the lowest 
threshold for each station. The values in bracket under each lowest threshold wind speed are the 
number of storms with maximum speed greater than that lowest threshold value. Therefore, the 
variation of αa with the number of storms selected for estimation can also be checked in Fig. 3.  
The maximum wind speed of each of the selected storms has also been applied to the IMIS method 
for estimation in this paper. It can be seen that the change of estimated αa at each station from both 
methods have similar trend and most of the corresponded values are quite close to each other.  
The results, shown in Fig. 3, also show that the variation of αa estimated by the proposed method 
are relatively weak compared to the αa estimated by the IMIS method. This is due to the fact that 
in the proposed method, a lower threshold will be associated with a smaller weight. Therefore, a 
lower threshold does not have a strong effect on the estimated results. The 95% confidence limits 
of estimated αa by the proposed method are also shown in Fig. 3 (plotted in black dashed lines).  
It can be seen that estimated results by IMIS method are almost all located within the range of 
95% of the proposed method. It means that the results estimated by the two methods are 
compatible. It can also be observed that width of confidence limits of all cases gradually become 
narrower when the number of storms used by the estimation process become larger. However, 
when the average annual storms (number of storms divided by the observation years) used in the 
estimation process are greater than about 4-5, the width of the confidence limits become relatively 
constant. The estimated μa changes with the lowest threshold of both methods as shown in Fig. 4.  
It can be seen that the estimated μa are relatively more stable than αa. The estimated results from 
both methods are also quite close to each other for most of the cases. It can be concluded that the 
results obtained by IMIS and the proposed method have similar stability. Confidence limits of the 
estimated μa are also drawn in Fig. 4, and indicated by dashed lines. It can be checked that the 
estimated results by the two methods are also quite compatible with each other. What is different 
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from the results of αa is that the width of confidence limits for μa stay relatively constant with the 
change of the lowest threshold. 

Table 7 gives the maxima and minima of estimated 50 year return period wind speeds of each 
station, based on the two parameters estimated by the proposed method, with different lowest 
threshold values. Differences up to 7% are noted, but for most of the cases the differences are less 
than 5%. These results indicate that the proposed method is stable with the change of amount of 
data. Also based on the maxima and minima of the estimated values shown in Table 7, the range of 
the variation of the 50 year return period wind speed can be approximately estimated. The mean 
values of all estimated speeds at each station are also given in Table 7. If the 95% confidence 
limits of the estimated extreme wind speeds are of interest, the results shown in Figs. 3 and 4 can 
be used for this purpose. 
 
 

   

(a) Dunkirk, New York (b) Passage Island, Michigan 

  

(c) Potato Point, Alaska (d) Seboygan, Wisconsin 

 

(e) South Bass Island, Ohio 

Fig. 3 Parameter αa changes with the lowest threshold value 
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(a) Dunkirk, New York (b) Passage Island, Michigan 

  

(c) Potato Point, Alaska (d) Seboygan, Wisconsin 

 

(e) South Bass Island, Ohio 

Fig. 4 Parameter μa changes with the lowest threshold value 
 
 
 

Table 7 The maxima and minima of the estimated 50 year return period wind 

Station Dunkirk Passage Island Potato Point Sheboygan 
South Bass 

Island 
Max V50 (m/s) 34.4 31.2 31.4 28.1 31.3 
Min V50 (m/s) 33.0 30.5 29.1 27.0 29.1 

Difference 4.1% 2.2% 5.4% 3.9% 7% 
Mean (m/s) 33.4 31.0 30.3 27.4 30.4 

 
 
 

24.4
24.5
24.6
24.7
24.8
24.9

25
25.1
25.2
25.3

18.5 19 19.5 20 20.5 21 21.5 22 22.5 23 23.5 24 24.5 25 25.5

Proposed method
IMIS method

18.5  19  19.5  20  20.5  21  21.5  22  22.5  23  23.5 24 24.5  25  25.5
(175)(148)(128)(109)(94)(71) (65) (49)(42) (32)(21)(20) (15)

Lowest threshold (m/s)

a

22.9 
23.0 
23.1 
23.2 
23.3 
23.4 
23.5 
23.6 
23.7 
23.8 

18 18.5 19 19.5 20 20.5 21 21.5 22 22.5 23 23.5 24 24.5

Proposed method

IMIS method

18.5  19  19.5   20   20.5   21   21.5  22  22.5   23  23.5   24  24.5
(175)(129)(111)(81)  (65)  (52) (41) (30) (28)  (25) (15)  (11)

Lowest threshold (m/s)

a

22.0 
22.2 
22.4 
22.6 
22.8 
23.0 
23.2 
23.4 
23.6 

17.5 18 18.5 19 19.5 20 20.5 21 21.5 22 22.5 23 23.5 24

Proposed method
IMIS method

18  18.5  19 19.5   20  20.5   21  21.5   22  22.5   23  23.5  24
(166)(139)(115)(95)  (75) (54) (44) (35)  (25) (22)  (16) (12)

Lowest threshold (m/s)

a

19.6
19.7
19.8
19.9

20
20.1
20.2
20.3
20.4

16 16.5 17 17.5 18 18.5 19 19.5 20 20.5 21

Proposed method
IMIS method

a

16  16.5   17   17.5   18    18.5  19  19.5    20   20.5  21
(127) (97)  (78)  (54)  (42) (32)  (22)  (15)  (12)

Lowest threshold (m/s)

23

23.2

23.4

23.6

23.8

24

18 18.5 19 19.5 20 20.5 21 21.5 22 22.5 23 23.5 24 24.5

Proposed method
IMIS method

18.5   19  19.5 20  20.5   21  21.5  22 22.5 23  23.5 24   24.5
(170)(145)(117)(90)  (66) (51) (43) (34)  (26) (22) (16) (13)

Lowest threshold (m/s)

a
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5. Sensitivity to precision of collected data 
 

As discussed above, the major difference of the proposed method from the other methods is 
that it does not use the wind speed values directly in the estimation process. Only the number of 
storms whose maximum wind speeds are greater than each specified threshold are counted. 
Therefore, the sensitivity of this proposed method to the precision of the recorded data has been 
checked, in order to investigate the robustness of this method 

To do this the estimated results based on the original recorded data and the data that are 
rounded to the nearest integer (less precise) are compared (shown in Table 8). For reference, the 
results by IMIS method are also provided (Table 9). The results shown in these two tables are 
based on the same data set for each station, for which approximately 4-5 storms/year are used. 
From 500-year return period extreme wind speeds shown in Table 8, it can be seen that the results 
from the original and rounded data are quite close — the largest difference is 1.0%. By the IMIS 
method the difference of the results from two kinds of data are relatively larger — the largest 
difference is about 3.2%, although it is also tolerable from engineering point of view. This is 
because αa obtained by the proposed method are less sensitive to the precision of data than that by 
IMIS method. However, a obtained by the proposed method is more sensitive to the precision of 
data. Since for the estimation of extreme values, especially long return period extreme values, the 
scale parameter αa is more important, the results estimated by the proposed method do not vary a 
lot. 
 
Table 8 Estimated results based on original and rounded data by proposed method 

 
Station Dunkirk Passage Island Potato Point Sheboygan 

South Bass 
Island 

αa 
(s/m) 

Original 0.46 0.50 0.52 0.58 0.51 
Rounded 0.46 0.52 0.53 0.58 0.53 

Difference 0% 4% 1.9% 0% 3.9% 

a 

(m/s) 

Original 24.8 23.4 22.7 20.3 23.3 
Rounded 25.1 23.7 23.1 20.6 23.5 

Difference 1.2% 1.3% 1.8% 1.5% 0.9% 

V500 

(m/s) 

Original 38.3 35.8 34.6 31.0 35.5 
Rounded 38.6 35.6 34.8 31.3 35.2 

Difference 0.8% 0.5% 0.5% 1.0% 0.7% 
 

Table 9 Estimated results based on original and rounded data by IMIS method 

 
Station Dunkirk Passage Island Potato Point Sheboygan 

South Bass 
Island 

αa 
(s/m) 

Original 0.47 0.47 0.52 0.60 0.46 
Rounded 0.44 0.48 0.51 0.61 0.50 

Difference 6.4% 2.1% 1.9% 1.7% 8.7% 

a 

(m/s) 

Original 24.7 23.5 22.8 20.3 23.4 
Rounded 25.0 23.6 23.0 20.4 23.4 

Difference 1.2% 0.4% 0.9% 0.4% 0% 

V500 

(m/s) 

Original 37.9 36.7 34.7 30.7 36.9 
Rounded 39.1 36.5 35.2 30.6 35.8 

Difference 3.2% 0.5% 1.2% 0.2% 3.0% 
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6. Sensitivity to annual rate of independent storms 
 

Although there is general agreement that the annual rate of independent storms for many 
locations in temperate climates is around 100 (Cook 1982, Gumley and Wood 1982), because of 
the four day peak appearing at the macro-meteorological wind speed spectrum. There is no well 
established method or algorithm to calculate the exact number of annual independent storms. 
Some research (Harris 2014) has been made to calculate the annual rate for a better estimation of 
extreme wind speed, as such a rate is also one of the factors which directly affect the number of 
storms being counted in the estimation procedures. Thus, this section will discuss its effect on the 
estimation results. Cook and Harris (2004) have also discussed theoretically that IMIS method 
shows the insensitivity of that method. The sensitivity to annual rate of storms based on the actual 
data is described in this paper. 

Table 10 gives the estimated results corresponding to each averaged annual rate of independent 
storms of the Dunkirk station. The smallest interval time (the value “m” discussed in Section 2) is 
the period of time to obtain the corresponding number of independent storms set in the algorithm 
of estimation. Such a period is to make sure that each selected storm is separated sufficiently from 
the next one. It is known that the criterion of independence mainly affects the counting of storms 
with relatively smaller maximum speed. Two lowest thresholds were adopted for the proposed 
method in this case, and the effects of annual rate were checked respectively.  

It can be seen from Table 10 that the differences of annual rate has a lesser effect on the 
estimated results than the change of lowest threshold. While the annual rate changes from 60 to 
200, the parameter αa only changes from 0.40 to 0.42, if a lowest threshold of 19 m/s is used. The 
results also indicate that with an increase in the annual rate, the rate of increment of αa and V50 
tend to reduce. This means that if the annual rate stays between 100 and 200, the estimated results 
just change a little. It can also be seen that if the lowest threshold is set to be larger at 22 m/s, the 
effects of the annual rate becomes less. While the annual rate changes from 60 to 200, parameter 
αa just changes from 0.474 to 0.480. When the annual rate stays between 100 and 200, the 
estimated results stay relatively constant. The parameter μa is more or less constant with the 
change of annual rate in both cases. 

 
 
 
Table 10 Results for the Dunkirk station - changes with annual rate of independent storms 

Annual rate 60 80 100 120 140 160 180 200 
Least interval 

(10 min) 
400 290 220 160 140 120 100 90 

Lowest 
threshold 

19 m/s 

αa 0.401 0.406 0.411 0.414 0.415 0. 418 0.421 0.422 
μa 24.9 24.9 24.9 24.9 24.9 24.9 24.9 24.9 

V50(m/s) 34.65 34.53 34.41 34.34 34.32 34.25 34.19 34.17 
Lowest 

threshold 
22 m/s 

αa 0.474 0.476 0.478 0.480 0.480 0.480 0.480 0.480 
μa 24.8 24.8 24.8 24.8 24.8 24.8 24.8 24.8 

V50(m/s) 33.05 33.01 32.98 32.96 32.96 32.96 32.96 32.96 
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7. Conclusions 
 

An alternative method, for estimation of annual extreme wind speeds, is introduced in this 
paper. By comparisons of results from the IMIS and POT methods, the proposed method is shown 
to be capable to obtained estimated results that are close to those from the IMIS method. This 
method also appears to have better reliability for extreme wind speed estimation than the POT 
method for the Fisher-Tippet I (Gumbel) model. The above conclusions are based on analysis of 
approximately 15 years wind speeds records at 5 locations in North America. 

By checking the effects of the lowest threshold to the estimation, the scale parameter is shown 
relatively sensitive to the selection of lowest threshold, but the location parameter is not. These 
two parameters estimated by the proposed method are all close to those from the IMIS method, 
which shows that this method can be one of the choices for extreme wind speed estimation. 

The results show that the proposed method is relatively more robust to the precision of the 
recorded data than the existing methods, especially for the estimation of long return period 
extreme wind speed. 

The results also show that the annual rate of independent storms does not have a strong effect 
on the estimated results. With an increase in the annual rate, its effect on the estimated parameters 
becomes weaker. When the annual rate varies between 100 and 200, the estimated extreme wind 
speed is almost the same. 
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